Polyploid Induction Enhances Secondary Metabolite Biosynthesis in Clausena lansium: Morphological and Metabolomic Insights
Abstract
1. Introduction
2. Material and Methods
2.1. Materials
- ‘Wuhe’ wampee (WH): A seedless cultivar selected from Yunan country, Yunfu city, of Guangdong Province in China. The fruits are oval-cordate in shape with brownish skin at a mature stage. It tastes sour and sweet with a 95% seedless rate; it has been reported as a mixoploid [19].
- ‘Huami No. 3’ wampee (HM3): A cultivar developed by the College of Horticulture at South China Agricultural University and Guangzhou Institute of Fruit Tree Science from a cross between ‘Baitang’ × ‘Jinjixin’. Notable features include excellent flavor, superior fruit quality, and early and abundant fruiting, as well as strong stress resistance; diploidy.
- ‘Zirou’ wampee (ZR): This cultivar is found in Guanxi Province, the fruit has distinctive pale purple skin and flesh; it has nearly round-shaped fruits; diploidy. It is reported to have a high content of anthocyanins [20].
2.2. The Induction of Polyploid C. lansium Germplasm
2.2.1. Hybridization of ‘ZR × WH’ to Create Polyploid Plants
Pollen Collection and Observation of WH
Hybridization Between ZR and WH
SCoT (Start Codon Targeted Polymorphism) Marker Analysis for Hybrid Identification
2.2.2. Induction Polyploid Plants of HM3 by Colchicine Treatment
seeds sown × 100%
2.2.3. Screen Polyploid Plants of the Seedlings of WH
2.3. Identification of Polyploid Plants
2.3.1. Identification by Flow Cytometry
2.3.2. Chromosome Counting Analysis
2.4. The Morphological Observation of the Polyploid Plants
2.5. Stomata and Anatomical Observation of Polyploid Leaves
2.5.1. Stomata Observation and Measurement
2.5.2. Observation of Leaf Anatomical Structure
2.6. Determination of Physiological Index
2.6.1. Photosynthetic Parameter Measurement
2.6.2. Flavonoids
2.7. Statistical Analysis of Physiological and Ploidy Analysis Data
2.8. Metabolomic Profiling and Statistical Analysis of Polyploid C. lansium
Principles of Metabolite Identification and Quantification
3. Results and Discussion
3.1. The Pollen Structure Observation
3.2. The Obtain of Polyploid Plants by Hybridization and the Identification of the Hybrids
3.2.1. The Ploidy Identification of the Hybrids
3.2.2. Hybrid Verification by SCoT Markers
3.3. Evaluation of Colchicine-Induced Polyploid Plants in HM3
3.4. Polyploid Identification, Observation and Analyzation of WH Seedlings
3.4.1. Polyploid Identification of WH Seedlings
3.4.2. The Morphological Comparison Between Diploid and Polyploid C. lansium of WH
3.4.3. Comparative Analysis of Stomatal Characteristics Between Diploid and Polyploid of WH Offspring
3.4.4. Comparative Leaf Anatomy of Diploid and Polyploid WH Offspring
3.4.5. Physiology Comparison Between Diploid and Polyploid C. lansium of WH
3.5. Metabolites Analysis Between Diploid and Polyploid C. lansium of WH
3.5.1. Qualitative and Quantitative Analysis of the Metabolites in Diploid and Polyploid Seedlings of C. lansium
