Model-Based Assessment of Phenological and Climate Suitability Dynamics for Winter Wheat in the 3H Plain Under Future Climate Scenarios
Abstract
1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.3. DSSAT CERES-Wheat Model Simulation
2.4. The Random Forest Method
2.5. The Climate Suitability Model
2.5.1. The Temperature Suitability Model
2.5.2. The Precipitation Suitability Model
2.5.3. The Solar Radiation Suitability Model
2.5.4. The Integrated Climate Suitability Model
3. Results
3.1. Projected Changes in Winter Wheat Phenology
3.2. Future Projections of Temperature Suitability for Winter Wheat
3.3. Future Projections of Precipitation Suitability for Winter Wheat
3.4. Future Projections of Solar Radiation Suitability for Winter Wheat
3.5. Spatial Distribution of Integrated Climate Suitability for Winter Wheat Across the 3H Plain
3.6. Impacts of Changes in Climate Factors on the Winter Wheat Phenology
4. Discussion
5. Conclusions
- (1)
- Compared to the baseline years, the average durations of the VGP and WGP across the 3H Plain are projected to be extended in the mid-21st century and shortened in the late 21st century. The RGP is expected to be slightly shorter in the mid-21st century under both scenarios and slightly longer under the SSP5-8.5 scenario in the late 21st century.
- (2)
- Random Forest analysis identifies temperature as the primary driver of changes in both VGP and RGP throughout the 21st century, with a contribution rate exceeding 40%. Solar radiation plays a significant role in phenological changes, especially in the mid-21st century, while the influence of precipitation surpasses that of solar radiation in the late 21st century due to substantial increases in precipitation.
- (3)
- Temperature suitability for winter wheat is projected to increase during the VGP and WGP but decline during the RGP under both scenarios throughout the 21st century. Precipitation suitability is expected to improve across the 3H Plain, particularly north of 36° N, but decrease during the RGP south of 32° N compared to the baseline.
- (4)
- During the 21st century, solar radiation suitability at all growth stages is projected to remain higher in the north and lower in the south, with overall values below baseline levels. Integrated climate suitability during the VGP and WGP is expected to improve across the 3H Plain under both scenarios. For the RGP, integrated suitability is projected to be higher north of 32° N and generally lower south of 32° N compared to the baseline period.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Genetic Coefficients | P1V | P1D | P5 | G1 | G2 | G3 | PHT |
---|---|---|---|---|---|---|---|
3H Plain | 36.0 | 63.4 | 418.8 | 27.4 | 28.3 | 1.66 | 95 |
References
- Xiao, D.; Qi, Y.; Li, Z.; Wang, R.; Moiwo, J.P.; Liu, F. Impact of thermal time shift on wheat phenology and yield under warming climate in the Huang-Huai-Hai Plain, China. Front. Earth Sci. 2017, 11, 148–155. [Google Scholar] [CrossRef]
- Hussain, J.; Khaliq, T.; Ahmad, A.; Akhtar, J. Performance of four crop model for simulations of wheat phenology, leaf growth, biomass and yield across planting dates. PLoS ONE 2018, 13, e0197546. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, Q.; Ge, Q.; Dai, J.; Qin, Y.; Dai, L.; Zou, X.; Chen, J. Modelling the impacts of climate change and crop management on phenological trends of spring and winter wheat in China. Agric. For. Meteorol. 2018, 248, 518–526. [Google Scholar] [CrossRef]
- Field, C.B. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Zhao, Y.; Xiao, D.; Bai, H.; Tang, J. Climatic suitability degrees of winter wheat and summer maize in the North China Plain. Chin. J. Ecol. 2020, 39, 1–12. [Google Scholar]
