Exploring the Impact of Species Participation Levels on the Performance of Dominant Plant Identification Models in the Sericite–Artemisia Desert Grassland by Using Deep Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Hyperspectral Image Acquisition
2.3. Data Processing
2.4. Feature Band Selection
2.5. Establishment of Recognition Model
2.6. Accuracy Verification
3. Results
3.1. Spectral Characteristics Analysis
3.2. Feature Band Selection in Different Participation Levels
3.2.1. Calculation of Band Standard Deviation
3.2.2. Band Correlation Analysis
3.2.3. Optimum Index Factor Value Calculation
3.3. Model Evaluation
3.3.1. Evaluation of Desert Grassland Identification Model
3.3.2. Evaluation of Desert Grassland Major Identification Objects Models
4. Discussion
4.1. The Influence of Species Participation on Spectral Characteristics
4.2. Selection of Characteristic Bands
4.3. The Influence of Species Participation on the Accuracy of Identification Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ajamian, C.; Chang, H.C.; Tomkins, K.; Farebrother, W.; Heim, R.; Rahman, S. Identifying invasive weed species in alpine vegetation communities based on spectral profiles. Geomatics 2021, 1, 177–191. [Google Scholar] [CrossRef]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote sensing of grassland production and management—A review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Ainiwaer, M.; Ding, J.L.; Kasim, N. Deep learning-based rapid recognition of oasis-desert ecotone plant communities using UAV low-altitude remote-sensing data. Environ. Earth Sci. 2020, 79, 216. [Google Scholar] [CrossRef]
- Olariu, H.G.; Malambo, L.; Popescu, S.C.; Virgil, C.; Wilcox, B.P. Woody plant encroachment: Evaluating methodologies for semiarid woody species classification from drone images. Remote Sens. 2022, 14, 1665. [Google Scholar] [CrossRef]
- Pan, B.; Liu, C.H.; Su, B.F.; Ju, Y.L.; Fan, X.C.; Zhang, Y.; Sun, L.; Fang, Y.L.; Jiang, J.F. Research on species identification of wild grape leaves based on deep learning. Sci. Hortic. 2024, 327, 112821. [Google Scholar] [CrossRef]
- Salehi, B.; Mireei, S.A.; Jafari, M.; Hemmat, A.; Majidi, M.M. Integrating in-field Vis-NIR leaf spectroscopy and deep learning feature extraction for growth-stage dependent and independent genotyping of wheat plants. Biosyst. Eng. 2024, 238, 188–199. [Google Scholar] [CrossRef]
- Sawarkar, A.D.; Shrimankar, D.D.; Ali, S.; Agrahari, A.; Singh, L. Bamboo plant classification using deep transfer learning with a majority multiclass voting algorithm. Appl. Sci. 2024, 14, 1023. [Google Scholar] [CrossRef]
- Zhang, P.F.; Seabloom, E.W.; Foo, J.; MacDougall, A.S.; Harpole, W.S.; Adler, P.B.; Hautier, Y.; Eisenhauer, N.; Spohn, M.; Bakker, J.D.; et al. Dominant species predict plant richness and biomass in global grasslands. Nat. Ecol. Evol. 2025, 9, 924–936. [Google Scholar] [CrossRef] [PubMed]
- Frank, T.; Smith, A.; Houston, B.; Lindsay, E.; Guo, X. Differentiation of six grassland/forage types in three Canadian ecoregions based on spectral characteristics. Remote Sens. 2022, 14, 2121. [Google Scholar] [CrossRef]
- Wei, D.; Liu, K.; Xiao, C.C.; Sun, W.W.; Liu, W.D.; Huang, X.Z.; Feng, C.Y. A systematic classification method for grassland community division using China’s ZY1-02D hyperspectral observations. Remote Sens. 2022, 14, 3751. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.B.; Dang, D.L.; Dou, H.S.; Xuan, X.J.; Liu, S.Y.; Li, M.Y.; Gong, J.R. A new method for grassland degradation monitoring by vegetation species composition using hyperspectral remote sensing. Ecol. Indic. 2020, 114, 106310. [Google Scholar] [CrossRef]