3.5.2. The PCA and Orthogonal Partial Least Squares–Discriminant Analysis (OPLS-DA)
3.5.3. Differential Metabolites of C. lansium in Different Ploidy Leaves
3.5.4. KEGG Pathway Enrichment Analysis of Differential Metabolites
4. Discussion
4.1. Comparative Evaluation of Polyploid Induction Methods in C. lansium
4.2. Morphological, Anatomical Structure and Physiology Modified of Polyploid C. lansium
4.3. Metabolomic Profiling of Diploid and Polyploid C. lansium
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Z.C.; Hu, G.B.; Ouyang, R.; Liu, Y.C.; Yi, Y.; Chen, Y.Y. The earlier identification of the seedless characteristic of the wampee [Clausena lansium (Lour.) Skeels] hybrid by a random amplified polymorphic DNA (RAPD) marker. Afr. J. Biotechnol. 2010, 9, 8578–8582. [Google Scholar]
- Chokeprasert, P.; Charles, A.L.; Sue, K.H.; Huang, T.C. Volatile components of the leaves: Fruits and seeds of wampee Clausena lansium (Lour.) Skeels. J. Food Compos. Anal. 2007, 20, 52–56. [Google Scholar] [CrossRef]
- Liu, Y.P.; Guo, J.M.; Wang, X.P.; Liu, Y.Y.; Zhang, W.; Wang, T.; Qiang, L.; Fu, Y.H. Geranylated carbazole alkaloids with potential neuroprotective activities from the stems and leaves of Clausena lansium. Bioorg. Chem. 2019, 92, 103278. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Xiong, Z.; Xie, N.; Liu, S.Z.; Zhang, L.L.; Xu, F.; Guo, W.H.; Feng, J.T. Bioassay-guided isolation of antifungal amides against Sclerotinia sclerotiorum from the seeds of Clausena lansium. Ind. Crops Prod. 2018, 121, 352–359. [Google Scholar] [CrossRef]
- Yang, C.; Lin, Z.Z.; Luo, Z.; Wang, Z.Q.; Liu, P.; Xu, R.W.; Zhu, F.; Cheng, Y.J. The volatile compound (E)-2-hexenal in wampee (Clausena lansium) represses the development of Penicillium italicum and enhances the disease resistance of postharvest citrus fruit. Postharvest Biol. Technol. 2025, 219, 113241. [Google Scholar] [CrossRef]
- Wei, Y.Z.; Wang, Y.; Hu, F.C.; Wang, W.; Wei, C.B.; Xu, B.Q.; Liu, L.Q.; Li, H.Y.; Wang, C.; Zhang, H.N.; et al. The Clausena lansium genome provides new insights into alkaloid diversity and the evolution of the methyltransferase family. J. Integr. Agric. 2024, 23, 3537–3553. [Google Scholar] [CrossRef]
- Moghe, G.D.; Shiu, S.H. The causes and molecular consequences of polyploidy in flowering plants. Ann. N. Y. Acad. Sci. 2014, 1320, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Husband, B.C.; Baldwin, S.J.; Suda, J. The incidence of polyploidy in natural plant populations: Major patterns and evolutionary processes. In Plant Genome Diversity; Leitch, I.J., Greilhuber, J., Dolezel, J., Wendel, J.F., Eds.; Springer Inc.: Vienna, Austria, 2013; Volume 2, pp. 255–276. [Google Scholar]
- Van de Peer, Y.; Ashman, T.L.; Soltis, P.S.; Soltis, D.E. Polyploidy: An evolutionary and ecological force in stressful times. Plant Cell 2021, 33, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Stebbins, G.L. Variation and Evolution in Plants; Columbia University Press: New York, NY, USA, 1950. [Google Scholar]
