Interspecific Variation in the Antioxidant Potential of Culinary and Medicinal Herbs
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Total Polyphenol Content
2.3. ABTS•+ Scavenging Activity
2.4. Antioxidant Enzyme Activity—Catalase (CAT) and Superoxide Dismutase (SOD)
2.5. Pigments Analysis
2.6. Data Analysis
3. Results
3.1. Natural ROS Scavengers and Their Antioxidant Potential
3.2. Total Carotenoids, Carotene and Xanthophyll Accumulation, and Their Ratios
3.3. The Content of Lipid-Soluble Pigments from Particular Carotenoid Groups
3.4. Accumulation of Chlorophylls
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sies, H.; Belousov, V.V.; Chandel, N.S.; Davies, M.J.; Jones, D.P.; Mann, G.E.; Murphy, M.P.; Yamamoto, M.; Winterbourn, C. Defining Roles of Specific Reactive Oxygen Species (ROS) in Cell Biology and Physiology. Nat. Rev. Mol. Cell Biol. 2022, 23, 499–515. [Google Scholar] [CrossRef] [PubMed]
- Pandhair, V.; Sekhon, B.S. Reactive Oxygen Species and Antioxidants in Plants: An Overview. J. Plant Biochem. Biotechnol. 2006, 15, 71–78. [Google Scholar] [CrossRef]
- Mehla, N.; Sindhi, V.; Josula, D.; Bisht, P.; Wani, S.H. An Introduction to Antioxidants and Their Roles in Plant Stress Tolerance. In Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress; Khan, M.I.R., Khan, N.A., Eds.; Springer: Singapore, 2017; pp. 1–23. ISBN 978-981-10-5254-5. [Google Scholar]
- Soares, C.; Carvalho, M.E.A.; Azevedo, R.A.; Fidalgo, F. Plants Facing Oxidative Challenges—A Little Help from the Antioxidant Networks. Environ. Exp. Bot. 2019, 161, 4–25. [Google Scholar] [CrossRef]
- García-Caparrós, P.; De Filippis, L.; Gul, A.; Hasanuzzaman, M.; Ozturk, M.; Altay, V.; Lao, M.T. Oxidative Stress and Antioxidant Metabolism under Adverse Environmental Conditions: A Review. Bot. Rev. 2021, 87, 421–466. [Google Scholar] [CrossRef]
- Pathak, J.; Rajneesh; Ahmed, H.; Singh, D.K.; Singh, P.R.; Kumar, D.; Kannaujiya, V.K.; Singh, S.P.; Sinha, R.P. Oxidative Stress and Antioxidant Defense in Plants Exposed to Ultraviolet Radiation. In Reactive Oxygen, Nitrogen and Sulfur Species in Plants; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 371–420. ISBN 978-1-119-46867-7. [Google Scholar]
- Ben Alaya, I.; Alves, G.; Lopes, J.; Silva, L.R. Use of Encapsulated Polyphenolic Compounds in Health Promotion and Disease Prevention: Challenges and Opportunities. Macromol 2024, 4, 805–842. [Google Scholar] [CrossRef]
- Carboni Martins, C.; Rodrigues, R.C.; Domeneghini Mercali, G.; Rodrigues, E. New Insights into Non-Extractable Phenolic Compounds Analysis. Food Res. Int. 2022, 157, 111487. [Google Scholar] [CrossRef] [PubMed]
- Charlton, N.C.; Mastyugin, M.; Török, B.; Török, M. Structural Features of Small Molecule Antioxidants and Strategic Modifications to Improve Potential Bioactivity. Molecules 2023, 28, 1057. [Google Scholar] [CrossRef] [PubMed]
- Belščak-Cvitanović, A.; Durgo, K.; Huđek, A.; Bačun-Družina, V.; Komes, D. 1—Overview of Polyphenols and Their Properties. In Polyphenols: Properties, Recovery, and Applications; Galanakis, C.M., Ed.; Woodhead Publishing: Cambridge, UK, 2018; pp. 3–44. ISBN 978-0-12-813572-3. [Google Scholar]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Young, A.J.; Lowe, G.L. Carotenoids—Antioxidant Properties. Antioxidants 2018, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.-E.; Prasad, K.N.; Kong, K.-W.; Jiang, Y.; Ismail, A. Carotenoids and Their Isomers: Color Pigments in Fruits and Vegetables. Molecules 2011, 16, 1710–1738. [Google Scholar] [CrossRef] [PubMed]