- Zhao, J.; Zhan, X.; Jiang, Y.; Xu, J. Variations in climatic suitability and planting regionalization for potato in northern China under climate change. PLoS ONE 2018, 13, e0203538. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Qi, J.; Wang, F.; Li, L.; Lu, J. Analysis of climate suitability of spring maize in Liaoning Province based on modulus and mathematics. Sci. Geogr. Sin 2020, 40, 1210–1220. [Google Scholar]
- Irimia, L.M.; Patriche, C.V.; Quenol, H.; Sfîcă, L.; Foss, C. Shifts in climate suitability for wine production as a result of climate change in a temperate climate wine region of Romania. Theor. Appl. Climatol. 2018, 131, 1069–1081. [Google Scholar] [CrossRef]
- Hong, Q.C.; Xiang, L.X.; Hui, J.; Qin, L. The impacts of climate change on wheat yield in the Huang-Huai-Hai Plain of China using DSSAT-CERES-Wheat model under different climate scenarios. J. Integr. Agric. 2019, 18, 1379–1391. [Google Scholar]
- Xiao, D.; Liu, D.L.; Wang, B.; Feng, P.; Tang, J. Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios. Agric. Water Manag. 2020, 238, 106238. [Google Scholar] [CrossRef]
- Brunner, L.; Pendergrass, A.G.; Lehner, F.; Merrifield, A.L.; Knutti, R. Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth Syst. Dyn. 2020, 11, 995–1012. [Google Scholar] [CrossRef]
- Zelinka, M.D.; Myers, T.A.; McCoy, D.T.; Po-Chedley, S.; Caldwell, P.M.; Ceppi, P.; Klein, S.A.; Taylor, K.E. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 2020, 47, e2019GL085782. [Google Scholar] [CrossRef]
- Zhai, J.; Mondal, S.K.; Fischer, T.; Wang, Y.; Su, B.; Huang, J.; Tao, H.; Wang, G.; Ullah, W.; Uddin, M.J. Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia. Atmos. Res. 2020, 246, 105111. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, L.; Zhang, Z.; Chen, Y. Climate warming outweighed agricultural managements in affecting wheat phenology across China during 1981–2018. Agric. For. Meteorol. 2022, 316, 108865. [Google Scholar] [CrossRef]
- Fletcher, A.L.; Chen, C.; Ota, N.; Lawes, R.A.; Oliver, Y.M. Has historic climate change affected the spatial distribution of water-limited wheat yield across Western Australia? Clim. Change 2020, 159, 347–364. [Google Scholar] [CrossRef]
- Yan, X.; Guo, Y.; Ma, B.; Zhao, Y.; Guga, S.; Zhang, J.; Liu, X.; Tong, Z.; Zhao, C. Hazard assessment of rice cold damage based on energy balance in paddy field. Agric. For. Meteorol. 2024, 358, 110233. [Google Scholar] [CrossRef]
- Hu, C.; She, D.; Wang, G.; Zhang, L.; Jing, Z.; Hong, S.; Song, Z.; Xia, J. Soil moisture and precipitation dominate the response and recovery times of ecosystems from different types of flash drought in the Yangtze River Basin. Agric. For. Meteorol. 2024, 358, 110236. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Huang, S.; Wang, B.; Wen, Z. Dramatic Weakening of the Tropical Easterly Jet Projected by CMIP6 Models. J. Clim. 2020, 33, 8439–8455. [Google Scholar] [CrossRef]
- Xie, W.; Wang, S.; Yan, X. DTR in Winter Wheat Growing Regions of China: CMIP6 Models Evaluation and Comparation. 2021. Available online: https://www.researchsquare.com/article/rs-802737/v1 (accessed on 5 January 2025).
- Wu, J.; Shi, Y.; Xu, Y. Evaluation and Projection of Surface Wind Speed Over China Based on CMIP6 GCMs. J. Geophys. Res. Atmos. 2020, 125, e2020JD033611. [Google Scholar] [CrossRef]
- Xu, Y.; Li, T.; Xu, M.; Tan, L.; Shen, S. Assessing Climate Change Effects on Winter Wheat Production in the 3H Plain: Insights from Bias-Corrected CMIP6 Projections. Agriculture 2024, 14, 469. [Google Scholar] [CrossRef]
- Yang, X.; Wood, E.F.; Sheffield, J.; Ren, L.; Zhang, M.; Wang, Y. Bias correction of historical and future simulations of precipitation and temperature for China from CMIP5 models. J. Hydrometeorol. 2018, 19, 609–623. [Google Scholar] [CrossRef]
