Rubber-Ficus hirta Vahl. Agroforestry System Enhances Productivity and Resource Utilization Efficiency and Reduces Carbon Footprint
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Test Site
2.2. Experimental Design
2.3. Examined Indicators and Methods
2.3.1. Productivity
Rubber Biomass
Yield, Biomass, and Economic Benefits of Ficus hirta Vahl.
2.3.2. Environmental Factors
Available Nutrient Content in Soil and Root Distribution
Light Intensity
2.3.3. Resource Utilization Efficiency
SUE
PFPN
CE
2.3.4. NECB and CF
2.4. Data Analysis
3. Results
3.1. Productivity and Influencing Factors
3.1.1. Biomass
3.1.2. Economic Benefits of Intercropping
3.1.3. Soil Available Nutrients, Root Distribution, and Light Intensity
3.2. Resource Utilization Efficiency and Carbon Emissions
3.2.1. Resource Utilization Efficiency
3.2.2. NECB and CF of Complex Systems
4. Discussion
4.1. The Significance of Rubber Agroforestry in Enhancing Comprehensive Output
4.2. Resource Utilization Efficiency of Rubber Agroforestry and Its Contribution to Carbon Sequestration and Emission Reduction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baker, J.M.; Griffis, T.J. Examining strategies to improve the carbon balance of corn or soybean agriculture using eddy covariance and mass balance techniques. Agric. For. Meteorol. 2005, 128, 163–177. [Google Scholar] [CrossRef]
- Kochsiek, A.E.; Knops, J.M.H.; Walters, D.T.; Arkebauer, T.J. Impacts of management on decomposition and the litter-carbon balance in irrigated and rainfed no-till agricultural systems. Agric. For. Meteorol. 2009, 149, 1983–1993. [Google Scholar] [CrossRef]
- Johnson, J.M.; Franzluebbers, A.J.; Weyers, S.L.; Reicosky, D.C. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, Y.; Pan, J.; Liu, W.; Yang, G.; Xiao, X.; Zheng, H.; Tang, W.; Tang, H.; Zhou, L.; et al. Carbon footprint of different agricultural systems in China estimated by different evaluation metrics. J. Clean. Prod. 2019, 225, 939–948. [Google Scholar] [CrossRef]
- Yang, L.; Yue, K.D.; Zang, L.J. Carbon footprint of major crop production under the goal of ‘double carbon’ in Xinjiang, China. Chin. J. Appl. Ecol. 2025, 36, 1147–1158, (In Chinese with English Abstract). [Google Scholar]
- Lal, R. Soil carbon dynamics in cropland and rangeland. Environ. Pollut. 2002, 116, 353–362. [Google Scholar] [CrossRef]
- Chen, D.; Wang, C.; Li, Y.; Liu, X.; Wang, Y.; Qin, J.; Wu, J. Effects of land-use conversion from Masson pine forests to tea plantations on net ecosystem carbon and greenhouse gas budgets. Agric. Agric. Ecosyst. Environ. 2021, 320, 107578. [Google Scholar] [CrossRef]
- Yang, B.J.; Li, M.X.; Hu, L.Q.; Liu, N.; Huang, G.Q. Comparison of resource utilization efficiency and comprehensive benefits among different multiple cropping rotation patterns in the middle reaches of Yangtze River. Chin. J. Eco-Agric. 2022, 30, 1501, (In Chinese with English Abstract). [Google Scholar]
- Furbank, R.T.; Jimenez-Berni, J.A.; George-Jaeggli, B.; Potgieter, A.B.; Deery, D.M. Field crop phenomics: Enabling breeding for radiation use efficiency and biomass in cereal crops. New Phytol. 2019, 223, 1714–1727. [Google Scholar] [CrossRef]
- Qian, X.; Zhou, J.; Luo, B.; Dai, H.; Hu, Y.; Ren, C.; Peixoto, L.; Guo, L.; Wang, C.; Zamanian, K.; et al. Yield advantage and carbon footprint of oat/sunflower relay strip intercropping depending on nitrogen fertilization. Plant Soil 2022, 481, 581–594. [Google Scholar] [CrossRef]
- Yang, B.W.; Liang, X.R.; Qin, M.G.; Cao, Y.J.; Xiong, H.; Zhang, M. Sustainability analysis of different upland-paddy rotation systems in the middle reaches of the Yangtze River based on energy efficiency and carbon efficiency. Acta Agron. Sin. 2024, 50, 2801–2817, (In Chinese with English Abstract). [Google Scholar]
