The Fusion of Focused Spectral and Image Texture Features: A New Exploration of the Nondestructive Detection of Degeneration Degree in Pleurotus geesteranus
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Spectral Acquisition and Pretreatment
2.3. Chemometrics and Data Analysis
2.4. Feature Selection
2.5. Image Texture Feature Extraction
2.6. Graph Fusion Classification Model
2.7. Classification Model
2.8. Evaluation Indicators
3. Results
3.1. Determination of Degradation Degree of P. geesteranus
3.2. Spectra of P. geesteranus Samples
3.3. Feature Wavelength Extraction
3.4. Image Feature Extraction at Characteristic Wavelengths
3.5. Graph Fusion Classification Model Building
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farimani, F.G.; Farsi, M. Strain Degeneration in White Button Mushroom (Agaricus bisporus) Using Amplified Fragment Length Polymorphism. Jentashapir J. Cell. Mol. Biol. 2021, 12, e121638. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, W.; Wang, Y.; Yun, J.; Zhang, Y.; Zhao, F. Exogenous MnSO4 Improves Productivity of Degenerated Volvariella volvacea by Regulating Antioxidant Activity. J. Fungi 2024, 10, 825. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Chen, J.; Lin, J.; Yan, J.; Yang, S. Research Progress on Degeneration Mechanisms and Conservation Methods of Edible Fungus Strains. J. Fungal Res. 2024, 22, 1–9. [Google Scholar] [CrossRef]
- Ismail, N.; Malik, O.A. Real-time visual inspection system for grading fruits using computer vision and deep learning techniques. Inf. Process. Agric. 2022, 9, 24–37. [Google Scholar] [CrossRef]
- Kondoyanni, M.; Loukatos, D.; Templalexis, C.; Lentzou, D.; Xanthopoulos, G.; Arvanitis, K.G. Computer Vision in Monitoring Fruit Browning: Neural Networks vs. Stochastic Modelling. Sensors 2025, 25, 2482. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, M.; Cefola, M.; Pace, B.; Attolico, G.; Colelli, G. Computer vision system based on conventional imaging for non-destructively evaluating quality attributes in fresh and packaged fruit and vegetables. Postharvest Biol. Technol. 2023, 200, 112332. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, D.; Yang, L.; Cui, T.; He, X.; Wu, D.; Dong, J.; Li, C.; Xing, S. Design and experiment of non-destructive testing system for moisture content of in-situ maize ear kernels based on VIS-NIR. J. Food Compos. Anal. 2024, 133, 106369. [Google Scholar] [CrossRef]
- Yang, M.-D.; Hsu, Y.-C.; Tseng, W.-C.; Tseng, H.-H.; Lai, M.-H. Precision assessment of rice grain moisture content using UAV multispectral imagery and machine learning. Comput. Electron. Agric. 2025, 230, 109813. [Google Scholar] [CrossRef]
- Tan, A.; Su, H.; Zhao, Y.; Zhao, J.; Mu, H.; Wang, H. Development of Raman and NIR spectral feature fusion based on MDS-CNN for detection on adulteration of camel milk powder. J. Food Compos. Anal. 2025, 146, 107959. [Google Scholar] [CrossRef]
- Girmatsion, M.; Tang, X.; Zhang, Q.; Li, P. Progress in machine learning-supported electronic nose and hyperspectral imaging technologies for food safety assessment: A review. Food Res. Int. 2025, 209, 116285. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, G.; Zheng, H.; Liu, Y.; Yang, S.; Khan, I.H.; Hussain, S.; Liu, J.; Weize, W.; Chen, M.; Cheng, T.; et al. Leveraging machine learning to discriminate wheat scab infection levels through hyperspectral reflectance and feature selection methods. Eur. J. Agron. 2024, 161, 127372. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Saha, D.; Manickavasagan, A. Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review. Curr. Res. Food Sci. 2021, 4, 28–44. [Google Scholar] [CrossRef] [PubMed]
