Inhibitory Effect of Bacillus velezensis dhm2 on Fusarium oxysporum f. sp. cucumerinum and Synergistic Activity of Crude Lipopeptide Extract with Chemical Fungicides
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Test Reagents
2.1.2. Test Strains
2.1.3. Test Media
2.2. Methods
2.2.1. Confrontation Culture Assay Between B. velezensis dhm2 and the Pathogen
2.2.2. Assessment of Supernatant Activity from Seed Inoculum of B. velezensis dhm2 with Different Bacterial Ages Against F. oxysporum f. sp. cucumerinum
2.2.3. Determination of the Inhibitory Activity of Fermentation Supernatants from B. velezensis dhm2 at Different Fermentation Duration Against the Pathogen
2.2.4. Determination of the Inhibitory Activity of Fermentation Supernatant at Different Concentration Against the Pathogen
2.2.5. Preparation and Inhibitory Activity Assay of Crude Lipopeptide Extract
2.2.6. In Vitro Toxicity Determination of Six Chemical Fungicides Against the Pathogen
2.2.7. Determination of Toxicity Synergy Between Combinations of Six Chemical Fungicides and Crude Lipopeptide Extract Against the Pathogen
2.2.8. Pot Assay of Synergistic Combinations for the Control Effect of Cucumber Fusarium Wilt
2.2.9. Effects of the Optimal Lipopeptide-Difenoconazole Combination on Defense Enzyme Activities in Cucumber Seedlings
2.3. Data Analysis
3. Results
3.1. Results of Confrontation Culture Between B. velezensis dhm2 and Cucumber Fusarium Wilt Pathogen
3.2. Inhibitory Activity of Fermentation Supernatant from Seed Inoculum of B. velezensis dhm2 with Different Bacterial Ages Against the Pathogen
3.3. Inhibitory Activity of Fermentation Supernatants Against the Pathogen at Different Culture Time
3.4. Inhibitory Activity of Fermentation Supernatants at Different Concentration Against the Pathogen
3.5. Inhibitory Activity of Crude Lipopeptide Extract at Different Concentration Against the Pathogen
3.6. Inhibitory Activity of Six Chemical Fungicides Against the Pathogen
3.7. Toxicity Ratios of the Mixed Combinations Between Crude Lipopeptide Extract from Antagonistic Strain dhm2 and Chemical Fungicides
3.8. Control Efficacy of Optimized Combinations Against Cucumber Fusarium Wilt in Pot Trial
3.9. Effects of the Combination of Crude Lipopeptide Extract and Difenoconazole on Stress-Resistant Enzyme Activities in Cucumber Seedlings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Din, H.M.; Rashed, O.; Ahmad, K. Prevalence of Fusarium wilt disease of cucumber (Cucumis sativus Linn) in Peninsular Malaysia caused by Fusarium oxysporum and F. solani. Trop. Life Sci. Res. 2020, 31, 29–45. [Google Scholar] [CrossRef]
- Liu, Z.; Fan, C.; Xiao, J.; Sun, S.; Gao, T.; Zhu, B.; Zhang, D. Metabolomic and transcriptome analysis of the inhibitory effects of Bacillus subtilis strain Z-14 against Fusarium oxysporum causing vascular wilt diseases in cucumber. J. Agric. Food Chem. 2023, 71, 2644–2657. [Google Scholar] [CrossRef]
