Calibration of DEM Parameters and Microscopic Deformation Characteristics During Compression Process of Lateritic Soil with Different Moisture Contents
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Lateritic Soil Samples
2.2. Parameter Calibration Methodology for Discrete Element Method (DEM) Model of Lateritic Soil
2.3. Uniaxial Compression Test of Lateritic Soil
2.4. Data Statistics and Analysis Methods
3. Results
3.1. Measurement Results of Lateritic Soil Parameters
3.2. Axial Compression Simulation and Bench Testing Results of Lateritic Soil
3.3. Calibration Results of Discrete Element Model Parameters for Lateritic Soil with Varying Moisture Contents
4. Discussion
4.1. Characterization of Lateritic Soil
4.2. Comparative Analysis of Simulations and Physical Experiments
4.3. Effect of Moisture Content on Compression Characteristics of Lateritic Soil
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
DEM | Discrete Element Method |
ECM | Elasto-Plastic Cohesion Model |
References
- Zhang, J.; Sun, X.; Liu, Y.; Li, S.; Gao, C. Attribution of laterite of Danzhou, Hainan province in Chinese soil taxonomy. Guangdong Agric. Sci. 2015, 42, 46–52. [Google Scholar]
- Fang, M.; Yu, Z.; Zhang, W.; Cao, J.; Liu, W. Friction coefficient calibration of corn stalk particle mixtures using Plackett-Burman design and response surface methodology. Powder Technol. 2022, 39, 731–742. [Google Scholar] [CrossRef]
- Xing, J.; Zhang, R.; Wu, P.; Zhang, X.; Dong, X.; Chen, Y. Parameter calibration of discrete element simulation model for latosol particles in hot areas of Hainan Province. Trans. Chin. Soc. Agric. Eng. 2020, 36, 158–166. [Google Scholar]
- Cundall, P.; Strack, O. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Li, M.; Wang, L.; Liao, Q.; Liao, Y.; Xiao, W.; Zhang, Q. Calibration of Rototilled Soil Discrete Element Parameters After Rotary Tillage in The Preparation Process of Rapeseed Mechanized Direct Seeding Micro-Ridge Seed Bed. Trans. Chin. Soc. Agric. Eng. 2023, 20, 10–19. [Google Scholar]
- Zhang, B.; Yang, X.; Wang, J.; Chen, J.; Shen, W. Construction of a rheological model based on discrete element parameters calibration of clay from sugarcane cultivated land. Trans. Chin. Soc. Agric. Eng. 2024, 40, 36–44. [Google Scholar]
- Kan, Z.; Jin, H.; Hongwen, L.; Peisong, D.; Qingjie, W.; Hongbo, Z. Research on polyline soil breaking blade subsoiler based on subsoiling soil model using discrete element method. Trans. Chin. Soc. Agric. Mach. 2016, 47, 62–72. [Google Scholar]
- Qiu, Y.; Guo, Z.; Jin, X.; Zhang, P.; Si, S.; Guo, F. Calibration and verification test of cinnamon soil simulation parameters based on discrete element method. Agriculture 2022, 12, 1082. [Google Scholar] [CrossRef]
- Bo, L.; Weijun, C.; Guanxi, Y.; Alexander, S.; Changhai, Z.; Pei, Z. A machine learning-driven model for predicting macro-and micro-mechanical responses of rockfill materials considering particle breakage. Comput. Geotech. 2025, 185, 107349. [Google Scholar]