- Piao, J.; Chen, W.; Wang, L.; Chen, S. Future projections of precipitation, surface temperatures and drought events over the monsoon transitional zone in China from bias-corrected CMIP6 models. Int. J. Climatol. 2022, 42, 1203–1219. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, Z.; Ahmed, Z.; Zhang, L.; Su, B.; Tao, H.; Jiang, T. Projections of precipitation over China based on CMIP6 models. Stoch. Environ. Res. Risk Assess. 2021, 35, 831–848. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Chen, J.; Pan, T.; Ge, Q. Plausible changes in wheat-growing periods and grain yield in China triggered by future climate change under multiple scenarios and periods. Q. J. R. Meteorol. Soc. 2021, 147, 4371–4387. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, F.; Song, H.; Zhang, T.; Wang, D.; Xia, H.; Zhai, S.; Liu, Y.; Wang, T.; Wang, Y.; et al. Effects of projected climate change on winter wheat yield in Henan, China. J. Clean. Prod. 2022, 379, 134734. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Porter, C.; Shelia, V.; Boote, K.; Singh, U.; White, J.; Hunt, L.; Ogoshi, R.; Lizaso, J.; Koo, J. Decision Support System for Agrotechnology Transfer (DSSAT), Version 4.7.5; DSSAT Foundation: Gainesville, FL, USA, 2019. [Google Scholar]
- Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Hlavinka, P.; Moriondo, M.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Rumbaur, C.; Takáč, J. Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. Eur. J. Agron. 2011, 35, 103–114. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, S.; Zhang, F.; Guo, S.; Guo, E.; Liu, Z.; Zhao, J.; Zhao, C.; Li, T.; Yang, X. Using estimated radiation in crop models amplified the negative impacts of climate variability on maize and winter wheat yields in China. Agric. For. Meteorol. 2022, 318, 108914. [Google Scholar] [CrossRef]
- Yang, C.; Liu, C.; Liu, Y.; Gao, Y.; Xing, X.; Ma, X. Prediction of drought trigger thresholds for future winter wheat yield losses in China based on the DSSAT-CERES-Wheat model and Copula conditional probabilities. Agric. Water Manag. 2024, 299, 108881. [Google Scholar] [CrossRef]
- Si, Z.; Zain, M.; Li, S.; Liu, J.; Liang, Y.; Gao, Y.; Duan, A. Optimizing nitrogen application for drip-irrigated winter wheat using the DSSAT-CERES-Wheat model. Agric. Water Manag. 2021, 244, 106592. [Google Scholar] [CrossRef]
- Sun, J.; Lai, Z.; Di, L.; Sun, Z.; Tao, J.; Shen, Y. Multilevel deep learning network for county-level corn yield estimation in the us corn belt. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5048–5060. [Google Scholar] [CrossRef]
- Yang, W.; Nigon, T.; Hao, Z.; Paiao, G.D.; Fernández, F.G.; Mulla, D.; Yang, C. Estimation of corn yield based on hyperspectral imagery and convolutional neural network. Comput. Electron. Agric. 2021, 184, 106092. [Google Scholar] [CrossRef]
- Liu, E.; Zhou, G.; Wu, B.; Song, Y.; He, Q.; Lv, X.; Zhou, M. Response and Adaptation of Single-Cropping Rice Growth Periods to Sowing Date, Cultivar Shift and Extreme Temperatures in China from 1981 to 2010. Int. J. Plant Prod. 2022, 16, 627–638. [Google Scholar] [CrossRef]
- Bai, H.; Xiao, D. Spatiotemporal changes of rice phenology in China during 1981–2010. Theor. Appl. Climatol. 2020, 140, 1483–1494. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Zhou, W.; Zhang, J.; Pan, T. Effects of climate change and crop management on changes in rice phenology in China from 1981 to 2010. J. Sci. Food Agric. 2021, 101, 6311–6319. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Wang, B.; Li Liu, D.; Waters, C.; Yu, Q. Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia. Agric. For. Meteorol. 2019, 275, 100–113. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Tang, X.; Liu, H. Climate suitability for summer maize on the North China Plain under current and future climate scenarios. Int. J. Climatol. 2021, 41, E2644–E2661. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiao, D.; Bai, H.; Tang, J.; Liu, D. Future Projection for Climate Suitability of Summer Maize in the North China Plain. Agriculture 2022, 12, 348. [Google Scholar] [CrossRef]