- Du, N.S.; Yang, Q.; Guo, H.; Xue, L.; Fu, R.K.; Dong, X.X.; Dong, H.; Guo, Z.X.; Zhang, T.; Piao, F.Z.; et al. Dissection of Paenibacillus polymyxa NSY50-induced defense in cucumber roots against Fusarium oxysporum f. sp. cucumerinum by Target metabolite profiling. Biology 2022, 11, 1028. [Google Scholar] [CrossRef]
- Yu, M.; Yuliana, R.; Tumewu, S.A.; Bao, W.X.; Suga, H.; Shimizu, M. Efficacy of L-arabinose in managing cucumber Fusarium wilt and the underlying mechanism of action. Pest Manag. Sci. 2024, 81, 1239–1250. [Google Scholar] [CrossRef]
- Cerkauskas, R.F. Etiology and management of Fusarium crown and root rot (Fusarium oxysporum) on greenhouse pepper in Ontario, Canada. Can. J. Plant Pathol. 2017, 39, 121–132. [Google Scholar] [CrossRef]
- Huang, X.; Shi, D.; Sun, F.; Lu, H.; Liu, J.; Wu, W. Efficacy of sludge and manure compost amendments against Fusarium wilt of cucumber. Environ. Sci. Pollut. Res. 2012, 19, 3895–3905. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.H.; Du, X.N.; Khojasteh, M.; Shah, S.M.A.; Peng, Y.Z.; Zhu, Z.F.; Xu, Z.Y.; Chen, G.Y. Green guardians: The biocontrol potential of Pseudomonas-derived metabolites for sustainable agriculture. Biol. Control 2025, 201, 105699. [Google Scholar] [CrossRef]
- Chen, S.C.; Ren, J.J.; Zhao, H.J.; Wang, X.L.; Wang, T.H.; Jin, S.D.; Wang, Z.H.; Liu, A.R.; Lin, X.M.; Ahammed, G.J. Trichoderma harzianum improves defense against Fusarium oxysporum by regulating ROS and RNS metabolism, redox balance and energy flow in cucumber roots. Phytopathology 2019, 109, 972–982. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wang, M.; Zheng, Y.; Luo, J.M.; Yang, X.R.; Wang, X.L. Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus subtilis B579. World J. Microbiol. Biotechnol. 2010, 26, 675–684. [Google Scholar] [CrossRef]
- Yang, W.; Wang, L.; Li, X.; Yan, H.; Zhong, B.; Du, X.; Guo, Q.; He, T.; Luo, Y. Biological control potential of Bacillus subtilis isolate 1JN2 against Fusarium Wilt on cucumber. Horticulturae 2024, 10, 843. [Google Scholar] [CrossRef]
- Yang, F.; Wang, X.; Jiang, H.; Yao, Q.; Liang, S.; Chen, W.; Shi, G.; Tian, B.; Hegazy, A.; Ding, S. Mechanism of a novel Bacillus subtilis JNF2 in suppressing Fusarium oxysporum f. sp. cucumerium and enhancing cucumber growth. Front. Microbiol. 2024, 15, 1459906. [Google Scholar] [CrossRef]
- Xu, W.; Yang, Q.; Yang, F.; Xie, X.; Goodwin, P.H.; Deng, X.; Tian, B.; Yang, L. Evaluation and genome analysis of Bacillus subtilis YB-04 as a potential biocontrol agent against Fusarium wilt and growth promotion agent of cucumber. Front. Microbiol. 2022, 13, 885430. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhu, J.X.; Tan, T.M.; Xu, J.P.; Shen, A.R.; Yang, X.B.; Li, J.L.; Zeng, L.B.; Wei, L. Isolation and characterization of antagonistic Paenibacillus polymyxa HX-140 and its biocontrol potential against Fusarium wilt of cucumber seedlings. BMC Microbiol. 2021, 21, 75. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Du, C.X.; Xu, L.; Yue, C.; Liu, X.C.; Fan, H.F. Endophytic bacteria from diseased plant leaves as potential biocontrol agents of cucumber Fusarium wilt. J. Plant Pathol. 2024, 106, 553–563. [Google Scholar] [CrossRef]
