A Preliminary Investigation into Heavy Metal Tolerance in Pseudomonas Isolates: Does the Isolation Site Have an Effect?
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation and Preservation of Pseudomonas spp.
2.2. Phenotyping
2.3. Growth as a Function of the pH, Temperature and Heavy Metal Presence
2.4. Statistics
3. Results and Discussion
3.1. Phenotypical and Technological Characterization of Presumptive Pseudomonas spp.
3.2. Growth Response Under Combined pH and Temperature Conditions
3.3. Growth in Presence of Heavy Metals
3.4. Correlation and Multivariate Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Srivastava, P.; Sachan, K.; Baskar, P.; Saikanth, D.R.K.; Lytand, W.; Kumar, R.K.M.H.; Singh, B.V. Soil Microbes Expertly Balancing Nutrient Demands and Environmental Preservation and Ensuring the Delicate Stability of Our Ecosystems—A Review. Int. J. Plant Soil Sci. 2023, 35, 989–1000. [Google Scholar] [CrossRef]
- Chauhan, M.; Kimothi, A.; Sharma, A.; Pandey, A. Cold Adapted Pseudomonas: Ecology to Biotechnology. Front. Microbiol. 2023, 14, 1218708. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Ryo, M.; Roy, J.; Lammel, D.R.; Ballhausen, M.-B.; Jing, X.; Zhu, X.; Rillig, M.C. Multiple Anthropogenic Pressures Eliminate the Effects of Soil Microbial Diversity on Ecosystem Functions in Experimental Microcosms. Nat. Commun. 2022, 13, 4260. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; He, K.; Collins, G.; De Vrieze, J.; Wu, G. Microbial Strategies Driving Low Concentration Substrate Degradation for Sustainable Remediation Solutions. npj Clean Water 2024, 7, 52. [Google Scholar] [CrossRef]
- Khoshru, B.; Fallah Nosratabad, A.; Mahjenabadi, V.A.J.; Knežević, M.; Hinojosa, A.C.; Fadiji, A.E.; Enagbonma, B.J.; Qaderi, S.; Patel, M.; Baktash, E.M.; et al. Multidimensional Role of Pseudomonas: From Biofertilizers to Bioremediation and Soil Ecology to Sustainable Agriculture. J. Plant Nutr. 2025, 48, 1016–1042. [Google Scholar] [CrossRef]
- Medić, A.B.; Karadžić, I.M. Pseudomonas in Environmental Bioremediation of Hydrocarbons and Phenolic Compounds—Key Catabolic Degradation Enzymes and New Analytical Platforms for Comprehensive Investigation. World J. Microbiol. Biotechnol. 2022, 38, 165. [Google Scholar] [CrossRef]
- Vélez, J.M.B.; Martínez, J.G.; Ospina, J.T.; Agudelo, S.O. Bioremediation Potential of Pseudomonas Genus Isolates from Residual Water, Capable of Tolerating Lead through Mechanisms of Exopolysaccharide Production and Biosorption. Biotechnol. Rep. 2021, 32, e00685. [Google Scholar] [CrossRef]
- Verasoundarapandian, G.; Wong, C.-Y.; Shaharuddin, N.A.; Gomez-Fuentes, C.; Zulkharnain, A.; Ahmad, S.A. A Review and Bibliometric Analysis on Applications of Microbial Degradation of Hydrocarbon Contaminants in Arctic Marine Environment at Metagenomic and Enzymatic Levels. Int. J. Environ. Res. Public Health 2021, 18, 1671. [Google Scholar] [CrossRef]
- Igiri, B.E.; Okoduwa, S.I.R.; Idoko, G.O.; Akabuogu, E.P.; Adeyi, A.O.; Ejiogu, I.K. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. J. Toxicol. 2018, 2018, 2568038. [Google Scholar] [CrossRef]
- Alotaibi, B.S.; Khan, M.; Shamim, S. Unraveling the Underlying Heavy Metal Detoxification Mechanisms of Bacillus Species. Microorganisms 2021, 9, 1628. [Google Scholar] [CrossRef]