- Li, J.; Tong, J.; Hu, B.; Wang, H.; Mao, C.; Ma, Y. Calibration of parameters of interaction between clayey black soil with different moisture content and soil-engaging component in northeast China. Trans. Chin. Soc. Agric. Eng. 2019, 35, 130–140. [Google Scholar]
- Song, S.; Tang, Z.; Zheng, X.; Liu, J.; Meng, X.; Liang, Y. Calibration of the discrete element parameters for the soil model of cotton field after plowing in Xinjiang of China. Trans. Chin. Soc. Agric. Eng. 2021, 37, 63–70. [Google Scholar]
- Ding, Q.; Ren, J.; Belal, E.; Zhao, J.; Ge, S.; Li, Y. DEM analysis of subsoiling process in wet clayey paddy soil. Trans. Chin. Soc. Agric. Mach. 2017, 48, 38–48. [Google Scholar]
- Wang, X.; Hu, H.; Wang, Q.; Li, H.; He, J.; Chen, W. Calibration method of soil contact characteristic parameters based on DEM theory. Trans. Chin. Soc. Agric. Mach. 2017, 48, 78–85. [Google Scholar]
- Zeng, Z.W.; Ma, X.; Cao, X.L.; Li, Z.H.; Wang, X.C. Critical review of applications of discrete element method in agricultural engineering. Trans. Chin. Soc. Agric. Mach. 2021, 52, 1–20. [Google Scholar]
- Freeman, A.; Van, Z.; Klein, J.; Zebker, H.; Shen, Y. Calibration of Stokes and scattering matrix format polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1992, 30, 531–539. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, G.; Wang, H.; Liu, H.; Kang, Q.; Zhao, Z. Microscopic deformation and fragmentation energy consumption characteristics of soils with various moisture contents using discrete element method. Soil Tillage Res. 2024, 241, 106131. [Google Scholar] [CrossRef]
- GB/T 6003.1-2012; Test Sieves—Technical Requirements and Testing—Part 1: Test Sieves of Metal wire Cloth. National Standard of the People’s Republic of China: Beijing, China, 2013.
- GB/T 50123-2019; Standard for Geotechnical Testing Method. National Standard of the People’s Republic of China: Beijing, China, 2019.
- T 0103-1993; Drying Method. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 1993.
- Gao, C.; Li, X.; Zhang, H.; Jiang, Y.; Xie, Y.; Liu, J. Effects of initial moisture and bulk density on the soil compression characteristics of black soil. Trans. Chin. Soc. Agric. Eng. 2023, 39, 102–111. [Google Scholar]
- Ding, Q.; Shen, F.; Ding, W.; Li, Y.; Pan, G.; Ji, C. Comparison of fragmentation properties and remolding techniques for clay soil. Trans. Chin. Soc. Agric. Mach. 2013, 44, 90–94. [Google Scholar]
- Guo, Y.; Wassgren, C.; Hancock, B.; Ketterhagen, W.; Curtis, J. Validation and time step determination of discrete element modeling of flexible fibers. Powder Technol. 2013, 249, 386–395. [Google Scholar] [CrossRef]
- Dai, E.; Wan, H.; Jian, B.; Hu, G. The Effect of Different Structures and Particles with Different Viscosity on the Performance of Double Screw Conveyors. Mach. Des. Manuf. 2020, 3, 118–122. [Google Scholar]
- Liu, C.; Chen, S.; Jang, C. Modelling water infiltration in cracked paddy field soil. Hydrol. Process. 2004, 18, 2503–2513. [Google Scholar] [CrossRef]
- Gallacher, D.; Roth, G.; McBratney, A. Interactive soil moisture interface of multi-depth change over time. Comput. Electron. Agric. 2023, 204, 107508. [Google Scholar] [CrossRef]