- Cai, F.; Yang, C.; Ma, T.; Osei, R.; Jin, M.; Zhang, C.; Wang, Y. An endophytic Paenibacillus polymyxa hg18 and its biocontrol potential against Fusarium oxysporum f. sp. cucumerinum. Biol. Control 2024, 188, 105380. [Google Scholar] [CrossRef]
- Yang, F.; Jiang, H.Y.; Ma, K.; Hegazy, A.; Wang, X.; Liang, S.; Chang, G.Z.; Yu, L.Q.; Tian, B.M.; Shi, X.J. Genomic and phenotypic analyses reveal Paenibacillus polymyxa PJH16 is a potential biocontrol agent against cucumber Fusarium wilt. Front. Microbiol. 2024, 15, 1359263. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.S.; Hwang, S.H.; Maung, C.E.H.; Cho, J.Y.; Kim, K.Y. Enhanced control efficacy of Bacillus subtilis NM4 via integration of chlorothalonil on potato early blight caused by Alternaria solani. Microb. Pathog. 2024, 190, 106604. [Google Scholar] [CrossRef]
- Dinango, V.N.; Dhouib, H.; Jlail, L.; Tounsi, S.; Boyom, F.F.; Wakam, L.N.; Frikha-Gargouri, O. Unveiling the plant growth promotion and the antifungal potency against maize pathogen Fusarium verticillioides by desert-derived endophytes Bacillus subtilis RA15 and Bacillus tequilensis FC6 and their lipopeptides. Appl. Soil Ecol. 2025, 207, 105949. [Google Scholar] [CrossRef]
- Meng, X.T.; Li, Z.Z.; Wu, H.; Duan, H.M.; Yu, L.; Zhou, C.; Wang, M.; Zhang, K.; Hu, C.F.; Su, Z.J.; et al. Effects of a microbial vetch fertilizer on the disease resistance, yield, and quality of sweet waxy corn. Diversity 2024, 16, 778. [Google Scholar] [CrossRef]
- Becker, E.; Rajakulendran, N.; Shamoun, S.F. Biocontrol potential of Trichoderma spp. against Phytophthora ramorum. Pathogens 2025, 14, 136. [Google Scholar] [CrossRef]
- Gao, S.G.; Xu, L.H.; Zeng, R.; Gao, P.; Song, Z.W.; Dai, F.M. Baseline sensitivity of Rhizoctonia solani to four DMI fungicides. J. Basic Microb. 2022, 62, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.Y.; Yin, Z.G.; Wang, K.X.; Chen, J.G.; Shen, S.S. Purification and structural analysis of surfactin produced by endophytic Bacillus subtilis EBS05 and its antagonistic activity against Rhizoctonia cerealis. Plant Pathol. J. 2011, 27, 342–348. [Google Scholar] [CrossRef]
- Horsfall, J.G. Fungicides and Their Action; Chronica Botanica Co.: Waltham, MA, USA, 1945; p. 239. [Google Scholar]
- Wadley, F.M. Experimental Statistics in Entomology; Graduate School Press: Washington, DC, USA, 1967; p. 133. [Google Scholar]
- Gao, J.S.; Cai, Y.P. Laboratory Guide for Plant Physiology; China Agricultural University Press: Beijing, China, 2018; pp. 98–105. (In Chinese) [Google Scholar]