- Wieme, J.; Mollazade, K.; Malounas, I.; Zude-Sasse, M.; Zhao, M.; Gowen, A.; Argyropoulos, D.; Fountas, S.; Van Beek, J. Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms: A review. Biosyst. Eng. 2022, 222, 156–176. [Google Scholar] [CrossRef]
- Liu, Y.; Long, Y.; Liu, H.; Lan, Y.; Long, T.; Kuang, R.; Wang, Y.; Zhao, J. Polysaccharide prediction in Ganoderma lucidum fruiting body by hyperspectral imaging. Food Chem. X 2022, 13, 100199. [Google Scholar] [CrossRef]
- Xiao, K.; Liu, Q.; Wang, L.; Zhang, B.; Zhang, W.; Yang, W.; Hu, Q.; Pei, F. Prediction of soluble solid content of Agaricus bisporus during ultrasound-assisted osmotic dehydration based on hyperspectral imaging. LWT 2020, 122, 109030. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, H.; Xu, J.; Li, Y.; Hu, J.; Tian, S. Quality grading method for Pleurotus eryngii during postharvest storage based on hyperspectral imaging and multiple quality indicators. Food Control 2024, 166, 110763. [Google Scholar] [CrossRef]
- Pu, H.; Yu, J.; Liu, Z.; Paliwal, J.; Sun, D.-W. Evaluation of the effects of vacuum cooling on moisture contents, colour and texture of mushroom (Agaricus bisporus) using hyperspectral imaging method. Microchem. J. 2023, 190, 108653. [Google Scholar] [CrossRef]
- Banu, K.S.; Lerma, M.; Ahmed, S.U.; Gardea-Torresdey, J.L. Hyperspectral microscopy-applications of hyperspectral imaging techniques in different fields of science: A review of recent advances. Appl. Spectrosc. Rev. 2024, 59, 935–958. [Google Scholar] [CrossRef]
- Park, B.; Shin, T.-S.; Cho, J.-S.; Lim, J.-H.; Park, K.-J. Characterizing hyperspectral microscope imagery for classification of blueberry firmness with deep learning methods. Agronomy 2021, 12, 85. [Google Scholar] [CrossRef]
- Wu, L.; Jiang, Q.; Zhang, Y.; Du, M.; Ma, L.; Ma, Y. Peroxidase activity in tomato leaf cells under salt stress based on micro-hyperspectral imaging technique. Horticulturae 2022, 8, 813. [Google Scholar] [CrossRef]
- Wei, X.; Liu, S.; Xie, C.; Fang, W.; Deng, C.; Wen, Z.; Ye, D.; Jie, D. Nondestructive detection of Pleurotus geesteranus strain degradation based on micro-hyperspectral imaging and machine learning. Front. Plant Sci. 2023, 14, 1260625. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Z.; Yang, X.; He, Y. Boosting the generalization ability of Vis-NIR-spectroscopy-based regression models through dimension reduction and transfer learning. Comput. Electron. Agric. 2021, 186, 106157. [Google Scholar] [CrossRef]
- Barra, I.; Briak, H.; Kebede, F. The application of statistical preprocessing on spectral data does not always guarantee the improvement of the predictive quality of multivariate models: Case of soil spectroscopy applied to Moroccan soils. Vib. Spectrosc. 2022, 121, 103409. [Google Scholar] [CrossRef]
- Schafer, R.W. What Is a Savitzky-Golay Filter? [Lecture Notes]. IEEE Signal Process. Mag. 2011, 28, 111–117. [Google Scholar] [CrossRef]
- Mishra, P.; Verkleij, T.; Klont, R. Improved prediction of minced pork meat chemical properties with near-infrared spectroscopy by a fusion of scatter-correction techniques. Infrared Phys. Technol. 2021, 113, 103643. [Google Scholar] [CrossRef]