- Munné-Bosch, S.; Alegre, L. The Significance of β-Carotene, α-Tocopherol and the Xanthophyll Cycle in Droughted Melissa Officinalis Plants. Funct. Plant Biol. 2000, 27, 139–146. [Google Scholar] [CrossRef]
- Crupi, P.; Faienza, M.F.; Naeem, M.Y.; Corbo, F.; Clodoveo, M.L.; Muraglia, M. Overview of the Potential Beneficial Effects of Carotenoids on Consumer Health and Well-Being. Antioxidants 2023, 12, 1069. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Chen, J.-P.; Wang, X.-W.; Li, P. Reactive Oxygen Species in Plants: Metabolism, Signaling, and Oxidative Modifications. Antioxidants 2025, 14, 617. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-Y.; Chao, P.-Y.; Hu, S.-P.; Yang, C.-M. The Antioxidant and Free Radical Scavenging Activities of Chlorophylls and Pheophytins. Food Nutr. Sci. 2013, 4, 1–8. [Google Scholar] [CrossRef]
- Turkiewicz, I.P.; Brzezowska, J.; Tkacz, K.; Wojdyło, A. Polysaccharide- and Protein-Based Carriers as a Key Strategy for Obtaining Microencapsulated Chlorophyll-Rich Extracts: UPLC-PDA/ESI-QToF-MS Characterization and Evaluation of Antidiabetic Potential. Food Chem. 2025, 486, 144627. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Chen, W.; Fan, K. Recent Advances in Light Irradiation for Improving the Preservation of Fruits and Vegetables: A Review. Food Biosci. 2023, 56, 103206. [Google Scholar] [CrossRef]
- Thiviya, P.; Gamage, A.; Piumali, D.; Merah, O.; Madhujith, T. Apiaceae as an Important Source of Antioxidants and Their Applications. Cosmetics 2021, 8, 111. [Google Scholar] [CrossRef]
- Ekiert, H.; Klimek-Szczykutowicz, M.; Rzepiela, A.; Klin, P.; Szopa, A. Artemisia Species with High Biological Values as a Potential Source of Medicinal and Cosmetic Raw Materials. Molecules 2022, 27, 6427. [Google Scholar] [CrossRef] [PubMed]
- Herrera, E.; Tremblay, N.; Desroches, B.; Gosselin, A. Optimization of Substrate and Nutrient Solution for Organic Cultivation of Medicinal Transplants in Multicell Flats. J. Herbs Spices Med. Plants 1997, 4, 69–82. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, C.; Fridovich, I. Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Rusaczonek, A.; Czarnocka, W.; Kacprzak, S.; Witoń, D.; Ślesak, I.; Szechyńska-Hebda, M.; Gawroński, P.; Karpiński, S. Role of Phytochromes A and B in the Regulation of Cell Death and Acclimatory Responses to UV Stress in Arabidopsis Thaliana. J. Exp. Bot. 2015, 66, 6679–6695. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase in Vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Rusaczonek, A.; Czarnocka, W.; Willems, P.; Sujkowska-Rybkowska, M.; Van Breusegem, F.; Karpiński, S. Phototropin 1 and 2 Influence Photosynthesis, UV-C Induced Photooxidative Stress Responses, and Cell Death. Cells 2021, 10, 200. [Google Scholar] [CrossRef] [PubMed]
- Zagoskina, N.V.; Zubova, M.Y.; Nechaeva, T.L.; Kazantseva, V.V.; Goncharuk, E.A.; Katanskaya, V.M.; Baranova, E.N.; Aksenova, M.A. Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). Int. J. Mol. Sci. 2023, 24, 13874. [Google Scholar] [CrossRef] [PubMed]