- Xu, J.; Xian, Q.Q.; Wang, K.; Dong, J.P.; Zhang, C.Y.; Du, S.L.; Xu, X.W.; Chen, X.H. Screening and identification of candidate Fusarium wilt-resistance genes from pumpkin. Hortic. Plant J. 2022, 8, 583–592. [Google Scholar] [CrossRef]
- Yang, F.; Jiang, H.Y.; Chang, G.Z.; Liang, S.; Ma, K.; Cai, Y.X.; Tian, B.M.; Shi, X.J. Effects of rhizosphere microbial communities on cucumber Fusarium wilt disease suppression. Microorganism 2023, 11, 1576. [Google Scholar] [CrossRef]
- Rabbee, M.F.; Hwang, B.S.; Baek, K.H. Bacillus velezensis: A beneficial biocontrol agent or facultative phytopathogen for sus-tainable agriculture. Agronomy 2023, 13, 840. [Google Scholar] [CrossRef]
- Alaniz Zanon, M.S.; Rosales Cavaglieri, L.; Palazzini, J.M.; Chulze, S.N.; Chiotta, M.L. Bacillus velezensis RC218 and emerging biocontrol agents against Fusarium graminearum and Fusarium poae in barley: In Vitro, greenhouse and field conditions. Int. J. Food Microbiol. 2024, 413, 110580. [Google Scholar] [CrossRef]
- Li, Z.Y.; Li, J.J.; Yu, M.; Quandahor, P.; Tian, T.; Shen, T. Bacillus velezensis FX-6 suppresses the infection of Botrytis cinerea and increases the biomass of tomato plants. PLoS ONE 2023, 18, e0286971. [Google Scholar] [CrossRef]
- Jemil, N.; Besbes, I.; Gharbi, Y.; Triki, M.A.; Cheffi, M.; Manresa, A.; Nasri, M.; Hmidet, N. Bacillus methylotrophicus DCS1: Production of different lipopeptide families, in vitro antifungal activity and suppression of Fusarium wilt in tomato plants. Curr. Microbiol. 2024, 81, 142. [Google Scholar] [CrossRef]
- Chen, M.; Wang, J.; Liu, B.; Zhu, Y.; Xiao, R.; Yang, W.; Ge, C.; Chen, Z. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides. BMC Microbiol. 2020, 20, 160. [Google Scholar] [CrossRef]
- Al–Mutar, D.M.K.; Alzawar, N.S.A.; Noman, M.; Azizullah; Li, D.; Song, F. Suppression of Fusarium wilt in watermelon by Bacillus amyloliquefaciens DHA55 through extracellular production of antifungal lipopeptides. J. Fungi 2023, 9, 336. [Google Scholar] [CrossRef]
- Al-Mutar, D.M.K.; Noman, M.; Alzawar, N.S.A.; Qasim, H.H.; Li, D.; Song, F. The extracellular lipopeptides and volatile organic compounds of Bacillus subtilis DHA41 display broad-spectrum antifungal activity against soil-borne phytopathogenic fungi. J. Fungi 2023, 9, 797. [Google Scholar] [CrossRef]
- Hussain, S.; Ali, M.; Ghazy, A.; Al-Doss, A.A.; Attia, K.A.; Shah, T.A.; Li, F.J. Identification of antifungal lipopeptides from Bacillus subtilis Sh-17 targeting Fusarium oxysporum f. sp. lycopersici. Chem. Biol. Technol. Ag. 2025, 12, 29. [Google Scholar] [CrossRef]
- Mihalache, G.; Balaes, T.; Gostin, I.; Stefan, M.; Coutte, F.; Krier, F. Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants. Environ. Sci. Pollut. Res. 2018, 25, 29784–29793. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.X.; Chen, Y.; Liu, S.Y.; Ou, X.G.; Wang, Y.Y.; Zhao, Z.W.; Tang, R.; Yan, Y.Z.; Zeng, X.Y.; Feng, S.; et al. Biocontrol performance of a novel Bacillus velezensis L33a on tomato gray mold and its complete genome sequence analysis. Postharvest Biol. Technol. 2024, 213, 112925. [Google Scholar] [CrossRef]