- Karstang, T.V.; Manne, R. Optimized scaling: A novel approach to linear calibration with closed data sets. Chemom. Intell. Lab. Syst. 1992, 14, 165–173. [Google Scholar] [CrossRef]
- Kim, E.; Park, J.-J.; Lee, G.; Cho, J.-S.; Park, S.-K.; Yun, D.-Y.; Park, K.-J.; Lim, J.-H. Innovative strategies for protein content determination in dried laver (Porphyra spp.): Evaluation of preprocessing methods and machine learning algorithms through short-wave infrared imaging. Food Chem. X 2024, 23, 101763. [Google Scholar] [CrossRef] [PubMed]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Yan, C. A review on spectral data preprocessing techniques for machine learning and quantitative analysis. iScience 2025, 28, 112759. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cheng, T.; Guo, W.; Xu, X.; Qiao, H.; Xie, Y.; Ma, X. Leaf area index estimation model for UAV image hyperspectral data based on wavelength variable selection and machine learning methods. Plant Methods 2021, 17, 49. [Google Scholar] [CrossRef] [PubMed]
- Kamruzzaman, M.; Kalita, D.; Ahmed, M.T.; ElMasry, G.; Makino, Y. Effect of variable selection algorithms on model performance for predicting moisture content in biological materials using spectral data. Anal. Chim. Acta 2022, 1202, 339390. [Google Scholar] [CrossRef] [PubMed]
- Milanez, K.D.T.M.; Araújo Nóbrega, T.C.; Silva Nascimento, D.; Galvão, R.K.H.; Pontes, M.J.C. Selection of robust variables for transfer of classification models employing the successive projections algorithm. Anal. Chim. Acta 2017, 984, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Araújo, M.C.U.; Saldanha, T.C.B.; Galvão, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. Syst. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Ye, R.; Chen, Y.; Guo, Y.; Duan, Q.; Li, D.; Liu, C. NIR hyperspectral imaging technology combined with multivariate methods to identify shrimp freshness. Appl. Sci. 2020, 22, 5498. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, X. Quantitative analysis of near infrared spectroscopic data based on dual-band transformation and competitive adaptive reweighted sampling. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 285, 121924. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Xu, L.; Huang, P.; Luo, X.; Wang, P.; Kang, Z. Reliable identification of oolong tea species: Nondestructive testing classification based on fluorescence hyperspectral technology and machine learning. Agriculture 2021, 11, 1106. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, K.; Liu, Y.; Du, H.; Wang, D.; Liu, S.; Liu, S.; Li, J.; Zhao, L. A simplified hyperspectral identification system based on mathematical Transformation: An example of Cordyceps sinensis geographical origins. Microchem. J. 2024, 205, 111191. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Lee, M.; Lee, D.U.; Choi, J.H.; Lee, M.-A.; Min, S.G.; Park, S.H. Non-destructive monitoring of qualitative properties of salted cabbage using hyperspectral image analysis. LWT 2024, 203, 116329. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Nyasulu, C.; Diattara, A.; Traore, A.; Ba, C.; Diedhiou, P.M.; Sy, Y.; Raki, H.; Peluffo-Ordóñez, D.H. A comparative study of Machine Learning-based classification of Tomato fungal diseases: Application of GLCM texture features. Heliyon 2023, 9, e21697. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Mumtaz, R.; Shafi, U.; Zaidi, S.M.H. Gray level co-occurrence matrix (GLCM) texture based crop classification using low altitude remote sensing platforms. PeerJ Comput. Sci. 2021, 7, e536. [Google Scholar] [CrossRef] [PubMed]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 2007; SMC-3, 610–621. [Google Scholar] [CrossRef]