- Liu, X.M.; Wang, H.C.; Cao, Y.W.; Yang, Y.T.; Sun, X.T.; Sun, K.; Li, Y.; Zhao, J.Y.; Pei, Z.Y. Comprehensive growth index monitoring of desert steppe grassland vegetation based on UAV hyperspectral. Front. Plant Sci. 2023, 13, 1050999. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.L.; Bi, Y.G.; Du, J.M.; Zhang, T.; Gao, X.C.; Jin, E. The unmanned aerial vehicle (UAV)-based hyperspectral classification of desert grassland plants in Inner Mongolia, China. Appl. Sci. 2023, 13, 12245. [Google Scholar] [CrossRef]
- Jin, G.L.; Zhu, J.Z.; Liu, H.L.; Tang, S.M.; Wang, C.H. Study on Physiology/Ecology Adaptation of Main Plant in Degraded Seriphidium transiliense Desert Rangeland. Acta Agrestia Sin. 2011, 19, 26–30. [Google Scholar]
- Tian, M.; Sun, Z.J.; Li, P.Y.; Wang, Y. Effects of Warming on Seed Germination and Its Diversity in Soil Seed Bank of Artemisia Desert Grassland. Acta Agrestia Sin. 2020, 28, 141–148. [Google Scholar] [CrossRef]
- Liu, W.H.; Han, W.Q.; Jin, G.L.; Gong, K.; Ma, J. Classification of major species in the sericite–Artemisia desert grassland using hyperspectral images and spectral feature identification. Peer J. 2024, 12, e17663. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Wang, H.N.; Liu, W.H.; Jin, G.L.; Gong, K.; Han, W.Q.; Yue, Y.H.; Wu, X.E.; Ma, J. Response of spectral reflectance and quantitative characteristics inversion accuracy to the change in coverage of Seriphidium transiliense. Pratacult. Sci. 2023, 40, 2775–2786. [Google Scholar] [CrossRef]
- Li, W.; Su, T.T.; Shen, Y.; Ma, H.B.; Zhou, Y.; Lu, Q.; Wang, G.H.; Liu, Z.; Li, J.P. Effects of warming seasonal rotational grazing on plant communities’ structure and diversity in desert steppe. Ecol. Evol. 2023, 13, e9748. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Tang, Y.H.; Li, Z.Y. Wood species recognition with microscopic hyperspectral imaging andcomposite kernel svm. Spectrosc. Spectr. Anal. 2019, 39, 3776–3782. [Google Scholar]
- Yang, H.Y.; Du, J.M.; Wang, Y.; Zhang, Y.B.; Zhang, X.P.; Kang, Y.C. Classification method of grassland species based on unmanned aerial vehicle remote sensing and convolutional neural network. Trans. Chin. Soc. Agric. Mach. 2019, 50, 188–195. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef]
- Yang, S.M.; Cui, Z.; Li, M.Q.; Li, J.H.; Gao, D.H.; Ma, F.L.; Wang, Y.T. A grapevine trunks and intra-plant weeds segmentation method based on improved Deeplabv3 Plus. Comput. Electron. Agric. 2024, 227, 109568. [Google Scholar] [CrossRef]
- Qi, X.K.; Dong, J.S.; Lan, Y.B.; Zhu, H. Method for identifying litchi picking position based on YOLOv5 and PSPNet. Remote Sens. 2022, 14, 2004. [Google Scholar] [CrossRef]
- Bhatti, M.A.; Syam, M.S.; Chen, H.; Hu, Y.; Keung, L.W.; Zeeshan, Z.; Ali, A.Y.; Sarhan, N. Utilizing convolutional neural networks (CNN) and UNet architecture for precise crop and weed segmentation in agricultural imagery: A deep learning approach. Big Data Res. 2024, 36, 100465. [Google Scholar] [CrossRef]
- Li, H.K.; Wang, L.J.; Xiao, S.S. Random forest classification of land use in hilly and mountaineous areas of southern China using multi-source remote sensing data. Trans. Chin. Soc. Agric. Eng. 2021, 37, 244–251. [Google Scholar] [CrossRef]
- Buma, W.; Abelev, A.; Merrick, T. Vegetation spectra as an integrated measure to explain underlying soil characteristics: A review of recent advances. Front. Environ. Sci. 2024, 12, 1430818. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Sun, Y.H.; Lu, X.M.; Zhao, X.Z.; Yang, L.; Sun, Z.Y.; Bai, Y.F. Hyperspectral retrieval of leaf physiological traits and their links to ecosystem productivity in grassland monocultures. Ecol. Indic. 2021, 122, 107267. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, D.W.; Li, S.Z.; Tang, K.; Yu, H.L.; Yan, R.R.; Wang, X.; Xin, X.P. Comparative analysis of feature importance algorithms for grassland aboveground biomass and nutrient prediction using hyperspectral data. Agriculture 2024, 14, 389. [Google Scholar] [CrossRef]