- Yue, Y.; Yang, W.; Wang, L. Assessment of drought risk for winter wheat on the Huanghuaihai Plain under climate change using an EPIC model-based approach. Int. J. Digit. Earth 2022, 15, 690–711. [Google Scholar] [CrossRef]
- Xiong, W.; Asseng, S.; Hoogenboom, G.; Hernandez-Ochoa, I.; Robertson, R.; Sonder, K.; Pequeno, D.; Reynolds, M.; Gerard, B. Different uncertainty distribution between high and low latitudes in modelling warming impacts on wheat. Nat. Food 2020, 1, 63–69. [Google Scholar] [CrossRef]
- Xu, Y.; Li, T.; Shen, S.; Xu, G.; Islam, A.R.M.T.; Hu, Z. Effects of cyclic variability in Pacific decadal oscillation on winter wheat production in China. Int. J. Climatol. 2021, 41, 2239–2252. [Google Scholar] [CrossRef]
- Tian, D.; Asseng, S.; Martinez, C.J.; Misra, V.; Cammarano, D.; Ortiz, B.V. Does decadal climate variation influence wheat and maize production in the southeast USA? Agric. For. Meteorol. 2015, 204, 1–9. [Google Scholar] [CrossRef]
- Li, Y.; Huang, H.; Ju, H.; Lin, E.; Xiong, W.; Han, X.; Wang, H.; Peng, Z.; Wang, Y.; Xu, J. Assessing vulnerability and adaptive capacity to potential drought for winter-wheat under the RCP 8.5 scenario in the Huang-Huai-Hai Plain. Agric. Ecosyst. Environ. 2015, 209, 125–131. [Google Scholar] [CrossRef]
- Tang, X.; Liu, H. Spatial-temporal distribution of climate suitability of winter wheat in North China Plain for current and future climate scenarios. Theor. Appl. Climatol. 2021, 143, 915–930. [Google Scholar] [CrossRef]
- Rg, A. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrig Drain 1998, 56, 147–151. [Google Scholar]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Wei, R.; Zhang, W.; Li, E. A quantitative evaluation model of meteorological factors during growing period of winter wheat in Hebei Province. Chin. J. Agrometeorol. 2007, 28, 367. [Google Scholar]
- Wang, E.; Han, X. The productivity evaluation and its application of winter wheat and summer maize in Huang-Huai-Hai region. Chin. J. Agrometeorol. 1990, 11, 41–46. [Google Scholar]
- Tang, X.; Song, N.; Tao, G.; Chen, Z.; Wang, J. Spatial distribution of main parameters of Hargreaves formula in typical time scales in Huang-Huai-Hai Plain. Trans. Chin. Soc. Agric. Eng. 2016, 32, 63–70. [Google Scholar]
- Caubel, J.; de Cortázar-Atauri, I.G.; Launay, M.; de Noblet-Ducoudré, N.; Huard, F.; Bertuzzi, P.; Graux, A.-I. Broadening the scope for ecoclimatic indicators to assess crop climate suitability according to ecophysiological, technical and quality criteria. Agric. For. Meteorol. 2015, 207, 94–106. [Google Scholar] [CrossRef]
- Xiao, D.; Tao, F.; Liu, Y.; Shi, W.; Wang, M.; Liu, F.; Zhang, S.; Zhu, Z. Observed changes in winter wheat phenology in the North China Plain for 1981–2009. Int. J. Biometeorol. 2013, 57, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Arunrat, N.; Sereenonchai, S.; Chaowiwat, W.; Wang, C. Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand. Sci. Total Environ. 2022, 807, 150741. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T. Preface to Special Issue on CMIP6 Experiments: Model and Dataset Descriptions. Adv. Atmos. Sci. 2020, 37, 1033. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, Z.; Li, J.; Li, W.; Sun, C.; Li, L. Does CMIP6 inspire more confidence in simulating climate extremes over China? Adv. Atmos. Sci. 2020, 37, 1119–1132. [Google Scholar] [CrossRef]
- Gu, H.; Yu, Z.; Wang, G.L.; Yang, T.; Ju, Q.; Yang, C.; Xu, F.; Fan, C. Assessing CMIP5 general circulation model simulations of precipitation and temperature over China. Int. J. Climatol. A J. R. Meteorol. Soc. 2015, 35, 2431–2440. [Google Scholar] [CrossRef]