- Wang, C.X.; Zhao, X.L.; Wu, K.; Liang, C.Y.; Liu, J.; Yang, H.; Wang, C.M.; Yang, B.; Yin, F.; Zhang, W.D. Isolation and characterization of Bacillus velezensis strain B19 for biocontrol of Panax notoginseng root rot. Biol. Control 2023, 185, 105311. [Google Scholar] [CrossRef]
- Ramírez-Mejía, J.M.; Aguilera-Galvez, C.; Kema, G.H.J.; Valencia-Riascos, L.M.; Zapata-Henao, S.; Gómez, L.A.; Villegas-Escobar, V. Combining cyclic lipopeptides and cinnamon extract enhance antifungal activity against Fusarium oxysporum strains pathogenic to banana and delay Fusarium wilt under greenhouse con-ditions. Trop. Plant Pathol. 2024, 49, 838–849. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, Z.; Ling, N.; Yuan, Y.J.; Yang, X.M.; Chen, L.H.; Shen, B.; Shen, Q.R. Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber. Sci. Hortic. 2012, 135, 32–39. [Google Scholar] [CrossRef]
- Assena, M.W.; Pfannstiel, J.; Rasche, F. Inhibitory activity of bacterial lipopeptides against Fusarium oxysporum f. sp. Strigae. BMC Microbiol. 2024, 24, 227. [Google Scholar] [CrossRef]
- Hussain, T.; Khan, A.A.; Mohamed, H.I. Phyto metabolites composition of Bacillus subtilis Hussain T-AMU determined by LC-MS and their effect on Fusarium dry rot of potato seed tuber. Phyton-Int. J. Exp. Bot. 2023, 92, 783–799. [Google Scholar]
- Vitullo, D.; Di Pietro, A.; Romano, A.; Lanzotti, V.; Lima, G. Role of new bacterial surfactins in the antifungal interaction between Bacillus amyloliquefaciens and Fusarium oxysporum. Plant Pathol. 2012, 61, 689–699. [Google Scholar] [CrossRef]
- Bao, J.; Hao, Y.; Ni, T.; Wang, R.N.; Liu, J.C.; Chi, X.C.; Wang, T.; Yu, S.C.; Jin, Y.S.; Yan, L.; et al. Design, synthesis and in vitro biological studies of novel triazoles with potent and broad-spectrum antifungal activity. J. Enzym. Inhib. Med. Chem. 2023, 38, 2244696. [Google Scholar] [CrossRef]
- Al-Mutar, D.M.K.; Noman, M.; Alzawar, N.S.A.; Azizullah; Li, D.; Song, F. Cyclic lipopeptides of Bacillus amyloliq-uefaciens DHA6 are the determinants to suppress watermelon Fusarium wilt by direct antifungal activity and host defense modulation. J. Fungi 2023, 9, 687. [Google Scholar] [CrossRef]
- Elanchezhiyan, K.; Keerthana, U.; Nagendran, K.; Prabhukarthikeyan, S.R.; Prabakar, K.; Raguchander, T.; Karthikeyan, G. Multifaceted benefits of Bacillus amyloliquefaciens strain FBZ24 in the management of wilt disease in tomato caused by Fusarium oxysporum f. sp. lycopersici. Physiol. Mol. Plant Pathol. 2018, 103, 92–101. [Google Scholar] [CrossRef]