- Mathivanan, K.; Chandirika, J.U.; Vinothkanna, A.; Yin, H.; Liu, X.; Meng, D. Bacterial Adaptive Strategies to Cope with Metal Toxicity in the Contaminated Environment—A Review. Ecotoxicol. Environ. Saf. 2021, 226, 112863. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Gangola, S.; Bhandari, G.; Bhandari, N.S.; Nainwal, D.; Rani, A.; Malik, S.; Slama, P. Rhizospheric Bacteria: The Key to Sustainable Heavy Metal Detoxification Strategies. Front. Microbiol. 2023, 14, 1229828. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gao, Y.; Ning, X.; Li, Z. Research Progress and Hotspots on Microbial Remediation of Heavy Metal-Contaminated Soil: A Systematic Review and Future Perspectives. Environ. Sci. Pollut. Res. 2023, 30, 118192–118212. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Żur-Pińska, J.; Piński, A.; Pacek, G.; Mrozik, A. Adaptation of Phenol-Degrading Pseudomonas Putida KB3 to Suboptimal Growth Condition: A Focus on Degradative Rate, Membrane Properties and Expression of xylE and cfaB Genes. Ecotoxicol. Environ. Saf. 2021, 221, 112431. [Google Scholar] [CrossRef]
- Doolotkeldieva, T.; Bobusheva, S.; Konurbaeva, M. In Vitro and in Vivo Screening of Bacterial Species from Contaminated Soil for Heavy Metal Biotransformation Activity. J. Environ. Sci. Health Part B 2024, 59, 315–332. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Soleymani, A. The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems. Plants 2024, 13, 613. [Google Scholar] [CrossRef]
- Song, Y.; Li, R.; Chen, G.; Yan, B.; Zhong, L.; Wang, Y.; Li, Y.; Li, J.; Zhang, Y. Bibliometric Analysis of Current Status on Bioremediation of Petroleum Contaminated Soils during 2000–2019. Int. J. Environ. Res. Public Health 2021, 18, 8859. [Google Scholar] [CrossRef]
- Karishma, S.; Saravanan, A.; Deivayanai, V.C.; Ajithkumar, U.; Yaashikaa, P.R.; Vickram, A.S. Emerging Strategies for Enhancing Microbial Degradation of Petroleum Hydrocarbons: Prospects and Challenges. Bioresour. Technol. Rep. 2024, 26, 101866. [Google Scholar] [CrossRef]
- Qiao, Y.; Xu, W.; Wei, J.; Kong, L.; Xue, J.; Jiang, Q.; Cheng, D.; Liu, Y. Novel Agents Consisting of Pseudomonas zhaodongensis and Dimethylsulfoniopropionate (DMSP) Enhancing Bioremediation of Oil-Contaminated Sediments at Deep-Sea Condition. Environ. Technol. Innov. 2024, 36, 103744. [Google Scholar] [CrossRef]
- Kuppan, N.; Padman, M.; Mahadeva, M.; Srinivasan, S.; Devarajan, R. A Comprehensive Review of Sustainable Bioremediation Techniques: Eco Friendly Solutions for Waste and Pollution Management. Waste Manag. Bull. 2024, 2, 154–171. [Google Scholar] [CrossRef]
- Sagar, A.; Rathore, P.; Ramteke, P.W.; Ramakrishna, W.; Reddy, M.S.; Pecoraro, L. Plant Growth Promoting Rhizobacteria, Arbuscular Mycorrhizal Fungi and Their Synergistic Interactions to Counteract the Negative Effects of Saline Soil on Agriculture: Key Macromolecules and Mechanisms. Microorganisms 2021, 9, 1491. [Google Scholar] [CrossRef]
- Li, W.; Li, W.; Xing, L.; Guo, S. Effect of Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth-Promoting Rhizobacteria (PGPR) on Microorganism of Phenanthrene and Pyrene Contaminated Soils. Int. J. Phytoremediat. 2023, 25, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Marvelli, E. Foggia, 618 Thousand Tons of Illegal Waste. Available online: https://www.gat.report/28593/foggia-618-thousand-tons-of-illegal-waste/ (accessed on 30 July 2025).