- Manuwa, S. Performance evaluation of tillage tines operating under different depths in a sandy clay loam soil. Soil Tillage Res. 2009, 103, 399–405. [Google Scholar] [CrossRef]
- Hoseinian, S.; Hemmat, A.; Esehaghbeygi, A.; Shahgoli, G.; Baghbanan, A. Development of a dual sideway-share subsurface tillage implement: Part 1. Modeling tool interaction with soil using DEM. Soil Tillage Res. 2022, 215, 105201. [Google Scholar] [CrossRef]
- Guo, L.; Fang, Q.; Li, M.; Wang, Z.; Wang, C.; Zhang, L. Parameter Calibration for Discrete Element Simulation of Red Clay Soils in Sloping Cropland in Central Yunnan. Trans. Chin. Soc. Agric. Mach. 2024, 55, 185–285. [Google Scholar]
- Zhao, Y.; Li, S.; Xie, Y.; Zhao, W.; Chen, Z.; Zhang, Y. Calibration of Yunnan Red Soil Simulation Parameters Based on Discrete Element Method. J. Shenyang Agric. Univ. 2024, 55, 465–473. [Google Scholar]
- Chen, Y.; Munkholm, L.; Nyord, T. A discrete element model for soil–sweep interaction in three different soils. Soil Tillage Res. 2013, 126, 34–41. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Yang, L.; Cui, T.; Jing, H.; Zhong, X. Modeling the interaction of soil and a vibrating subsoiler using the discrete element method. Comput. Electron. Agric. 2020, 174, 105518. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Liu, D.; Xie, F.; Ashwehmbom, L.; Zhang, Z. Calibration of discrete element parameters and experimental verification for modelling subsurface soils. Biosyst. Eng. 2021, 212, 215–227. [Google Scholar] [CrossRef]
- Zhou, L.; Lan, Y.; Yu, J.; Wang, Y.; Yan, D.; Sun, K. Validation and calibration of soil parameters based on EEPA contact model. Comput. Part. Mech. 2023, 10, 1295–1307. [Google Scholar] [CrossRef]
- Yan, X.; Wang, C.; Li, M.; Fu, S.; Wei, L.; Zhang, P. Design and experiment on the chisel-shape deep-shovel in red loam. J. Agric. Mech. Res. 2019, 41, 135–142. [Google Scholar]
Parameter Name | Normal Bond Stiffness | Tangential Bond Stiffness | Critical Normal Stress | Critical Tangential Stress | JKR Surface Energy |
---|---|---|---|---|---|
Symbol | Sn | St | σmax | τmax | Ki |
Moisture Content/% | 20.51% | 22.39% | 24.53% | 26.28% | 28.04% |
---|---|---|---|---|---|
Maximum loads/N | 498.66 | 478.56 | 458.03 | 418.33 | 383.72 |
Normal critical stresses/kPa | 797.86 | 765.70 | 732.85 | 669.33 | 654.11 |
Parameter | Unit | Value | |
---|---|---|---|
Soil density | kg·m−3 | 1850 | |
Soil Poisson’s ratio | 0.38 | ||
Soil elasticity modulus | Pa | 2 × 107 | |
Steel density | kg·m−3 | 7865 | |
Steel Poisson’s ratio | 0.3 | ||
Steel elasticity modulus | Pa | 2.05 × 1011 | |
Soil–soil coefficient of restitution | 0.40 | ||
Soil–soil coefficient of static friction | 0.75 | ||
Soil–soil coefficient of rolling friction | 0.07 | ||
Soil–steel coefficient of restitution | 0.38 | ||
Soil–steel coefficient of static friction | 0.60 | ||
Soil–steel coefficient of rolling friction | 0.24 | ||
Particle size distribution | Clay (<0.002 mm) | % | 47.53 ± 1.36 |
Powder (0.002~0.02 mm) | 28.21 ± 1.89 | ||
Sand (0.02~2.0 mm) | 24.26 ± 1.57 |
Level | Normal Bond Stiffness Sn × 107/(N·m−3) | Tangential Bond Stiffness St × 107/(N·m−3) | Surface Energy Ki/(J·m−2) |