- Hu, H.; Chen, Y.; Zhang, L.; Lai, J.; Chen, K.; Xie, Y.; Wang, X. Effects of Different Nitrogen Substitution Practices on Nitrogen Utilization, Surplus, and Footprint in the Sweet Maize Cropping System in South China. Agriculture 2025, 15, 800. [Google Scholar] [CrossRef]
- Cheng, Y.; Dai, X.; Ren, H.; Wang, Y.; Liu, P.; He, M. Precision double cropping synergistically improves wheat and maize yields as well as resource efficiency. Agron. J. 2020, 112, 1035–1048. [Google Scholar] [CrossRef]
- Raza, M.A.; Gul, H.; Wang, J.; Yasin, H.S.; Qin, R.; Bin Khalid, M.H.; Naeem, M.; Feng, L.Y.; Iqbal, N.; Gitari, H.; et al. Land productivity and water use efficiency of maize-soybean strip intercropping systems in semi-arid areas: A case study in Punjab Province, Pakistan. J. Clean. Prod. 2021, 308, 127282. [Google Scholar] [CrossRef]
- Huang, J.; Pan, J.; Wei, Y.; Dong, T.; Zhang, X.; Tu, H.; Wang, X. Yield Performance of Intercropped Marantha arundinacea L. (Arrowroot) in Two Rubber Plantation Designs. Agriculture 2023, 13, 2754. [Google Scholar] [CrossRef]
- Huang, J.X.; Pan, J.; Zhou, L.J.; Chen, J.M.; Li, J.; Zheng, D.H.; Lin, W.F. Characteristic of Yield and Physiology of Stress Tolerance of Yam Bean Intercropped in Rubber Plantation with Paired Row Planting System. Chin. J. Trop. Crops 2015, 36, 639–644. [Google Scholar]
- Xian, Y.; Li, J.; Zhang, Y.; Shen, Y.; Wang, X.; Huang, J.; Sui, P. Determining Suitable Sampling Times for Soil CO2 and N2O Emissions Helps to Accurately Evaluate the Ability of Rubber-Based Agroforestry Systems to Cope with Climate Stress. Forests 2024, 15, 950. [Google Scholar] [CrossRef]
- Muthuri, C.W.; Kuyah, S.; Njenga, M.; Kuria, A.; Öborn, I.; van Noordwijk, M.; Sveriges, L. Agroforestry’s contribution to livelihoods and carbon sequestration in East Africa: A systematic review. Trees For. People (Online) 2023, 14, 100432. [Google Scholar] [CrossRef]
- Hond Vaccaro, C.; Six, J.; Schöb, C. How do different functional crop groups perform in temperate silvoarable agroforestry systems? A Swiss case study. J. Sustain. Agric. Environ. 2023, 2, 157–167. [Google Scholar] [CrossRef]
- Huang, J.X.; Pan, J.; Zhou, L.J.; Zheng, D.H.; Yuan, S.N.; Chen, J.M.; Li, J.; Gui, Q.; Lin, W.F. An improved double-row rubber (Hevea brasiliensis) plantation system increases land use efficiency by allowing intercropping with yam bean, common bean, soybean, peanut, and coffee: A 17-year case study on Hainan Island, China. J. Clean. Prod. 2020, 263, 121493. [Google Scholar] [CrossRef]
- Yang, L.; Huang, B.; Zhang, H.; Lin, J.; Yang, F.; Zhang, J. Influence of Different Marinating Methods on Dissolving Active Components from Ficus hirta Root. Mol. Plant Breed. 2022, 20, 6885–6892, (In Chinese with English Abstract). [Google Scholar]
- Lu, Y.; Chen, J.; Chen, B.; Liu, Q.; Zhang, H.; Yang, L.; Chao, Z.; Tian, E. High genetic diversity and low population differentiation of a medical plant Ficus hirta Vahl., uncovered by microsatellite loci: Implications for conservation and breeding. BMC Plant Biol. 2022, 22, 334. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Li, L.B.; Gan, F.Q.; Huang, R.S. Growth Evaluation of Ficus hirta Vahl Planted Under Pinus massoniana Forest. Hunan Agric. Sci. 2020, 9, 60–64, (In Chinese with English Abstract). [Google Scholar]
- Tian, M.X.; Gao, Y.L.; Cen, X.M.; Tian, M.J.; Huang, G.L.; Mo, Z.H.; Lan, W.M.; Wu, L.N. Study on the Growth Characters and the Best Harvest Time of Ficus simplicissima Lour Planted Under Pinus massoniana Lamb. Forest. J. Green Sci. Technol. 2023, 25, 119–123, (In Chinese with English Abstract). [Google Scholar]