- Sattler, M.C.; Carvalho, C.R.; Clarindo, W.R. The polyploidy and its key role in plant breeding. Planta 2016, 243, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Hagen, E.R.; Mason, C.M. Differences in pathogen resistance between diploid and polyploid plants: A systematic review and meta-analysis. Oikos 2024, 5, e09908. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Tang, W.H.; Zhang, G.; Wang, Y.H.; Yan, Z.M. Genetic variation, polyploidy, hybridization influencing the aroma profiles of Rosaceae family. Genes 2024, 15, 1339. [Google Scholar] [CrossRef] [PubMed]
- Germanà, M. Doubled haploid production in fruit crops. Plant Cell Tissue Organ Cult. 2006, 86, 131–146. [Google Scholar] [CrossRef]
- Kulkarni, R.N.; Baskaran, K.; Jhang, T. Breeding medicinal plant, periwinkle [Catharanthus roseus (L) G. Don]: A review. Plant Genet. Resour. 2016, 14, 283–302. [Google Scholar] [CrossRef]
- Khan, M.N.E.A.; Hassan, J.; Biswas, M.S.; Khan, H.I.; Sultana, H.; Suborna, M.N.; Rajib, M.M.R.; Akter, J.; Gomasta, J.; Anik, A.A. Morphological and anatomical characterization of colchicine-induced polyploids in watermelon. Hortic. Environ. Biotechnol. 2023, 61, 461–474. [Google Scholar] [CrossRef]
- Sun, Q.; Sun, H.; Li, L.; Bell, R.L. In vitro colchicine-induced polyploid plantlet production and regeneration from leaf explants of the diploid pear (Pyrus communis L.) cultivar, ‘Fertility’. J. Hortic. Sci. Biotechnol. 2009, 84, 548–552. [Google Scholar] [CrossRef]
- Bora, L.; Vijayakumar, R.M.; Ganga, M.; Ganesan, N.M.; Sarkar, M.; Kundu, M. Induction of polyploids in acid lime (Citrus aurantifolia) through colchicine treatment of in vitro derived shoot tip explants. Plant Breed. 2023, 142, 118–127. [Google Scholar] [CrossRef]
- Feng, L.; Liu, R. Preliminary report on chromosomal ploidy variation in ‘Yunan Wuhe’ wampee. Chin. Agric. Sci. Bull. 2007, 9, 115–118. (In Chinese) [Google Scholar]
- Peng, S.J.; Zhu, X.Y.; Chen, J.X.; Chen, J.Y.; Hu, X.L.; Wu, J.L.; Zhang, Z.K.; Zhao, J.T.; Hu, G.B.; Sabir, I.A.; et al. Integrated analyses of the transcriptome and metabolome revealed the coloring mechanism of red-pericarp wampee (Clausena lansium). Plant Physiol. Biochem. 2025, 224, 109959. [Google Scholar] [CrossRef] [PubMed]
- Collard, B.C.; Mackill, D.J. Start codon targeted (SCoT) polymorphism: A simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. Rep. 2009, 27, 86–93. [Google Scholar] [CrossRef]
- Nugroho, K.; Santoso, T.J.; Kosmiatin, M.; Sukma, D.; Purwito, A.; Husni, A.; Reflinur, R.; Lestari, P. Genetic diversity and population structure of Indonesia’s mandarin citrus genotypes using simple sequence repeat and start codon targeted markers. Genet. Resour. Crop Evol. 2025, 72, 2939–2957. [Google Scholar] [CrossRef]