- Yang, P.Q. Exploring the interrelated effects of soil background, canopy structure and sun-observer geometry on canopy photochemical reflectance index. Remote Sens. Environ. 2022, 279, 113133. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef]
- Mutanga, O.; Masenyama, A.; Sibanda, M. Spectral saturation in the remote sensing of high-density vegetation traits: A systematic review of progress, challenges, and prospects. ISPRS J. Photogramm. Remote Sens. 2023, 198, 297–309. [Google Scholar] [CrossRef]
- Dusseux, P.; Guyet, T.; Pattier, P.; Barbier, V.; Nicolas, H. Monitoring of grassland productivity using Sentinel-2 remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102843. [Google Scholar] [CrossRef]
- Zhu, X.F.; Li, Q.F.; Guo, C.H. Evaluation of the monitoring capability of various vegetation indices and mainstream satellite band settings for grassland drought. Ecol. Inform. 2024, 82, 102717. [Google Scholar] [CrossRef]
- Bazzo, C.O.G.; Kamali, B.; Vianna, D.S.M.; Behrend, D.; Hueging, H.; Schleip, I.; Mosebach, P.; Haub, A.; Behrendt, A.; Gaiser, T. Integration of UAV-sensed features using machine learning methods to assess species richness in wet grassland ecosystems. Ecol. Inform. 2024, 83, 102813. [Google Scholar] [CrossRef]
- Liu, H.N.; Wang, H.; Li, X.B.; Qu, T.F.; Zhang, Y.; Lu, Y.T.; Yang, Y.L.; Liu, J.H.; Zhao, X.L.; Su, J.R.; et al. Identification of constructive species and degraded plant species in the temperate typical grassland of Inner Mongolia based on hyperspectral data. Agriculture 2023, 13, 399. [Google Scholar] [CrossRef]
- Liu, M.; Fu, B.L.; Xie, S.Y.; He, H.C.; Lan, F.W.; Li, Y.Y.; Lou, P.Q.; Fan, D.L. Comparison of multi-source satellite images for classifying marsh vegetation using DeepLabV3 Plus deep learning algorithm. Ecol. Indic. 2021, 125, 107562. [Google Scholar] [CrossRef]
- Qiao, Y.C.; Hu, Y.H.; Zheng, Z.Z.; Qu, Z.H.; Wang, C.; Guo, T.F.; Hou, J.C. A diameter measurement method of red jujubes trunk based on improved PSPNet. Agriculture 2022, 12, 1140. [Google Scholar] [CrossRef]
- Yue, B.L.; Jin, Y.; Wu, S.R.; Tan, J.Y.; Chen, Y.X.; Zhong, H.; Chen, G.P.; Deng, Y.B. Research on SPAD Inversion of Rice Leaves at a Field Scale Based on Machine Vision and Leaf Segmentation Techniques. Agriculture 2025, 15, 1270. [Google Scholar] [CrossRef]
- Ronay, I.; Kizel, F.; Lati, R. The effect of spectral mixtures on weed species classification. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2022, 3, 477–484. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Liu, T.H.; Wang, F.Z.; Shi, H.X.; Wang, H.; Hasi, B.; Gao, F.Y.; Liu, C.Q.; Li, H. Shufflenetv2UNet: An improved neural network model for grassland sample coverage extraction. Grass Forage Sci. 2024, 79, 516–529. [Google Scholar] [CrossRef]
- Guo, X.Q.; Ge, Y.J.; Liu, F.Q.; Yang, J.J. Identification of maize and wheat seedlings and weeds based on deep learning. Front. Earth Sci. 2023, 11, 1146558. [Google Scholar] [CrossRef]
- Kong, Z.J.; Zhou, D.M.; Nie, R.C.; Wang, C.C. A study on image quality evaluation based on masking effect. J. Yunnan Univ. Nat. Sci. Ed. 2021, 43, 1096–1106. [Google Scholar]
- Juwono, F.H.; Wong, W.K.; Verma, S.; Shekhawat, N.; Lease, B.A.; Apriono, C. Machine learning for weed–plant discrimination in agriculture 5.0: An in-depth review. Artif. Intell. Agric. 2023, 10, 13–25. [Google Scholar] [CrossRef]
- Wang, H.L.; Liu, Q.; Gui, D.W.; Liu, Y.F.; Feng, X.L.; Qu, J.; Zhao, J.P.; Wei, G.H. Automatedly identify dryland threatened species at large scale by using deep learning. Sci. Total Environ. 2024, 917, 170375. [Google Scholar] [CrossRef] [PubMed]
Participation Level | Value | S. transiliense Image | C. arenarius Image |