- Wang, W.; Huang, G.L.; Ren, Y.; Liu, C.G.; Jin, Y.Q.; Liu, C.A.; Tang, J.W. Dynamics of growth and biomass of the rubber-Rauvolfia vomitoria-Cinnamomum cassia mixed stand. J. Cent. South Univ. For. Technol. 2023, 43, 116–126, (In Chinese with English Abstract). [Google Scholar]
- Ren, Y.F.; Li, J.Y.; Chen, G.P.; Pu, T.; Chen, H.; Wang, X.C. Effects of Different Planting Patterns on the Yield and Efficiency of Maize in Strip Intercropping System. Crops 2025, 101–108, (In Chinese with English Abstract). [Google Scholar]
- Mori, A. Farmyard, manure application and associated root proliferation improve the net greenhouse gas balance of Italian ryegrass—Maize double-cropping field in Nasu, Japan. Sci. Total Environ. 2021, 792, 148332. [Google Scholar] [CrossRef]
- Wu, Z.X. Carbon Balance of the Rubber Plantation Ecosystem in Hainan Island. Doctor’s Thesis, Hainan University, Haikou, China, 2013. (In Chinese with English Abstract). [Google Scholar]
- Zhang, Q.; Ju, X.S.; Zhang, F.S. Re-estimation of direct nitrous oxide emission from agricultural soils of China via revised IPCC2006 guideline method. Chin. J. Eco-Agric. 2010, 18, 7–13, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- He, C.H.; Liu, R.J. The Natural Rubber Price Insurance’s Security Level: Status, Problems and Suggestions. Chin. J. Trop. Agric. 2023, 43, 119–127, (In Chinese with English Abstract). [Google Scholar]
- Liu, R.J.; Wu, W.; He, C.H. Study on the Response of Rubber Growers to Low Prices: Willingness Expression and Behavior Choice. Issues For. Econ. 2018, 38, 55–63, (In Chinese with English Abstract). [Google Scholar]
- Huang, J.X.; Wei, Y.X.; Dong, T.Z.; Pan, J.; Wang, X.Q. Effect of intercropping in different rubber plantations on productivity, economical benefit and net greenhouse gases emission of arrowroot. Southwest Chin. J. Agric. Sci. 2024, 37, 1239–1246, (In Chinese with English Abstract). [Google Scholar]
- Wei, W.; Liu, T.; Zhang, S.; Shen, L.; Wang, X.; Li, L.; Zhu, Y.; Zhang, W. Root spatial distribution and belowground competition in an apple/ryegrass agroforestry system. Agric. Syst. 2024, 215, 103869. [Google Scholar] [CrossRef]
- Rodrigo, V.H.L.; Silva, T.U.K.; Munasinghe, E.S. Improving the spatial arrangement of planting rubber (Hevea brasiliensis Muell. Arg.) for long-term intercropping. Field Crops Res. 2004, 89, 327–335. [Google Scholar] [CrossRef]
- Zhao, F.; Yang, B.; Zhu, X.; Ma, S.; Xie, E.; Zeng, H.; Li, C.; Wu, J. An increase in intercropped species richness improves plant water use but weakens the nutrient status of both intercropped plants and soil in rubber–tea agroforestry systems. Agric. Water Manag. 2023, 284, 108353. [Google Scholar] [CrossRef]
- Lin, F.Y. Preliminary Studies on the Characteristics and Utilizations of Intercropping Resources in the Whole Cycle Intercropping Rubber Plantation. Master’s Thesis, Hainan University, Haikou, China, 2014. (In Chinese with English Abstract). [Google Scholar]
- Astapati, A.D.; Nath, S. The complex interplay between plant-microbe and virus interactions in sustainable agriculture: Harnessing phytomicrobiomes for enhanced soil health, designer plants, resource use efficiency, and food security. Crop Des. 2023, 2, 100028. [Google Scholar] [CrossRef]
- Hsiu-Wan, T.; Ying-Chieh, L. Will changing land use and cropping practices affect resource use efficiency and environmental sustainability of agricultural systems? A hierarchical emergy assessment approach. Ecol. Indic. 2024, 260, 111933. [Google Scholar]
- Li, X.Y. Study on Resource Use Efficiency and Relative Advantage of Productivity in Spring Maize-Later Rice Planting Model on South China Paddy Field. Doctor’s Thesis, Hunan Agricultural University, Changsha, China, 2011. (In Chinese with English Abstract). [Google Scholar]