- Abd-El-Khair, H.; Elshahawy, I.E.; Haggag, H.E.K. Field application of Trichoderma spp. combined with thiophanate-methyl for controlling Fusarium solani and Fusarium oxysporum in dry bean. Bull. Natl. Res. Cent. 2019, 43, 19. [Google Scholar] [CrossRef]
- Fujita, S.; Yokota, K. Disease suppression by the cyclic lipopeptides iturin A and surfactin from Bacillus spp. against Fusarium wilt of lettuce. J. Gen. Plant Pathol. 2019, 85, 44–48. [Google Scholar] [CrossRef]
Test Media | Components |
---|---|
PDA | Potato 200.0 g, glucose 18.0 g, agar 15.0 g, distilled water 1000 mL. |
NA | Tryptone 5.0 g, beef extract 3.0 g, yeast extract 1.0 g, glucose 10.0 g, 15.0 g agar, distilled water 1000 mL, pH 7.0–7.2. NB medium without agar. |
Fungicide | Concentration (μg mL−1) | |||||
---|---|---|---|---|---|---|
Prochloraz | 0.02 | 0.04 | 0.08 | 0.16 | 0.32 | 0.48 |
Difenoconazole | 0.04 | 0.08 | 0.16 | 0.32 | 0.64 | 1.28 |
Propiconazole | 0.10 | 0.20 | 0.40 | 0.80 | 1.60 | 2.40 |
Carbendazim | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 | 0.80 |
Thiram | 2.00 | 4.00 | 8.00 | 16.00 | 24.00 | 32.00 |
Azoxystrobin | 8.00 | 16.00 | 32.00 | 64.00 | 128.00 | 200.00 |
Fungicide | Toxicity Regression Equation * | EC50 (μg mL−1) | 95% Confidence Interval | R2 |
---|---|---|---|---|
Prochloraz | y = 0.88x + 6.37 | 0.03 | 0.01–0.06 | 0.99 |
Difenoconazole | y = 0.66x + 5.36 | 0.28 | 0.14–0.70 | 0.98 |
Propiconazole | y = 0.98x + 5.43 | 0.36 | 0.12–0.72 | 0.98 |
Carbendazim | y = 4.66x + 5.79 | 0.68 | 0.58–0.87 | 0.97 |
Thiram | y = 0.71x + 4.39 | 7.10 | 2.60–13.52 | 0.95 |
Azoxystrobin | y = 2.35x + 0.72 | 65.88 | 47.56–94.43 | 0.95 |
Fungicide | Mixing Proportion (Volume Ratio) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0:10 | 1:9 | 2:8 | 3:7 | 4:6 | 5:5 | 6:4 | 7:3 | 8:2 | 9:1 | 10:0 | |
Prochloraz (ob%) * | 51.8 ± 0.50 de | 40.9 ± 1.00 g | 45.07 ± 0.30 f | 51.83 ± 0.98 de | 54.08 ± 0.56 cd | 61.41 ± 2.20 a | 56.62 ± 0.56 bc | 55.21 ± 0.49 c | 57.18 ± 0.28 bc | 59.15 ± 1.29 ab | 50.70 ± 1.02 e |
Prochloraz (TR) # | 1.00 ± 0.01 e | 0.79 ± 0.02 g | 0.87 ± 0.03 f | 1.01 ± 0.02 e | 1.05 ± 0.01 de | 1.20 ± 0.04 a | 1.11 ± 0.01 bcd | 1.08 ± 0.01 cd | 1.12 ± 0.01 bc | 1.16 ± 0.02 ab | 1.00 ± 0.02 e |
Difenoconazole (ob%) | 53.94 ± 0.55 d | 45.92 ± 1.69 f | 49.86 ± 0.28 e | 50.14 ± 0.01 de | 57.92 ± 0.73 c | 60.00 ± 0.28 b | 61.41 ± 0.75 ab | 62.54 ± 1.22 a | 60.56 ± 0.56 a | 53.24 ± 1.13 c | 48.17 ± 0.75 d |
Difenoconazole (TR) | 1.00 ± 0.01 d | 0.86 ± 0.03 f | 0.94 ± 0.01 e | 0.96 ± 0.02 de | 1.12 ± 0.03 c | 1.18 ± 0.01 b | 1.22 ± 0.02 ab | 1.25 ± 0.04 a | 1.23 ± 0.02 a | 1.09 ± 0.04 c | 1.00 ± 0.03 d |
Propiconazole (ob%) | 53.33 ± 0.33 e | 46.11 ± 0.88 g | 47.50 ± 0.33 g | 60.28 ± 0.88 bc | 60.83 ± 0.58 ab | 63.05 ± 0.58 a | 60.83 ± 1.16 ab | 63.05 ± 0.26 a | 58.89 ± 0.67 cd | 57.50 ± 0.33 d | 51.67 ± 0.58 f |
Propiconazole (TR) | 1.00 ± 0.01 d | 0.87 ± 0.01 e | 0.90 ± 0.01 e | 1.15 ± 0.01 bc | 1.16 ± 0.01 bc | 1.21 ± 0.02 a | 1.17 ± 0.02 b | 1.22 ± 0.01 a | 1.15 ± 0.01 bc | 1.13 ± 0.01 c | 1.00 ± 0.01 d |