- Tang, X.; Yang, Y.; Huang, L.; Qiu, L. The application of texture feature analysis of rectus femoris based on local binary pattern (LBP) combined with gray-level co-occurrence matrix (GLCM) in sarcopenia. J. Ultrasound Med. 2022, 41, 2169–2179. [Google Scholar] [CrossRef] [PubMed]
- Ojala, T.; Pietikäinen, M.; Harwood, D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 1996, 29, 51–59. [Google Scholar] [CrossRef]
- Adeel, A.; Khan, M.A.; Sharif, M.; Azam, F.; Shah, J.H.; Umer, T.; Wan, S. Diagnosis and recognition of grape leaf diseases: An automated system based on a novel saliency approach and canonical correlation analysis based multiple features fusion. Sustain. Comput. Inform. Syst. 2019, 24, 100349. [Google Scholar] [CrossRef]
- Zhuang, X.; Yang, Z.; Cordes, D. A technical review of canonical correlation analysis for neuroscience applications. Hum. Brain Mapp. 2020, 41, 3807–3833. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-T.; Smallwood, J.; Mourao-Miranda, J.; Xia, C.H.; Satterthwaite, T.D.; Bassett, D.S.; Bzdok, D. Finding the needle in a high-dimensional haystack: Canonical correlation analysis for neuroscientists. NeuroImage 2020, 216, 116745. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, L.; Huang, H. Sparse additive discriminant canonical correlation analysis for multiple features fusion. Neurocomputing 2021, 463, 185–197. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Halder, R.K.; Uddin, M.N.; Uddin, M.A.; Aryal, S.; Khraisat, A. Enhancing K-nearest neighbor algorithm: A comprehensive review and performance analysis of modifications. J. Big Data 2024, 11, 113. [Google Scholar] [CrossRef]
- Boateng, E.Y.; Otoo, J.; Abaye, D.A. Basic tenets of classification algorithms K-nearest-neighbor, support vector machine, random forest and neural network: A review. J. Data Anal. Inf. Process. 2020, 8, 341–357. [Google Scholar] [CrossRef]
- Derrac, J.; Chiclana, F.; García, S.; Herrera, F. An interval valued k-nearest neighbors classifier. In Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT-15), Gijón, Spain, 30 June–3 July 2015; pp. 378–384. [Google Scholar] [CrossRef]
- Ameslek, O.; Zahir, H.; Latifi, H.; Bachaoui, E.M. Combining OBIA, CNN, and UAV imagery for automated detection and mapping of individual olive trees. Smart Agric. Technol. 2024, 9, 100546. [Google Scholar] [CrossRef]
- Yang, J.; Xu, J.; Zhang, X.; Wu, C.; Lin, T.; Ying, Y. Deep learning for vibrational spectral analysis: Recent progress and a practical guide. Anal. Chim. Acta 2019, 1081, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Blanco, M.; Coello, J.; Iturriaga, H.; Maspoch, S.; Pages, J. NIR calibration in non-linear systems: Different PLS approaches and artificial neural networks. Chemom. Intell. Lab. Syst. 2000, 50, 75–82. [Google Scholar] [CrossRef]
- Lu, J.; Tan, L.; Jiang, H. Review on convolutional neural network (CNN) applied to plant leaf disease classification. Agriculture 2021, 11, 707. [Google Scholar] [CrossRef]
- Trivedi, N.K.; Gautam, V.; Anand, A.; Aljahdali, H.M.; Villar, S.G.; Anand, D.; Goyal, N.; Kadry, S. Early detection and classification of tomato leaf disease using high-performance deep neural network. Sensors 2021, 21, 7987. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hao, Z.; Lei, H. Survey of convolutional neural network. J. Comput. Appl. 2016, 36, 6999–7019. [Google Scholar] [CrossRef]