- Agenzia Regionale per la Prevenzione e la Protezione dell’Ambiente—Siti Potenzialmente Contaminati. Available online: https://www.arpa.puglia.it/pagina3239_siti-potenzialmente-contaminati.html (accessed on 16 July 2025).
- Mead, G.C. Enumeration of Pseudomonads Using Cephaloridine-Fucidin-Cetrimide Agar (CFC). Int. J. Food Microbiol. 1985, 2, 21–26. [Google Scholar] [CrossRef]
- Dyer, J.M.; Foy, V.M. Revealing the Unseen: A Review of Wood’s Lamp in Dermatology. J. Clin. Aesthetic Dermatol. 2022, 15, 25–30. [Google Scholar]
- Chierici, M.; Picozzi, C.; La Spina, M.G.; Orsi, C.; Vigentini, I.; Zambrini, V.; Foschino, R. Strain Diversity of Pseudomonas fluorescens Group with Potential Blue Pigment Phenotype Isolated from Dairy Products. J. Food Prot. 2016, 79, 1430–1435. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.J.; Falkiner, F.R.; Keane, C.T. New Method for Detecting Slime Production by Coagulase Negative Staphylococci. J. Clin. Pathol. 1989, 42, 872–874. [Google Scholar] [CrossRef]
- Maalej, H.; Hmidet, N.; Boisset, C.; Buon, L.; Heyraud, A.; Nasri, M. Optimization of Exopolysaccharide Production from Pseudomonas stutzeri AS22 and Examination of Its Metal-Binding Abilities. J. Appl. Microbiol. 2015, 118, 356–367. [Google Scholar] [CrossRef]
- Pailin, T.; Kang, D.H.; Schmidt, K.; Fung, D.Y.C. Detection of Extracellular Bound Proteinase in EPS-Producing Lactic Acid Bacteria Cultures on Skim Milk Agar. Lett. Appl. Microbiol. 2001, 33, 45–49. [Google Scholar] [CrossRef]
- Furmanczyk, E.M.; Kaminski, M.A.; Spolnik, G.; Sojka, M.; Danikiewicz, W.; Dziembowski, A.; Lipinski, L.; Sobczak, A. Isolation and Characterization of Pseudomonas Spp. Strains That Efficiently Decompose Sodium Dodecyl Sulfate. Front. Microbiol. 2017, 8, 1872. [Google Scholar] [CrossRef]
- Fernández-Fernández, R.; Lozano, C.; Eguizábal, P.; Ruiz-Ripa, L.; Martínez-Álvarez, S.; Abdullahi, I.N.; Zarazaga, M.; Torres, C. Bacteriocin-Like Inhibitory Substances in Staphylococci of Different Origins and Species with Activity Against Relevant Pathogens. Front. Microbiol. 2022, 13, 870510. [Google Scholar] [CrossRef]
- Yasmin, R.; Zafar, M.S.; Tahir, I.M.; Asif, R.; Asghar, S.; Raza, S.K. Biosorptive Potential of Pseudomonas Species RY12 Toward Zinc Heavy Metal in Agriculture Soil Irrigated with Contaminated Waste Water. Dose-Response 2022, 20, 15593258221117352. [Google Scholar] [CrossRef]
- Shukla, R.; Sarim, K.M.; Sahu, U.; Bhoyar, M.S.; Singh, D.P.; Singh, U.B.; Sahu, A.; Gupta, A.; Mandal, A.; Thakur, J.K.; et al. Augmentation of Metal-Tolerant Bacteria Elevates Growth and Reduces Metal Toxicity in Spinach. Bioremediat. J. 2021, 25, 108–127. [Google Scholar] [CrossRef]
- Firincă, C.; Zamfir, L.-G.; Constantin, M.; Răut, I.; Capră, L.; Popa, D.; Jinga, M.-L.; Baroi, A.M.; Fierăscu, R.C.; Corneli, N.O.; et al. Microbial Removal of Heavy Metals from Contaminated Environments Using Metal-Resistant Indigenous Strains. J. Xenobiotics 2023, 14, 51–78. [Google Scholar] [CrossRef]