- Weaver, J.L. Flow cytometry: Measuring cell populations and studying cell physiology—Introduction to flow cytometry. Methods 2000, 21, 199–201. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Leng, Q. A new method to prepare clean cuticular membrane from fossil leaves with thin and fragile cuticles. Sci. China-Earth Sci. 2011, 54, 223–227. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, W.; Li, C.; Wang, Z.; Lu, C.; Cheng, J.; Wei, S.; Yang, J.; Yang, Q. Integrated transcriptomic and metabolomic analyses elucidate the mechanism of flavonoid biosynthesis in the regulation of mulberry seed germination under salt stress. BMC Plant Biol. 2024, 24, 132. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.G.; Clowers, B.H.; Moore, R.J.; Zink, E.M. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics. Anal. Chem. 2010, 82, 4165–4173. [Google Scholar] [CrossRef] [PubMed]
- Thévenot, E.A.; Roux, A.; Xu, Y.; Ezan, E.; Junot, C. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J. Proteome Res. 2015, 14, 3322–3335. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Reyes, T.; Monribot-Villanueva, J.L.; Jiménez-Martínez, O.D.; Aguilar-Colorado, A.S.; Bonilla-Landa, I.; Flores-Estévez, N.; Luna-Rodríguez, M.; Guerrero-Analco, J.A. Sesquiterpene lactones and phenols from polyfollicles of Magnolia vovidessi and their antimicrobial activity. Nat. Prod. Commun. 2018, 13, 521–525. [Google Scholar] [CrossRef]
- Matsuo, Y.; Mimaki, Y. α-Santalol derivatives from Santalum album and their cytotoxic activities. Phytochemistry 2012, 77, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Quilantang, N.G.; Choi, K.; Lee, B.H.; Lee, S. Kaempferol Rhamnosides from Geranium sibiricum as aldose reductase inhibitors and their content by HPLC analysis. Processes 2020, 8, 694. [Google Scholar] [CrossRef]
- Tsiklauri, L.; Švík, K.; Chrastina, M.; Poništ, S.; Dráfi, F.; Slovák, L.; Alania, M.; Kemertelidze, E.; Bauerova, K. Bioflavonoid Robinin from Astragalus falcatus Lam. mildly improves the effect of metothrexate in rats with adjuvant arthritis. Nutrients 2021, 13, 1268. [Google Scholar] [CrossRef] [PubMed]
- Emsweller, S.L. Colchicine-induced polyploidy in Lilium longiflorum. Am. J. Bot. 1949, 36, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Losada, J.M.; Blanco-Monre, N.; Fonollá, A.; Martínez-Ferrí, E.; Hormaza, J.I. Hydraulic tradeoffs underlie enhanced performance of polyploid trees under soil water deficit. Plant Physiol. 2023, 192, 1821–1835. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhou, J.; Zhang, X.; Hou, H.; Liu, X.; Yang, C.; Shen, S.; Luo, J. Insights into tissue-specific specialized metabolism in wampee (Clausena lansium (Lour.) Skeels) varieties. Foods 2024, 13, 3092. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luo, J. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Mol. Plant 2013, 6, 1769–1780. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.D.; Qi, Y.; Lin, L.Z.; Wang, J.; Qin, X.B.; Niu, B. Comparative analysis of the transcriptome and metabolome in leaves of diploid and tetraploid Fagopyrum tataricum. Phyton-Int. J. Exp. Bot. 2023, 92, 3149–3162. [Google Scholar] [CrossRef]