- Średnicka-Tober, D.; Ponder, A.; Hallmann, E.; Głowacka, A.; Rozpara, E. The Profile and Content of Polyphenols and Carotenoids in Local and Commercial Sweet Cherry Fruits (Prunus avium L.) and Their Antioxidant Activity In Vitro. Antioxidants 2019, 8, 534. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- El-Nakhel, C.; Pannico, A.; Graziani, G.; Giordano, M.; Kyriacou, M.C.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Mineral and Antioxidant Attributes of Petroselinum Crispum at Different Stages of Ontogeny: Microgreens vs. Baby Greens. Agronomy 2021, 11, 857. [Google Scholar] [CrossRef]
- Joshi, T.; Deepa, P.R.; Sharma, P.K. Effect of Different Proportions of Phenolics on Antioxidant Potential: Pointers for Bioactive Synergy/Antagonism in Foods and Nutraceuticals. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2022, 92, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Long, J.; Gong, Z.; Nong, K.; Liang, X.; Qin, T.; Huang, W.; Yang, L. Current State of Knowledge on the Antioxidant Effects and Mechanisms of Action of Polyphenolic Compounds. Nat. Prod. Commun. 2021, 16, 1934578X211027745. [Google Scholar] [CrossRef]
- Lang, Y.; Gao, N.; Zang, Z.; Meng, X.; Lin, Y.; Yang, S.; Yang, Y.; Jin, Z.; Li, B. Classification and Antioxidant Assays of Polyphenols: A Review. J. Future Foods 2024, 4, 193–204. [Google Scholar] [CrossRef]
- Bors, W.; Michel, C. Chemistry of the Antioxidant Effect of Polyphenols. Ann. N. Y. Acad. Sci. 2002, 957, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Zaheer, M.S.; Rizwan, M.; Aijaz, N.; Hameed, A.; Ikram, K.; Ali, H.H.; Niaz, Y.; Usman Aslam, H.M.; Manoharadas, S.; Riaz, M.W.; et al. Investigating the Synergistic Effects of Biochar, Trans-Zeatin Riboside, and Azospirillum Brasilense on Soil Improvement and Enzymatic Activity in Water-Stressed Wheat. BMC Plant Biol. 2024, 24, 314. [Google Scholar] [CrossRef] [PubMed]
- Meitha, K.; Pramesti, Y.; Suhandono, S. Reactive Oxygen Species and Antioxidants in Postharvest Vegetables and Fruits. Int. J. Food Sci. 2020, 2020, 8817778. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.A.; Cheng, Y.; Aslam, M.; Jakada, B.H.; Wai, M.H.; Ye, K.; He, X.; Luo, T.; Ye, L.; Dong, C.; et al. ROS and Oxidative Response Systems in Plants Under Biotic and Abiotic Stresses: Revisiting the Crucial Role of Phosphite Triggered Plants Defense Response. Front. Microbiol. 2021, 12, 631318. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, L.R. Role of Plant Polyphenols in Genomic Stability. Mutat. Res. Mol. Mech. Mutagen. 2001, 475, 89–111. [Google Scholar] [CrossRef] [PubMed]
- Rajput, V.D.; Harish; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; et al. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef] [PubMed]
- Mehdizadeh, L.; Moghaddam, M.; Ganjeali, A.; Rahimmalek, M. Phenolic Compounds, Enzymatic and Non-Enzymatic Antioxidant Activities of Mentha piperita Modified by Zinc and Methyl Jasmonate Concentrations. Sci. Hortic. 2024, 329, 112980. [Google Scholar] [CrossRef]
- Fujita, M.; Hasanuzzaman, M. Approaches to Enhancing Antioxidant Defense in Plants. Antioxidants 2022, 11, 925. [Google Scholar] [CrossRef] [PubMed]