Azoxystrobin (ob%) | 47.93 ± 1.00 cd | 51.24 ± 0.58 b | 54.82 ± 0.33 a | 50.69 ± 0.88 b | 54.55 ± 0.33 a | 56.20 ± 0.21 a | 48.20 ± 0.67 c | 47.66 ± 0.88 cde | 43.80 ± 0.88 f | 45.73 ± 0.33 e | 46.01 ± 0.58 de |
Azoxystrobin (TR) | 1.00 ± 0.02 c | 1.07 ± 0.01 b | 1.15 ± 0.01 a | 1.07 ± 0.02 b | 1.16 ± 0.01 a | 1.20 ± 0.03 a | 1.03 ± 0.01 bc | 1.02 ± 0.02 c | 0.94 ± 0.02 d | 0.99 ± 0.01 c | 1.00 ± 0.02 c |
Carbendazim (ob%) | 52.50 ± 0.48 bc | 48.61 ± 0.21 d | 45.56 ± 0.87 e | 53.61 ± 1.03 b | 59.44 ± 1.00 a | 61.39 ± 0.28 a | 62.22 ± 1.21 a | 61.67 ± 0.96 a | 61.11 ± 1.19 a | 53.33 ± 0.15 bc | 50.83 ± 0.48 cd |
Carbendazim (TR) | 1.00 ± 0.01 c | 0.93 ± 0.02 d | 0.87 ± 0.01 e | 1.03 ± 0.01 c | 1.15 ± 0.02 b | 1.19 ± 0.01 ab | 1.21 ± 0.03 a | 1.20 ± 0.02 a | 1.19 ± 0.02 ab | 1.05 ± 0.01 c | 1.00 ± 0.01 c |
Thiram (ob%) | 52.89 ± 1.15 b | 61.43 ± 0.88 a | 60.33 ± 2.02 a | 54.82 ± 0.00 b | 50.13 ± 1.16 c | 55.64 ± 0.33 b | 47.66 ± 1.45 c | 45.73 ± 0.67 de | 42.42 ± 0.33 f | 43.25 ± 0.67 ef | 46.01 ± 0.58 de |
Thiram (TR) | 1.00 ± 0.02 c | 1.18 ± 0.02 a | 1.17 ± 0.04 a | 1.08 ± 0.01 c | 1.00 ± 0.02 c | 1.13 ± 0.01 b | 0.98 ± 0.03 cd | 0.95 ± 0.02 cde | 0.90 ± 0.01 e | 0.93 ± 0.01 de | 1.00 ± 0.02 c |
Item | Control Effect (%) * |
---|---|
Crude lipopeptide extract | 39.29 ± 3.60 d |
Propiconazole | 42.86± 5.83 d |
Difenoconazole | 53.57 ± 3.57 c |
Mixture of crude lipopeptide extract and Propiconazole | 64.29 ± 4.13 b |
Mixture of crude lipopeptide extract and Difenoconazole | 80.85 ± 2.76 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Duan, H.; Liu, X.; Li, Z.; Yu, L.; Zhou, C.; Lu, W.; Yu, H. Inhibitory Effect of Bacillus velezensis dhm2 on Fusarium oxysporum f. sp. cucumerinum and Synergistic Activity of Crude Lipopeptide Extract with Chemical Fungicides. Agriculture 2025, 15, 1730. https://doi.org/10.3390/agriculture15161730
He X, Duan H, Liu X, Li Z, Yu L, Zhou C, Lu W, Yu H. Inhibitory Effect of Bacillus velezensis dhm2 on Fusarium oxysporum f. sp. cucumerinum and Synergistic Activity of Crude Lipopeptide Extract with Chemical Fungicides. Agriculture. 2025; 15(16):1730. https://doi.org/10.3390/agriculture15161730
Chicago/Turabian StyleHe, Xinyu, Haiming Duan, Xingyu Liu, Zhuangzhuang Li, Li Yu, Cheng Zhou, Wenjie Lu, and Haibing Yu. 2025. "Inhibitory Effect of Bacillus velezensis dhm2 on Fusarium oxysporum f. sp. cucumerinum and Synergistic Activity of Crude Lipopeptide Extract with Chemical Fungicides" Agriculture 15, no. 16: 1730. https://doi.org/10.3390/agriculture15161730
APA StyleHe, X., Duan, H., Liu, X., Li, Z., Yu, L., Zhou, C., Lu, W., & Yu, H. (2025). Inhibitory Effect of Bacillus velezensis dhm2 on Fusarium oxysporum f. sp. cucumerinum and Synergistic Activity of Crude Lipopeptide Extract with Chemical Fungicides. Agriculture, 15(16), 1730. https://doi.org/10.3390/agriculture15161730