---|---|---|---|
Low | 0.0–0.3 | 51 | 16 |
Medium | 0.3–0.6 | 29 | 33 |
High | 0.6–1.0 | 20 | 121 |
Total | 100 | 170 |
Classification | Low | Medium | High | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S. transiliense | C. arenarius | S. transiliense | C. arenarius | S. transiliense | C. arenarius | |||||||
Band | SD | Band | SD | Band | SD | Band | SD | Band | SD | Band | SD | |
Blue (B) | 499.69 | 0.038 | 499.69 | 0.049 | 499.69 | 0.039 | 499.69 | 0.038 | 499.69 | 0.038 | 499.69 | 0.036 |
Green (G) | 556.60 | 0.050 | 567.07 | 0.061 | 556.60 | 0.050 | 556.60 | 0.054 | 559.22 | 0.048 | 561.83 | 0.047 |
Red (R) | 698.17 | 0.046 | 698.17 | 0.060 | 698.17 | 0.050 | 603.98 | 0.049 | 698.17 | 0.045 | 698.17 | 0.047 |
Red edge (RE) | 772.71 | 0.152 | 778.30 | 0.143 | 772.71 | 0.147 | 772.71 | 0.152 | 775.50 | 0.127 | 772.71 | 0.132 |
Near-infrared (N) | 958.87 | 0.153 | 997.24 | 0.155 | 964.75 | 0.156 | 964.75 | 0.158 | 997.24 | 0.146 | 958.87 | 0.128 |
Model | Participation Level | PA (%) | UA (%) | ||||
---|---|---|---|---|---|---|---|
S. transiliense | C. arenarius | Bare Land | S. transiliense | C. arenarius | Bare Land | ||
DeepLabv3p | Low | 55.86 | 92.25 | 95.98 | 89.50 | 88.73 | 95.25 |
Medium | 80.83 | 93.46 | 97.16 | 93.18 | 87.65 | 97.30 | |
High | 91.61 | 89.36 | 99.22 | 96.83 | 89.98 | 98.44 | |
PSPNet | Low | 50.46 | 88.81 | 94.76 | 92.17 | 85.72 | 93.44 |
Medium | 79.42 | 86.92 | 95.74 | 88.07 | 84.04 | 95.50 | |
High | 90.91 | 84.08 | 98.00 | 91.16 | 82.90 | 98.04 | |
UNet | Low | 73.72 | 95.64 | 98.19 | 82.92 | 95.35 | 97.61 |
Medium | 86.32 | 94.68 | 98.46 | 92.33 | 93.61 | 98.04 | |
High | 92.09 | 96.87 | 99.14 | 97.94 | 85.63 | 99.05 |
Model | Participation Level | PA (%) | UA (%) | ||||
---|---|---|---|---|---|---|---|
S. transiliense | C. arenarius | Bare Land | S. transiliense | C. arenarius | Bare Land | ||
DeepLabv3p | Low | 93.14 | 91.67 | 99.01 | 94.97 | 83.66 | 99.13 |
Medium | 76.37 | 83.74 | 96.94 | 90.92 | 81.65 | 95.62 | |
High | 39.91 | 88.68 | 96.27 | 91.76 | 87.58 | 94.18 | |
PSPNet | Low | 88.34 | 79.06 | 98.50 | 91.47 | 79.23 | 98.11 |
Medium | 79.54 | 86.57 | 97.04 | 91.73 | 82.26 | 96.37 | |
High | 41.34 | 88.04 | 94.50 | 89.27 | 83.35 | 94.08 | |
UNet | Low | 91.34 | 88.36 | 99.28 | 95.94 | 87.75 | 98.77 |
Medium | 84.35 | 92.27 | 97.79 | 93.10 | 86.19 | 97.79 | |
High | 45.43 | 91.16 | 96.76 | 84.00 | 89.23 | 95.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Jin, G.; Han, W.; Chen, M.; Li, W.; Li, C.; Du, W. Exploring the Impact of Species Participation Levels on the Performance of Dominant Plant Identification Models in the Sericite–Artemisia Desert Grassland by Using Deep Learning. Agriculture 2025, 15, 1547. https://doi.org/10.3390/agriculture15141547
Liu W, Jin G, Han W, Chen M, Li W, Li C, Du W. Exploring the Impact of Species Participation Levels on the Performance of Dominant Plant Identification Models in the Sericite–Artemisia Desert Grassland by Using Deep Learning. Agriculture. 2025; 15(14):1547. https://doi.org/10.3390/agriculture15141547
Chicago/Turabian StyleLiu, Wenhao, Guili Jin, Wanqiang Han, Mengtian Chen, Wenxiong Li, Chao Li, and Wenlin Du. 2025. "Exploring the Impact of Species Participation Levels on the Performance of Dominant Plant Identification Models in the Sericite–Artemisia Desert Grassland by Using Deep Learning" Agriculture 15, no. 14: 1547. https://doi.org/10.3390/agriculture15141547
APA StyleLiu, W., Jin, G., Han, W., Chen, M., Li, W., Li, C., & Du, W. (2025). Exploring the Impact of Species Participation Levels on the Performance of Dominant Plant Identification Models in the Sericite–Artemisia Desert Grassland by Using Deep Learning. Agriculture, 15(14), 1547. https://doi.org/10.3390/agriculture15141547