- Yu, Y.H.; Qu, Y.Q.; Wang, S.Y.; Wang, Q.; Shang, X.L.; Fu, X.X. An integrative analysis of metabolome and transcriptome reveals the molecular regulatory mechanism of the accumulation of flavonoid glycosides in different Cyclocarya paliurus ploidies. Forests 2023, 14, 770. [Google Scholar] [CrossRef]
Primers | Sequences |
---|---|
SCoT 4 | CAACAATGGCTACCACCT |
SCoT 6 | CAACAATGGCTACCACGC |
SCoT 12 | ACGACATGGCGACCAACG |
SCoT 32 | CCATGGCTACCACCGCAC |
SCoT 57 | ACAATGGCTACCACTACG |
Sample | Equatorial Axis (μm) | Polar Axis (μm) | P/E |
---|---|---|---|
WH | 17.91 ± 1.30 a | 33.25 ± 1.66 a | 1.86 |
HM3 | 15.06 ± 1.41 b | 30.01 ± 0.55 b | 1.99 |
ZR | 15.65 ± 1.65 b | 32.31 ± 0.72 a | 2.06 |
Colchicine Concentration (%) | Treat Time (h) | Plantlets Number | Mortality Rate (%) | Mixoploid Plant | Polyploid Plant |
---|---|---|---|---|---|
0 | 12 | 85 | 5.6 | 0 | 0 |
24 | 84 | 6.7 | 0 | 0 | |
48 | 82 | 8.9 | 0 | 0 | |
72 | 83 | 7.8 | 0 | 0 | |
0.1 | 12 | 81 | 10 | 2 | 0 |
24 | 75 | 16.7 | 0 | 0 | |
48 | 80 | 11.1 | 0 | 0 | |
72 | 77 | 14.4 | 1 | 0 | |
0.2 | 12 | 69 | 23.3 | 3 | 0 |
24 | 72 | 16.7 | 2 | 0 | |
48 | 58 | 35.6 | 5 | 0 | |
72 | 49 | 45.6 | 7 | 0 | |
0.3 | 12 | 77 | 14.4 | 0 | 0 |
24 | 67 | 25.6 | 1 | 0 | |
48 | 59 | 34.4 | 1 | 1 | |
72 | 53 | 41.1 | 0 | 0 |
Ploidy | 2x | 3x | 4x | ||||||
---|---|---|---|---|---|---|---|---|---|
Code | CK | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 |
Leaf shape | broad-ovate | broad-ovate | broad-ovate | broad-ovate | broad-ovate | broad-ovate | broad-ovate | broad-ovate | broad-ovate |
Leaf apex | mucronulate | mucronulate | mucronulate | mucronulate | mucronulate | mucronulate | mucronulate | mucronulate | mucronulate |
Leaf margin | entire | entire | entire | entire | entire | entire | entire | entire | undulate |
Leaf base | cuneate | cuneate | cuneate | cuneate | cuneate | cuneate | cuneate | cuneate | cuneate |
Leaf brightness | shiny | shiny | shiny | shiny | shiny | shiny | shiny | shiny | shiny |
Leaf color | dark green | dark green | dark green | dark green | dark green | dark green | dark green | dark green | dark green |
Leaf surface | flat | flat | flat | flat | flat | flat | Flat | flat | wrinkled |
Leaflet arrangement | alternate | alternate | alternate | alternate | alternate | alternate | alternate | alternate | alternate |
Leaflet number of one compound leaf | 6/7/8 | 6/7 | 7/8 | 6 | 6 | 8 | 7/9 | 9 | 4/5 |
Plantlet height (cm) | 49.01 ± 1.10 c | 46.82 ± 0.11 d | 45.51 ± 0.11 e | 63.02 ± 1.02 a | 28.73 ± 0.10 g | 44.71 ± 0.10 e | 56.52 ± 0.20 b | 48.51 ± 0.10 c | 39.83 ± 0.10 f |
Rachis length (mm) | 143.06 ± 0.01 g | 150.05 ± 0.01 e | 156.82 ± 0.01 c | 158.22 ± 0.03 b | 117.96 ± 0.01 h | 156.62 ± 0.02 d | 180.17 ± 0.02 a | 144.41 ± 0.01 f | 77.03 ± 0.01 i |
Petiolutes length (mm) | 5.69 ± 0.01 a | 4.30 ± 0.01 c | 3.71 ± 0.02 f | 4.07 ± 0.01 d | 3.51 ± 0.01 g | 4.07 ± 0.01 d | 3.84 ± 0.01 e | 4.90 ± 0.02 b | 2.19 ± 0.01 h |
Leaflet length (mm) | 116.76 ± 0.02 g | 124.33 ± 0.10 d | 113.33 ± 0.01 h | 123.24 ± 0.03 e | 104.33 ± 0.02 i | 139.91 ± 0.01 a | 117.18 ± 0.01 f | 136.01 ± 0.01 b | 125.45 ± 0.01 b |