---|---|---|---|
−1 | 6.0 | 6.0 | 15 |
0 | 8.0 | 8.0 | 25 |
1 | 10.0 | 10.0 | 35 |
No. | Sn × 107/(N·m−3) | Ki/(J·m−2) | St × 107/(N·m−3) | Maximum Axial Compressive Load/(N) |
---|---|---|---|---|
1 | 0 | 0 | 0 | 453.62 |
2 | 0 | 0 | 0 | 450.65 |
3 | 0 | 0 | 0 | 451.02 |
4 | 0 | 0 | 0 | 409.85 |
5 | 0 | 0 | 0 | 425.97 |
6 | 0 | 1 | 1 | 459.88 |
7 | 0 | −1 | 1 | 357.14 |
8 | 0 | 1 | −1 | 450.22 |
9 | 0 | −1 | −1 | 458.79 |
10 | 1 | 0 | 1 | 466.33 |
11 | −1 | 0 | 1 | 456.36 |
12 | 1 | 0 | −1 | 452.16 |
13 | −1 | 0 | −1 | 472.44 |
14 | 1 | 1 | 0 | 438.79 |
15 | −1 | 1 | 0 | 471.21 |
16 | 1 | −1 | 0 | 367.41 |
17 | −1 | −1 | 0 | 415.25 |
Variance Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 23,934.79 | 9 | 23,934.79 | 8.47 | 0.0051 |
A | 2706.64 | 1 | 2706.64 | 8.62 | 0.0219 |
B | 6815.87 | 1 | 6815.87 | 21.70 | 0.0023 |
C | 2397.09 | 1 | 2397.09 | 7.63 | 0.0280 |
AB | 2.92 | 1 | 2.92 | 0.0093 | 0.9258 |
AC | 2248.18 | 1 | 2248.18 | 7.16 | 0.0318 |
BC | 3097.48 | 1 | 3097.48 | 9.86 | 0.0164 |
A2 | 1245.86 | 1 | 1245.86 | 3.97 | 0.0867 |
B2 | 3604.46 | 1 | 3604.46 | 11.47 | 0.0116 |
C2 | 2139.92 | 1 | 2139.92 | 6.81 | 0.0349 |
Residual | 2198.81 | 7 | 314.12 | ||
Lack of Fit | 688.39 | 3 | 229.46 | 0.6077 | 0.6443 |
Pure Error | 1510.42 | 4 | 377.61 | ||
Cor Total | 26,133.60 | 16 |
Moisture Content | Sn × 107 /(N·m−3) | St × 107 /(N·m−3) | σmax /kPa | τmax /kPa | Ki /(J·m−2) | δi /N | δj /N | Δδ /% |
---|---|---|---|---|---|---|---|---|
20.51% | 6.02 | 6.74 | 797.86 | 797.86 | 28.15 | 498.66 | 522.32 | 4.53 |
22.39% | 7.69 | 7.45 | 765.70 | 765.70 | 29.96 | 478.56 | 495.20 | 3.36 |
24.53% | 9.31 | 9.16 | 732.85 | 732.85 | 32.26 | 458.03 | 472.44 | 3.05 |
26.28% | 9.87 | 9.69 | 669.33 | 669.33 | 34.16 | 418.33 | 432.70 | 3.32 |
28.04% | 10.02 | 9.85 | 654.11 | 654.11 | 35.97 | 383.72 | 415.28 | 7.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, C.; Liu, W.; Deng, Y.; Wang, Y.; Chen, P.; Yan, B. Calibration of DEM Parameters and Microscopic Deformation Characteristics During Compression Process of Lateritic Soil with Different Moisture Contents. Agriculture 2025, 15, 1548. https://doi.org/10.3390/agriculture15141548
Ji C, Liu W, Deng Y, Wang Y, Chen P, Yan B. Calibration of DEM Parameters and Microscopic Deformation Characteristics During Compression Process of Lateritic Soil with Different Moisture Contents. Agriculture. 2025; 15(14):1548. https://doi.org/10.3390/agriculture15141548
Chicago/Turabian StyleJi, Chao, Wanru Liu, Yiguo Deng, Yeqin Wang, Peimin Chen, and Bo Yan. 2025. "Calibration of DEM Parameters and Microscopic Deformation Characteristics During Compression Process of Lateritic Soil with Different Moisture Contents" Agriculture 15, no. 14: 1548. https://doi.org/10.3390/agriculture15141548
APA StyleJi, C., Liu, W., Deng, Y., Wang, Y., Chen, P., & Yan, B. (2025). Calibration of DEM Parameters and Microscopic Deformation Characteristics During Compression Process of Lateritic Soil with Different Moisture Contents. Agriculture, 15(14), 1548. https://doi.org/10.3390/agriculture15141548