- Li, M.; Wang, Z.; Cheng, T.; Zhu, Y.; Li, J.; Quan, L.; Song, Y. Phenotyping terminal heat stress tolerance in wheat using UAV multispectral imagery to monitor leaf stay-greenness. Smart Agric. Technol. 2025, 11, 100996. [Google Scholar] [CrossRef]
- Tian, T.; Yao, L.; Fan, D.; Li, K.; Li, C. Physiological and biochemical characteristics of degenerate mycelium of Flammulina filiformis. Microbiol. China 2021, 10, 3603–3611. [Google Scholar] [CrossRef]
- Peuna, A.; Thevenot, J.; Saarakkala, S.; Nieminen, M.; Lammentausta, E. Machine learning classification on texture analyzed T2 maps of osteoarthritic cartilage: Oulu knee osteoarthritis study. Osteoarthr. Cartil. 2021, 29, 859–869. [Google Scholar] [CrossRef] [PubMed]
Strain Name | Extracellular Enzyme Activity (U/L) | ||
---|---|---|---|
Laccase | Carboxymethyl Cellulase | Xylanase | |
CLASS 0 | 116.74 a | 947.75 a | 1278.90 a |
CLASS 1 | 120.34 b | 686.60 b | 803.48 b |
CLASS 2 | 93.98 c | 479.90 c | 564.05 c |
CLASS 3 | 78.68 d | 350.18 d | 458.20 d |
Classification Model | Preprocessing Methods | Accuracy Rate (%) | Kappa | ||
---|---|---|---|---|---|
Training Set | Test Set | Overall | |||
SVM | NONE | 84.2 | 79.2 | 82.9 | 0.79 |
SG | 84.7 | 80.0 | 83.5 | 0.79 | |
MSC | 86.7 | 80.0 | 85.0 | 0.80 | |
SNV | 89.2 | 78.3 | 86.5 | 0.82 | |
KNN | NONE | 75.0 | 70.0 | 73.8 | 0.65 |
SG | 75.3 | 71.7 | 74.4 | 0.66 | |
MSC | 75.6 | 72.5 | 74.8 | 0.66 | |
SNV | 78.3 | 73.3 | 77.1 | 0.69 | |
CNN | NONE | 87.2 | 80.0 | 85.4 | 0.81 |
SG | 87.8 | 84.2 | 86.9 | 0.82 | |
MSC | 88.1 | 85.8 | 87.5 | 0.83 | |
SNV | 89.7 | 85.0 | 88.5 | 0.85 |
Data Type | Classification Model | Accuracy Rate (%) | Kappa | ||
---|---|---|---|---|---|
Training Set | Test Set | Overall | |||
Spectrum | NONE-CNN | 89.7 | 85.0 | 88.5 | 0.85 |
SPA-CNN | 90.1 | 87.5 | 89.6 | 0.86 | |
CARS-CNN | 93.1 | 92.5 | 92.9 | 0.91 | |
PCA-CNN | 93.3 | 89.2 | 92.3 | 0.90 | |
Image | NONE-CNN | 88.9 | 85.0 | 87.9 | 0.84 |
GLCM-CNN | 90.6 | 85.8 | 89.4 | 0.86 | |
LBP-CNN | 91.1 | 89.2 | 90.6 | 0.87 | |
Spectrum + image | CARS + LBP-CNN | 96.9 | 91.7 | 95.6 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Shang, J.; Cai, Y.; Liu, S.; Liao, Z.; Pang, J.; He, Y.; Wei, X. The Fusion of Focused Spectral and Image Texture Features: A New Exploration of the Nondestructive Detection of Degeneration Degree in Pleurotus geesteranus. Agriculture 2025, 15, 1546. https://doi.org/10.3390/agriculture15141546
Jiang Y, Shang J, Cai Y, Liu S, Liao Z, Pang J, He Y, Wei X. The Fusion of Focused Spectral and Image Texture Features: A New Exploration of the Nondestructive Detection of Degeneration Degree in Pleurotus geesteranus. Agriculture. 2025; 15(14):1546. https://doi.org/10.3390/agriculture15141546
Chicago/Turabian StyleJiang, Yifan, Jin Shang, Yueyue Cai, Shiyang Liu, Ziqin Liao, Jie Pang, Yong He, and Xuan Wei. 2025. "The Fusion of Focused Spectral and Image Texture Features: A New Exploration of the Nondestructive Detection of Degeneration Degree in Pleurotus geesteranus" Agriculture 15, no. 14: 1546. https://doi.org/10.3390/agriculture15141546
APA StyleJiang, Y., Shang, J., Cai, Y., Liu, S., Liao, Z., Pang, J., He, Y., & Wei, X. (2025). The Fusion of Focused Spectral and Image Texture Features: A New Exploration of the Nondestructive Detection of Degeneration Degree in Pleurotus geesteranus. Agriculture, 15(14), 1546. https://doi.org/10.3390/agriculture15141546