- Stahl, W.; Sies, H. Antioxidant Activity of Carotenoids. Mol. Asp. Med. 2003, 24, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Landrum, J.T.; Bone, R.A. Lutein, Zeaxanthin, and the Macular Pigment. Arch. Biochem. Biophys. 2001, 385, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Maslova, T.G.; Markovskaya, E.F.; Slemnev, N.N. Functions of Carotenoids in Leaves of Higher Plants (Review). Biol. Bull. Rev. 2021, 11, 476–487. [Google Scholar] [CrossRef]
- Larsen, E.; Christensen, L.P. Simple Saponification Method for the Quantitative Determination of Carotenoids in Green Vegetables. J. Agric. Food Chem. 2005, 53, 6598–6602. [Google Scholar] [CrossRef] [PubMed]
- Žnidarčič, D.; Ban, D.; Šircelj, H. Carotenoid and Chlorophyll Composition of Commonly Consumed Leafy Vegetables in Mediterranean Countries. Food Chem. 2011, 129, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.-J.; Fraser, P.D.; Wang, W.-J.; Bramley, P.M. Differences in the Carotenoid Content of Ordinary Citrus and Lycopene-Accumulating Mutants. J. Agric. Food Chem. 2006, 54, 5474–5481. [Google Scholar] [CrossRef] [PubMed]
- Lanfer-Marquez, U.M.; Barros, R.M.C.; Sinnecker, P. Antioxidant Activity of Chlorophylls and Their Derivatives. Food Res. Int. 2005, 38, 885–891. [Google Scholar] [CrossRef]
- Mehdipoor Damiri, G.R.; Motamedzadegan, A.; Safari, R.; Shahidi, S.A.; Ghorbani, A. Evaluation of Stability, Physicochemical and Antioxidant Properties of Extracted Chlorophyll from Persian Clover (Trifolium resupinatum L.). J. Food Meas. Charact. 2021, 15, 327–340. [Google Scholar] [CrossRef]
- Martins, T.; Barros, A.N.; Rosa, E.; Antunes, L. Enhancing Health Benefits through Chlorophylls and Chlorophyll-Rich Agro-Food: A Comprehensive Review. Molecules 2023, 28, 5344. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Oba, S. Nutrients, Minerals, Pigments, Phytochemicals, and Radical Scavenging Activity in Amaranthus Blitum Leafy Vegetables. Sci. Rep. 2020, 10, 3868. [Google Scholar] [CrossRef] [PubMed]
- Buhăianu, S.; Jităreanu, D. The Relationship between Chlorophyll Content and Antioxidant Activity of Abies Alba and Nepeta Pannonica Extracts According to Phenophase and Harvesting Area. Cercet. Agron. Mold. 2019, 52, 158–165. [Google Scholar] [CrossRef]
- Mishra, N.; Jiang, C.; Chen, L.; Paul, A.; Chatterjee, A.; Shen, G. Achieving Abiotic Stress Tolerance in Plants through Antioxidative Defense Mechanisms. Front. Plant Sci. 2023, 14, 1110622. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, R.; Heidari, M. Impact of Drought Stress on Biochemical and Molecular Responses in Lavender (Lavandula angustifolia Mill.): Effects on Essential Oil Composition and Antibacterial Activity. Front. Plant Sci. 2025, 16, 1506660. [Google Scholar] [CrossRef] [PubMed]
Latin Name | Common Name | Family | |
---|---|---|---|
1 | Anethum graveolens L. | dill | Apiaceae |
2 | Levisticum officinale W.D.J. Koch | lovage | |
3 | Petroselinum Hortense (Mill.) A. W. Hill | parsley | |
4 | Achillea millefolium L. | yarrow | Asteraceae |
5 | Artemisia dracunculus L. | tarragon | |
6 | Helichrysum italicum (Roth) G. Don | Italian strawflower | |
7 | Lamium album L. | white dead-nettle | Lamiaceae |