- Narvhus, J.A.; Nilsen Bækkelund, O.; Tidemann, E.M.; Østlie, H.M.; Abrahamsen, R.K. Isolates of Pseudomonas spp. from Cold-Stored Raw Milk Show Variation in Proteolytic and Lipolytic Properties. Int. Dairy J. 2021, 123, 105049. [Google Scholar] [CrossRef]
- Longhi, R.D.; Correia, S.D.S.; Bruzaroski, S.R.; Poli-Frederico, R.C.; Fagnani, R.; Santana, E.H.W.D. Pseudomonas fluorescens and Pseudomonas putida from Refrigerated Raw Milk: Genetic Diversity and Lipoproteolytic Activity. J. Dairy Res. 2022, 89, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Carrascosa, C.; Martínez, R.; Sanjuán, E.; Millán, R.; Del Rosario-Quintana, C.; Acosta, F.; García, A.; Jaber, J.R. Identification of the Pseudomonas fluorescens Group as Being Responsible for Blue Pigment on Fresh Cheese. J. Dairy Sci. 2021, 104, 6548–6558. [Google Scholar] [CrossRef] [PubMed]
- Honselmann Genannt Humme, J.; Dubrowska, K.; Grygorcewicz, B.; Gliźniewicz, M.; Paszkiewicz, O.; Głowacka, A.; Musik, D.; Story, G.; Rakoczy, R.; Augustyniak, A. Optimised Stress—Intensification of Pyocyanin Production with Zinc Oxide Nanoparticles. Microb. Cell Factories 2024, 23, 215. [Google Scholar] [CrossRef]
- Samrot, A.V.; Rio, A.J.; Kumar, S.S.; Samanvitha, S.K. Bioprospecting Studies of Pigmenting Pseudomonas aeruginosa SU-1, Microvirga aerilata SU14 and Bacillus megaterium SU15 Isolated from Garden Soil. Biocatal. Agric. Biotechnol. 2017, 11, 330–337. [Google Scholar] [CrossRef]
- El-Fouly, M.Z.; Sharaf, A.M.; Shahin, A.A.M.; El-Bialy, H.A.; Omara, A.M.A. Biosynthesis of Pyocyanin Pigment by Pseudomonas aeruginosa. J. Radiat. Res. Appl. Sci. 2015, 8, 36–48. [Google Scholar] [CrossRef]
- Abdelaziz, A.A.; Kamer, A.M.A.; Al-Monofy, K.B.; Al-Madboly, L.A. Pseudomonas aeruginosa’s Greenish-Blue Pigment Pyocyanin: Its Production and Biological Activities. Microb. Cell Factories 2023, 22, 110. [Google Scholar] [CrossRef]
- Panasia, G.; Oetermann, S.; Steinbüchel, A.; Philipp, B. Sulfate Ester Detergent Degradation in Pseudomonas aeruginosa Is Subject to Both Positive and Negative Regulation. Appl. Environ. Microbiol. 2019, 85, e01352-19. [Google Scholar] [CrossRef]
- Bernabé-Pérez, E.A.; Gaytán, P.; Juárez-González, V.R.; Hernández-García, I.J.; Tapia-Pastrana, G.; Quintero-Hernández, V.; Martínez-Martínez, L.L. Heterologous Production of Bacteriocin EMM1 from Pseudomonas protegens and Its Antimicrobial Activity against Multidrug-Resistant Clinical Isolates. Int. J. Pept. Res. Ther. 2024, 30, 73. [Google Scholar] [CrossRef]
- Lyng, M.; Þórisdóttir, B.; Sveinsdóttir, S.H.; Hansen, M.L.; Jelsbak, L.; Maróti, G.; Kovács, Á.T. Taxonomy of Pseudomonas Spp. Determines Interactions with Bacillus subtilis. mSystems 2024, 9, e00212-24. [Google Scholar] [CrossRef] [PubMed]
- Lyng, M.; Kovács, Á.T. Frenemies of the Soil: Bacillus and Pseudomonas Interspecies Interactions. Trends Microbiol. 2023, 31, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Zanna, S.; Mercier, D.; Gardin, E.; Allion-Maurer, A.; Marcus, P. EPS for Bacterial Anti-Adhesive Properties Investigated on a Model Metal Surface. Colloids Surf. B Biointerfaces 2022, 213, 112413. [Google Scholar] [CrossRef] [PubMed]