Leaflet width (mm) | 73.16 ± 0.01 i | 72.14 ± 0.01 f | 69.62 ± 0.01 h | 73.09 ± 0.01 d | 72.80 ± 0.01 e | 86.09 ± 0.01 a | 71.56 ± 0.01 g | 79.35 ± 0.01 c | 85.49 ± 0.01 b |
Leaflet thickness (mm) | 0.24 ± 0.01 e | 0.25 ± 0.01 de | 0.27 ± 0.01 b | 0.25 ± 0.02 cd | 0.26 ± 0.01 bc | 0.25 ± 0.01 d | 0.37 ± 0.02 a | 0.25 ± 0.01 de | 0.26 ± 0.02 b |
Distance between leaflets (mm) | 35.17 ± 0.01 b | 36.07 ± 0.01 a | 32.52 ± 0.01 d | 34.90 ± 0.01 c | 27.00 ± 0.01 g | 26.41 ± 0.01 h | 30.69 ± 0.01 e | 29.87 ± 0.01 f | 23.80 ± 0.01 i |
Ploidy | Code | Guard Cell Length (μm) | Guard Cell Width (μm) | Stomatal Density (Number/μm2) |
---|---|---|---|---|
2x | CK | 7.09 ± 0.54 e | 5.17 ± 1.06 d | 35.40 ± 5.59 a |
3x | W1 | 10.59 ± 0.10 ab | 7.33 ± 0.45 b | 17.20 ± 3.19 d |
W2 | 9.37 ± 0.35 c | 6.30 ± 0.75 c | 24.80 ± 1.30 b | |
W3 | 9.10 ± 0.31 cd | 6.63 ± 0.23 bc | 18.40 ± 4.77 cd | |
W4 | 9.45 ± 0.31 c | 6.84 ± 0.10 bc | 20.00 ± 1.22 bcd | |
W5 | 11.37 ± 0.56 a | 8.36 ± 0.37 a | 22.00 ± 4.30 bcd | |
W6 | 10.10 ± 1.13 bc | 7.20 ± 0.57 bc | 16.20 ± 2.77 d | |
W7 | 10.00 ± 0.74 bc | 6.95 ± 0.38 bc | 24.00 ± 0.71 bc | |
4x | W8 | 10.77 ± 0.30 ab | 8.25 ± 0.42 b | 23.60 ± 2.70 bc |
Ploidy | Upper Epidermis (μm) | Palisade Parenchyma (μm) | Spongy Parenchyma (μm) | Lower Epidermis (μm) |
---|---|---|---|---|
2x | 8.75 ± 0.48 c | 28.56 ± 0.44 b | 91.64 ± 13.87 b | 7.40 ± 0.38 b |
3x | 10.25 ± 0.27 b | 30.14 ± 0.81 a | 116.53 ± 7.62 a | 8.28 ± 0.97 ab |
4x | 12.55 ± 0.82 a | 30.87 ± 0.28 a | 136.48 ± 10.99 a | 9.00 ± 0.75 a |
Ploidy | Code | Net Photosynthetic Rate (μmol/(m2·s)) | Chlorophyll a (mg/g) | Chlorophyll b (mg/g) | Total Chlorophyll (mg/g) | Transpiration Rate (mol/(m2·s)) | Intercellular CO2 Concentration (μmol/mol) | Stomatal Conductance (mmol/(m2·s)) | Flavonoid (mg/g) | Total Phenolic (mg/g) | MDA (nmol/g) | Soluble Protein (mg/mL) | Soluble Sugar (mg/g) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2x | CK | 5.50 ± 1.16 de | 1.12 ± 0.03 c | 0.84 ± 0.02 e | 1.96 ± 0.05 d | 3.33 ± 0.65 e | 294.40 ± 24.46 e | 129.20 ± 61.99 d | 17.03 ± 1.50 de | 26.86 ± 2.31 a | 35.09 ± 2.73 a | 20.30 ± 0.16 a | 13.32 ± 0.55 ef |
3x | W1 | 9.88 ± 0.82 a | 1.24 ± 0.01 ab | 1.07 ± 0.02 bc | 2.31 ± 0.03 b | 6.36 ± 0.68 b | 391.40 ± 9.29 bc | 902.4 ± 386.33 abc | 19.84 ± 1.20 bcd | 20.41 ± 0.71 cd | 32.16 ± 6.22 a | 20.48 ± 0.33 a | 18.43 ± 0.00 c |
W2 | 7.48 ± 1.39 bcd | 1.15 ± 0.02 c | 0.84 ± 0.02 e | 1.99 ± 0.04 d | 8.52 ± 1.80 a | 392.80 ± 9.39 bc | 1276.00 ± 512.93 a | 20.43 ± 1.17 abc | 23.19 ± 0.47 b | 27.35 ± 3.14 a | 19.86 ± 0.65 a | 13.59 ± 0.08 ef | |
W3 | 6.88 ± 0.31 cde | 1.22 ± 0.01 b | 1.02 ± 0.01 cd | 2.24 ± 0.02 bc | 4.04 ± 1.63 de | 302.80 ± 30.77 de | 181.40 ± 134.85 d | 18.81 ± 0.53 cd | 21.71 ± 0.56 bcd | 31.99 ± 11.63 a | 20.68 ± 0.62 a | 14.90 ± 0.99 de | |
W4 | 5.28 ± 0.60 e | 1.14 ± 0.02 c | 0.76 ± 0.02 f | 1.90 ± 0.04 d | 6.36 ± 1.47 b | 375.00 ± 11.90 c | 671.80 ± 86.70 c | 22.80 ± 2.40 ab | 20.69 ± 0.46 cd | 29.58 ± 4.14 a | 20.12 ± 0.44 a | 12.83 ± 1.27 f | |