8 | Mentha x citrata Ehrh. | bergamot-mint | |
9 | Mentha spicata var. crispa L. | curly mint | |
10 | Mentha arvensis L. | wild mint or corn mint | |
11 | Ocimum basilicum L. | great basil | |
12 | Origanum vulgare L. | oregano | |
13 | Salvia rosmarinus Spenn. | rosemary | |
14 | Salvia officinalis L. | common sage | |
15 | Thymus vulgaris L. | common thyme |
Family | Species | Polyphenols [mg GAE g−1 FW] | Antioxidant Capacity [µmol TE g−1 FW] |
---|---|---|---|
Apiaceae | Anethum graveolens | 0.35 ± 0.018 b * | 44 ± 3.3 e |
Levisticum officinale | 0.67 ± 0.058 e | 14 ± 1.1 b | |
Petroselinum hortense | 0.64 ± 0.030 e | 70 ± 4.7 g | |
Asteraceae | Achillea millefolium | 0.41 ± 0.014 bc | 5 ± 0.5 a |
Artemisia dracunculus | 0.7 ± 0.039 e | 25 ± 6.0 c | |
Helichrysum italicum | 0.99 ± 0.019 i | 57 ± 4.2 f | |
Lamiaceae | Lamium album | 0.41 ± 0.026 c | 29 ± 4.9 cd |
Mentha x citrata | 0.77 ± 0.021 f | 32 ± 2.5 d | |
Mentha spicata | 0.84 ± 0.067 g | 66 ± 6.4 g | |
Mentha arvensis | 0.79 ± 0.024 fg | 41 ± 1.6 e | |
Ocimum basilicum | 0.24 ± 0.015 a | 15 ± 2.0 b | |
Origanum vulgare | 0.8 ± 0.023 fg | 29 ± 3.5 cd | |
Salvia rosmarinus | 0.55 ± 0.032 d | 78 ± 9.1 h | |
Salvia officinalis | 0.92 ± 0.048 h | 30 ± 2.7 cd | |
Thymus vulgaris | 0.78 ± 0.052 fg | 44 ± 3.1 e |
Family | Species | CAT [µmol H2O2 min−1 mg−1 Protein] | SOD [U mg−1 Protein] |
---|---|---|---|
Apiaceae | Anethum graveolens | 35 ± 5.6 fg * | 54 ± 6.6 b |
Levisticum officinale | 59 ± 6.2 h | 96 ± 7.7 gh | |
Petroselinum hortense | 26 ± 3.7 cd | 38 ± 4.2 a | |
Asteraceae | Achillea millefolium | 27 ± 4.3 cde | 132 ± 4.2 i |
Artemisia dracunculus | 42 ± 5.9 g | 107 ± 3.0 h | |
Helichrysum italicum | 36 ± 5.0 fg | 81 ± 3.9 ef | |
Lamiaceae | Lamium album | 9 ± 0.9 a | 58 ± 8.2 bc |
Mentha x citrata | 55 ± 4.0 h | 67 ± 3.7 cd | |
Mentha spicata | 42 ± 6.7 g | 53 ± 4.7 b | |
Mentha arvensis | 24 ± 4.2 bcd | 54 ± 8.4 b | |
Ocimum basilicum | 8 ± 1.5 a | 127 ± 17.5 i | |
Origanum vulgare | 21 ± 3.1 bc | 80 ± 4.5 ef | |
Salvia rosmarinus | 17 ± 2.9 b | 88 ± 10.2 fg | |
Salvia officinalis | 31 ± 4.1 def | 103 ± 4.1 h | |
Thymus vulgaris | 34 ± 5.0 ef | 74 ± 4.2 de |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusaczonek, A.; Sankiewicz, P.; Duszyn, M.; Górecka, M.; Chwedorzewska, K.; Muszyńska, E. Interspecific Variation in the Antioxidant Potential of Culinary and Medicinal Herbs. Agriculture 2025, 15, 1586. https://doi.org/10.3390/agriculture15151586
Rusaczonek A, Sankiewicz P, Duszyn M, Górecka M, Chwedorzewska K, Muszyńska E. Interspecific Variation in the Antioxidant Potential of Culinary and Medicinal Herbs. Agriculture. 2025; 15(15):1586. https://doi.org/10.3390/agriculture15151586
Chicago/Turabian StyleRusaczonek, Anna, Patryk Sankiewicz, Maria Duszyn, Mirosława Górecka, Katarzyna Chwedorzewska, and Ewa Muszyńska. 2025. "Interspecific Variation in the Antioxidant Potential of Culinary and Medicinal Herbs" Agriculture 15, no. 15: 1586. https://doi.org/10.3390/agriculture15151586
APA StyleRusaczonek, A., Sankiewicz, P., Duszyn, M., Górecka, M., Chwedorzewska, K., & Muszyńska, E. (2025). Interspecific Variation in the Antioxidant Potential of Culinary and Medicinal Herbs. Agriculture, 15(15), 1586. https://doi.org/10.3390/agriculture15151586