- Chen, T.H.; Yuan, J.Q.; Liu, Y.Y.; Xu, K.; Guo, B.W.; Huo, Z.Y.; Li, G.Y.; Wei, H.Y. Effects of different sowing dates on crop yield, quality, and annual light-temperature resources utilization for rice–wheat double cropping system in the lower reaches of the Yangtze-Huaihe Rivers valley. Acta Agron. Sin. 2020, 46, 1566–1578, (In Chinese with English Abstract). [Google Scholar]
- Zhang, W.; Duan, Z.P.; Hao, X.D.; Lin, H.R.; Wang, B.J.; Gan, Y.W.; Li, L.H. Differences of absorption and utilization for nitrogen in jujube tree/wheat agroforestry system in Hetian. Agric. Res. Arid Areas 2018, 36, 149–154, (In Chinese with English Abstract). [Google Scholar]
- Triadiati; Tjitrosemito, S.; Guhardja, E.; Sudarsono; Qayim, I.; Leuschner, C. Nitrogen Resorption and Nitrogen Use Efficiency in Cacao Agroforestry Systems Managed Differently in Central Sulawesi. Hayati J. Biosci. 2007, 14, 127–132. [Google Scholar] [CrossRef]
- Mayer, S.; Wiesmeier, M.; Sakamoto, E.; Hübner, R.; Cardinael, R.; Kühnel, A.; Kögel-Knabner, I. Soil organic carbon sequestration in temperate agroforestry systems—A meta-analysis. Agric. Ecosyst. Environ. 2022, 323, 107689. [Google Scholar] [CrossRef]
- Yu, L.; Lu, W.; Song, P.H.; Yang, Q.; Liu, W.J.; Luan, J.W.; Liu, S.R. Carbon density and carbon sequestration potential of rubber plantations under different compound ma-nagement patterns in Hainan Island. Chin. J. Ecol. 2025, 44, 1097–1103, (In Chinese with English Abstract). [Google Scholar]
- Lin, B.; Cheng, J.; Duan, H.; Liu, W.; Dang, Y.P.; Zhao, X.; Zhang, H. Optimizing straw and nitrogen fertilizer resources for low-carbon sustainable agriculture. Resour. Conserv. Recycl. 2024, 209, 107743. [Google Scholar] [CrossRef]
- Rathore, S.S.; Shekhawat, K.; Singh, V.; Babu, S.; Singh, R.; Upadhyay, P.; Bhattacharyya, R. Diversified agroforestry systems improve carbon footprint and farmer’s livelihood under limited irrigation conditions. Ecol. Environ. Conser. 2020, 208405. [Google Scholar]
Item | Unit | GHG Coefficient | Unit |
---|---|---|---|
N | kg CO2·kg−1 | 7.76 | kg·ha−1 |
P2O5 | 2.33 | ||
K2O | 0.66 | ||
Diesel | 2.50 | ||
Herbicide | 18.00 | ||
Electricity | kg CO2·kwh−1 | 0.95 | kwh·ha−1 |
Planting System | Hevea DBH (cm) | Hevea Biomass Incrementation (t·ha−1) | Ficus hirta Vahl. (t·ha−1) | Total Biomass (t·ha−1) | |
---|---|---|---|---|---|
4-Year | 6-Year | ||||
SR | 4.27 a | 8.11 b | 8.49 a | — | 8.49 b |
DR-F | 4.32 a | 9.12 a | 10.49 a | 12.84 | 23.34 a |
Distance from Hevea | Hevea | Ficus hirta Vahl. |
---|---|---|
2 m | 1.16 a | — |
3 m | 0.16 a | — |
4 m | — | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Zeng, X.; Tian, Z.; Zhang, Y.; Xian, Y.; Tu, H.; Huang, J.; Wang, X. Rubber-Ficus hirta Vahl. Agroforestry System Enhances Productivity and Resource Utilization Efficiency and Reduces Carbon Footprint. Agriculture 2025, 15, 1750. https://doi.org/10.3390/agriculture15161750
Pan J, Zeng X, Tian Z, Zhang Y, Xian Y, Tu H, Huang J, Wang X. Rubber-Ficus hirta Vahl. Agroforestry System Enhances Productivity and Resource Utilization Efficiency and Reduces Carbon Footprint. Agriculture. 2025; 15(16):1750. https://doi.org/10.3390/agriculture15161750
Chicago/Turabian StylePan, Jian, Xiu Zeng, Zhengfan Tian, Yan Zhang, Yuanran Xian, Hanqi Tu, Jianxiong Huang, and Xiuquan Wang. 2025. "Rubber-Ficus hirta Vahl. Agroforestry System Enhances Productivity and Resource Utilization Efficiency and Reduces Carbon Footprint" Agriculture 15, no. 16: 1750. https://doi.org/10.3390/agriculture15161750
APA StylePan, J., Zeng, X., Tian, Z., Zhang, Y., Xian, Y., Tu, H., Huang, J., & Wang, X. (2025). Rubber-Ficus hirta Vahl. Agroforestry System Enhances Productivity and Resource Utilization Efficiency and Reduces Carbon Footprint. Agriculture, 15(16), 1750. https://doi.org/10.3390/agriculture15161750