W5 | 9.48 ± 1.39 ab | 1.17 ± 0.04 c | 1.10 ± 0.08 b | 2.27 ± 0.12 bc | 7.10 ± 0.34 ab | 396.50 ± 5.43 bc | 1263.00 ± 283.81 ab | 23.12 ± 1.82 a | 22.08 ± 0.24 bc | 36.98 ± 11.37 a | 20.58 ± 0.24 a | 22.77 ± 0.66 b | |
W6 | 7.30 ± 1.09 bcde | 1.24 ± 0.01 ab | 1.66 ± 0.04 a | 2.91 ± 0.04 a | 4.40 ± 0.70 cde | 327.00 ± 14.54 d | 216.20 ± 69.19 d | 19.31 ± 0.73 cd | 21.27 ± 0.48 bcd | 30.27 ± 1.58 a | 20.49 ± 0.28 a | 19.50 ± 0.81 c | |
W7 | 8.62 ± 2.91 abc | 0.96 ± 0.03 d | 0.77 ± 0.02 ef | 1.72 ± 0.02 e | 5.57 ± 1.01 bcd | 425.67 ± 13.71 a | 823.83 ± 289.50 bc | 19.56 ± 1.05 cd | 21.77 ± 0.67 bcd | 26.14 ± 2.33 a | 20.45 ± 0.50 a | 28.81 ± 1.43 a | |
4x | W8 | 7.82 ± 1.07 abc | 1.28 ± 0.01 a | 0.97 ± 0.03 d | 2.26 ± 0.04 bc | 6.04 ± 0.38 bc | 410.67 ± 8.55 ab | 907.83 ± 306.60 abc | 21.20 ± 1.53 abc | 20.00 ± 1.48 d | 28.90 ± 1.55 a | 20.82 ± 0.37 a | 15.26 ± 0.13 d |
Compounds | Class |
---|---|
2,2-dimethyl-10-(3-methylbut-2-enoxy)pyrano [3,2-g]chromen-8-one * | Lignans and Coumarins |
3′-O-Methyltricetin-7-O-glucoside | Flavonoids |
4-methoxy-3-(3-methylbut-2-en-1-yl)-2-quinolone-8-O-b-D-glucopyranoside | Alkaloids |
Cis-Jasmone | Others |
Dictamine | Alkaloids |
Evolitrine * | Alkaloids |
Fagarin | Alkaloids |
Glucosyl 10,11-dihydroxy-2,6-farneSadienoate | Others |
Guaiacol | Phenolic acids |
Honyudisin * | Lignans and Coumarins |
Kaempferol-3-O-rhamnoside (Afzelin)(Kaempferin) | Flavonoids |
Kaempferol-7-O-rhamnoside | Flavonoids |
Limocitrin-3-O-(3-hydroxy-3-methylglutarate)glucoside-glucoside * | Flavonoids |
N-(4-methoxyphenethyl)-N-methylcinnamamide | Alkaloids |
N-Isobutene-2,4,8,10,12-tetradecanepentaenamide | Alkaloids |
Phloretin-2′-O-glucoside (Phlorizin) | Flavonoids |
Santalal | Terpenoids |
Clausine E | Alkaloids |
Mukonidine | Alkaloids |
γ-Fagarine * | Alkaloids |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Wu, L.; Wei, H.; Zhang, Z.; Zhao, J.; Hu, G.; Qin, Y.; Zhang, Z. Polyploid Induction Enhances Secondary Metabolite Biosynthesis in Clausena lansium: Morphological and Metabolomic Insights. Agriculture 2025, 15, 1566. https://doi.org/10.3390/agriculture15141566
Ding Y, Wu L, Wei H, Zhang Z, Zhao J, Hu G, Qin Y, Zhang Z. Polyploid Induction Enhances Secondary Metabolite Biosynthesis in Clausena lansium: Morphological and Metabolomic Insights. Agriculture. 2025; 15(14):1566. https://doi.org/10.3390/agriculture15141566
Chicago/Turabian StyleDing, Yu, Liangfang Wu, Hongyao Wei, Zhichun Zhang, Jietang Zhao, Guibing Hu, Yonghua Qin, and Zhike Zhang. 2025. "Polyploid Induction Enhances Secondary Metabolite Biosynthesis in Clausena lansium: Morphological and Metabolomic Insights" Agriculture 15, no. 14: 1566. https://doi.org/10.3390/agriculture15141566
APA StyleDing, Y., Wu, L., Wei, H., Zhang, Z., Zhao, J., Hu, G., Qin, Y., & Zhang, Z. (2025). Polyploid Induction Enhances Secondary Metabolite Biosynthesis in Clausena lansium: Morphological and Metabolomic Insights. Agriculture, 15(14), 1566. https://doi.org/10.3390/agriculture15141566