- Ta, Z.; Yu, Y.; Sun, L.; Chen, X.; Mu, G.; Yu, R. Assessment of precipitation simulations in Central Asia by CMIP5 climate models. Water 2018, 10, 1516. [Google Scholar] [CrossRef]
- Tao, F.; Xiao, D.; Zhang, S.; Zhang, Z.; Rötter, R.P. Wheat yield benefited from increases in minimum temperature in the Huang-Huai-Hai Plain of China in the past three decades. Agric. For. Meteorol. 2017, 239, 1–14. [Google Scholar] [CrossRef]
- Wu, J.; Gu, Y.; Sun, K.; Xing, X.; Ma, X. Impacts of climate change on winter wheat net primary production: The regulatory role of crop management. J. Sci. Food Agric. 2024, 104, 1420–1430. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Tao, Y.; Liu, M.; Yang, D.; Zhu, M.; Ding, J.; Zhu, X.; Guo, W.; Zhou, G.; Li, C. Does temporary heat stress or low temperature stress similarly affect yield, starch, and protein of winter wheat grain during grain filling? J. Cereal Sci. 2022, 103, 103408. [Google Scholar] [CrossRef]
- Mirosavljević, M.; Mikić, S.; Župunski, V.; Kondić Špika, A.; Trkulja, D.; Ottosen, C.O.; Zhou, R.; Abdelhakim, L. Effects of high temperature during anthesis and grain filling on physiological characteristics of winter wheat cultivars. J. Agron. Crop Sci. 2021, 207, 823–832. [Google Scholar] [CrossRef]
- Du, X.; Gao, Z.; Sun, X.; Bian, D.; Ren, J.; Yan, P.; Cui, Y. Increasing temperature during early spring increases winter wheat grain yield by advancing phenology and mitigating leaf senescence. Sci. Total Environ. 2022, 812, 152557. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Martre, P.; Zhao, Z.; Ewert, F.; Maiorano, A.; Rötter, R.P.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W. The uncertainty of crop yield projections is reduced by improved temperature response functions. Nat. Plants 2017, 3, 1–13. [Google Scholar] [PubMed]
- Hulley, G.C.; Dousset, B.; Kahn, B.H. Rising Trends in Heatwave Metrics Across Southern California. Earth’s Future 2020, 8, e2020EF001480. [Google Scholar] [CrossRef]
Model Name | Horizontal Resolutions | Institution/Country |
---|---|---|
BCC-CSM2-MR | 320 × 160 | Beijing Climate Center (BCC)/China |
MPI-ESM1-2-HR | 384 × 192 | Max Planck Institute (MPI) for Meteorology/Germany |
MIROC6 | 256 × 128 | Model for Interdisciplinary Research on Climate (MIROC)/Japan |
GISS-E2-1-G | 144 × 90 | NASA Goddard Institute for Space Studies (GISS)/USA |
IPSL-CM6A-LR | 144 × 143 | Institute Pierre-Simon Laplace (IPSL)/France |
MRI-ESM2-0 | 320 × 160 | Meteorological Research Institute (MRI)/Japan |
CESM2 | 288 × 192 | National Center for Atmospheric Research (NCAR)/USA |
Growth Period | Th | Tl | To | Kc | S0 | b |
---|---|---|---|---|---|---|
VGP | 17 | 2 | 10 | 0.7 | 7.66 | 4.32 |
RGP | 27 | 8 | 16 | 1 | 9.36 | 4.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Li, T.; Xu, M.; Shen, S.; Tan, L. Model-Based Assessment of Phenological and Climate Suitability Dynamics for Winter Wheat in the 3H Plain Under Future Climate Scenarios. Agriculture 2025, 15, 1606. https://doi.org/10.3390/agriculture15151606
Xu Y, Li T, Xu M, Shen S, Tan L. Model-Based Assessment of Phenological and Climate Suitability Dynamics for Winter Wheat in the 3H Plain Under Future Climate Scenarios. Agriculture. 2025; 15(15):1606. https://doi.org/10.3390/agriculture15151606
Chicago/Turabian StyleXu, Yifei, Te Li, Min Xu, Shuanghe Shen, and Ling Tan. 2025. "Model-Based Assessment of Phenological and Climate Suitability Dynamics for Winter Wheat in the 3H Plain Under Future Climate Scenarios" Agriculture 15, no. 15: 1606. https://doi.org/10.3390/agriculture15151606
APA StyleXu, Y., Li, T., Xu, M., Shen, S., & Tan, L. (2025). Model-Based Assessment of Phenological and Climate Suitability Dynamics for Winter Wheat in the 3H Plain Under Future Climate Scenarios. Agriculture, 15(15), 1606. https://doi.org/10.3390/agriculture15151606