- Costa, O.Y.A.; Raaijmakers, J.M.; Kuramae, E.E. Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation. Front. Microbiol. 2018, 9, 1636. [Google Scholar] [CrossRef]
- Tribelli, P.M.; López, N.I. Insights into the Temperature Responses of Pseudomonas Species in Beneficial and Pathogenic Host Interactions. Appl. Microbiol. Biotechnol. 2022, 106, 7699–7709. [Google Scholar] [CrossRef]
- Craig, K.; Johnson, B.R.; Grunden, A. Leveraging Pseudomonas Stress Response Mechanisms for Industrial Applications. Front. Microbiol. 2021, 12, 660134. [Google Scholar] [CrossRef]
- Mozaheb, N.; Rasouli, P.; Kaur, M.; Van Der Smissen, P.; Larrouy-Maumus, G.; Mingeot-Leclercq, M.-P. A Mildly Acidic Environment Alters Pseudomonas aeruginosa Virulence and Causes Remodeling of the Bacterial Surface. Microbiol. Spectr. 2023, 11, e04832-22. [Google Scholar] [CrossRef]
- Liu, L.; Wang, S.; Chen, J. Anthropogenic Activities Change the Relationship between Microbial Community Taxonomic Composition and Functional Attributes. Environ. Microbiol. 2021, 23, 6663–6675. [Google Scholar] [CrossRef]
- Rajeev, M.; Sushmitha, T.J.; Aravindraja, C.; Toleti, S.R.; Pandian, S.K. Exploring the Impacts of Heavy Metals on Spatial Variations of Sediment-Associated Bacterial Communities. Ecotoxicol. Environ. Saf. 2021, 209, 111808. [Google Scholar] [CrossRef] [PubMed]
- Shuaib, M.; Azam, N.; Bahadur, S.; Romman, M.; Yu, Q.; Xuexiu, C. Variation and Succession of Microbial Communities under the Conditions of Persistent Heavy Metal and Their Survival Mechanism. Microb. Pathog. 2021, 150, 104713. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, T.; Zhou, L.; Lou, W.; Zeng, W.; Liu, T.; Yin, H.; Liu, H.; Liu, X.; Mathivanan, K.; et al. Soil Microbial Community Assembly Model in Response to Heavy Metal Pollution. Environ. Res. 2022, 213, 113576. [Google Scholar] [CrossRef] [PubMed]
- Bhojiya, A.A.; Joshi, H.; Upadhyay, S.K.; Srivastava, A.K.; Pathak, V.V.; Pandey, V.C.; Jain, D. Screening and Optimization of Zinc Removal Potential in Pseudomonas aeruginosa-HMR1 and Its Plant Growth-Promoting Attributes. Bull. Environ. Contam. Toxicol. 2022, 108, 468–477. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, Z.; Zhu, L.; Zhong, L.; Dong, Y.; Wang, G.; Shi, K. Cd Immobilization Mechanisms in a Pseudomonas Strain and Its Application in Soil Cd Remediation. J. Hazard. Mater. 2022, 425, 127919. [Google Scholar] [CrossRef]
- Saha, J.; Pal, A. Cadmium Biosorption and Plant Growth Promotion Efficacy of a Metalloresistant Pseudomonas sp. Unveils Augmented Growth with Reduced Metal Accumulation in Brassica napus L. Vegetos 2023, 37, 2311–2319. [Google Scholar] [CrossRef]
- Abbas, S.Z.; Rafatullah, M.; Ismail, N.; Lalung, J. Isolation, Identification, and Characterization of Cadmium Resistant Pseudomonas sp. M3 from Industrial Wastewater. J. Waste Manag. 2014, 2014, 160398. [Google Scholar] [CrossRef]
- Oleńska, E.; Małek, W.; Swiecicka, I.; Wójcik, M.; Thijs, S.; Vangronsveld, J. Bacteria Under Metal Stress—Molecular Mechanisms of Metal Tolerance. Int. J. Mol. Sci. 2025, 26, 5716. [Google Scholar] [CrossRef]
- Wang, J.L.; Dragone, N.B.; Avard, G.; Hynek, B.M. Microbial Survival in an Extreme Martian Analog Ecosystem: Poás Volcano, Costa Rica. Front. Astron. Space Sci. 2022, 9, 817900. [Google Scholar] [CrossRef]
Site | Longitude (°E) | Latitude (°N) |
---|---|---|
A | 15.585849 | 41.422099 |
B | 15.597040 | 41.4334645 |
C | 15.608232 | 41.44483 |
D | 15.604090 | 41.466206 |
E | 15.584307 | 41.477667 |
F | 15.564805 | 41.4775115 |
G | 15.545304 | 41.477356 |
H | 15.528977 | 41.482316 |
I | 15.510517 | 41.4781885 |
L | 15.492058 | 41.474061 |
M | 15.496651 | 41.452132 |
N | 15.505415 | 41.433294 |
O | 15.508348 | 41.413625 |
P | 15.535685 | 41.421741 |
Q | 15.560767 | 41.42192 |
Permutation N: 9999 | ||||||
Source | SS | df | MS | F | p | Explained Variance (%) |
Sampling site | 4.039 | 14 | 0.289 | 3.003 | 0.0007 | 6.96 |
Heavy metal | 1.452 | 4 | 0.363 | 3.779 | 0.0059 | 2.50 |
Interaction | 11.703 | 56 | 0.209 | 2.175 | 0.0002 | 20.17 |
Residual | 40.828 | 425 | 0.096 | |||
Total | 58.022 | 499 |
Cluster | 0 | 1 | 2 | 3 |
---|---|---|---|---|
15 °C/pH 5 | 0.69 | 0.32 | 0.2 | 0.79 |
15 °C/pH 8 | 0.19 | 0.64 | 0.68 | 0.71 |
25 °C/pH 5 | 0.15 | 0.56 | 0.16 | 0.88 |
25 °C/pH 8 | 0.27 | 0.80 | 0.64 | 0.46 |
37 °C/pH 5 | 0.54 | 0.56 | 0.16 | 0.58 |
37 °C/pH 8 | 0.27 | 0.68 | 0.92 | 0.25 |
Cd | 0.08 | 0.72 | 0.48 | 0.92 |
Co | 0.46 | 0.44 | 0.44 | 0.42 |
Cu | 0.69 | 0.80 | 0.16 | 0.25 |
Ni | 0.46 | 0.16 | 0.64 | 0.75 |
Zn | 0.5 | 0.44 | 0.52 | 0.54 |
SDS | 0.42 | 0.32 | 0.64 | 0.71 |
SM 10% | 0.42 | 0.16 | 0.64 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Santis, A.; Bevilacqua, A.; Racioppo, A.; Speranza, B.; Corbo, M.R.; Altieri, C.; Sinigaglia, M. A Preliminary Investigation into Heavy Metal Tolerance in Pseudomonas Isolates: Does the Isolation Site Have an Effect? Agriculture 2025, 15, 1692. https://doi.org/10.3390/agriculture15151692
De Santis A, Bevilacqua A, Racioppo A, Speranza B, Corbo MR, Altieri C, Sinigaglia M. A Preliminary Investigation into Heavy Metal Tolerance in Pseudomonas Isolates: Does the Isolation Site Have an Effect? Agriculture. 2025; 15(15):1692. https://doi.org/10.3390/agriculture15151692
Chicago/Turabian StyleDe Santis, Alessandro, Antonio Bevilacqua, Angela Racioppo, Barbara Speranza, Maria Rosaria Corbo, Clelia Altieri, and Milena Sinigaglia. 2025. "A Preliminary Investigation into Heavy Metal Tolerance in Pseudomonas Isolates: Does the Isolation Site Have an Effect?" Agriculture 15, no. 15: 1692. https://doi.org/10.3390/agriculture15151692
APA StyleDe Santis, A., Bevilacqua, A., Racioppo, A., Speranza, B., Corbo, M. R., Altieri, C., & Sinigaglia, M. (2025). A Preliminary Investigation into Heavy Metal Tolerance in Pseudomonas Isolates: Does the Isolation Site Have an Effect? Agriculture, 15(15), 1692. https://doi.org/10.3390/agriculture15151692