Research Progress on Agricultural Equipments for Precision Planting and Harvesting
Conflicts of Interest
References
- Chang, C.-L.; Chung, S.-C.; Fu, W.-L.; Huang, C.-C. Artificial intelligence approaches to predict growth, harvest day, and quality of lettuce (Lactuca sativa L.) in a IoT-enabled greenhouse system. Biosyst. Eng. 2021, 212, 77–105. [Google Scholar] [CrossRef]
- Bettucci, F.; Sozzi, M.; Benetti, M.; Sartori, L. A data-driven approach to agricultural machinery working states analysis during ploughing operations. Smart Agric. Technol. 2024, 8, 100511. [Google Scholar] [CrossRef]
- Bi, J.; Liu, Y. Research on Agricultural Machinery Control System Based on Adaptive Control. In Proceedings of the 2023 Asia-Europe Conference on Electronics, Data Processing and Informatics (ACEDPI), Prague, Czech Republic, 17–19 April 2023; pp. 45–49. [Google Scholar]
- Ali, J.; Song, H.H.; Roh, B.-H. An SDN-Based Framework for E2E QoS Guarantee in Internet of Things Devices. IEEE Internet Things J. 2025, 12, 605–622. [Google Scholar] [CrossRef]
- Zhai, W.; Mo, G.; Xiao, Y.; Xiong, X.; Wu, C.; Zhang, X.; Xu, Z.; Pan, J. GAN-BiLSTM network for field-road classification on imbalanced GNSS recordings. Comput. Electron. Agric. 2024, 216, 108457. [Google Scholar] [CrossRef]
- Dusadeerungsikul, P.O.; Nof, S.Y. Precision agriculture with AI-based responsive monitoring algorithm. Int. J. Prod. Econ. 2024, 271, 109204. [Google Scholar] [CrossRef]
- de la Parte, M.S.E.; Martínez-Ortega, J.-F.; Díaz, V.H.; Martínez, N.L. Big Data and precision agriculture: A novel spatio-temporal semantic IoT data management framework for improved interoperability. J. Big Data 2023, 10, 52. [Google Scholar] [CrossRef]
- Lanucara, S.; Praticò, S.; Pioggia, G.; Di Fazio, S.; Modica, G. Web-based spatial decision support system for precision agriculture: A tool for delineating dynamic management unit zones (MUZs). Smart Agric. Technol. 2024, 8, 100444. [Google Scholar] [CrossRef]
- Virk, S.S.; Fulton, J.P.; Porter, W.M.; Pate, G.L. Row-crop planter performance to support variable-rate seeding of maize. Precis. Agric. 2019, 21, 603–619. [Google Scholar] [CrossRef]
- Du, Z.; Yang, L.; Zhang, D.; Cui, T.; He, X.; Xie, C.; Jiang, Y.; Zhang, X.; Mu, J.; Wang, H.; et al. Design and experiment of a soil organic matter sensor-based variable-rate seeding control system for maize. Comput. Electron. Agric. 2025, 229, 109752. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Zhang, X.; Cheng, X.; Wei, Z.; Ji, J.; Li, H.; Zhang, H.; Wang, M. Sowing depth control strategy based on the downforce measurement and control system of ‘T’-shaped furrow opener. Biosyst. Eng. 2024, 247, 97–108. [Google Scholar] [CrossRef]
- Wang, S.; Yi, S.; Zhao, B.; Li, Y.; Li, S.; Tao, G.; Mao, X.; Sun, W. Sowing Depth Monitoring System for High-Speed Precision Planters Based on Multi-Sensor Data Fusion. Sensors 2024, 24, 6331. [Google Scholar] [CrossRef] [PubMed]
- Koteish, K.; Harb, H.; Dbouk, M.; Zaki, C.; Jaoude, C.A. AGRO: A smart sensing and decision-making mechanism for real-time agriculture monitoring. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 7059–7069. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Ji, K.; Yu, Z.; Ma, Z.; Xu, L.; Niu, C. Development of a hydraulic variable-diameter threshing drum control system for combine harvester part I: Adaptive monitoring method. Biosyst. Eng. 2025, 250, 174–182. [Google Scholar] [CrossRef]
- Wang, J.; Sun, X.; Xu, Y.; Zhou, W.; Tang, H.; Wang, Q. Timeliness Harvesting Loss of Rice in Cold Region under Different Mechanical Harvesting Methods. Sustainability 2021, 13, 6345. [Google Scholar] [CrossRef]
- Yamada, W.; Francis, J.; Jewison, J.; Runge, T.; Digman, M. Pre-harvest loss quantification in grain crops. Comput. Electron. Agric. 2025, 236, 110405. [Google Scholar] [CrossRef]
- Knott, M.; Perez-Cruz, F.; Defraeye, T. Facilitated machine learning for image-based fruit quality assessment. J. Food Eng. 2023, 345, 111401. [Google Scholar] [CrossRef]
- Xu, J.; Lu, Y. Prototyping and evaluation of a novel machine vision system for real-time, automated quality grading of sweetpotatoes. Comput. Electron. Agric. 2024, 219, 108826. [Google Scholar] [CrossRef]
- Ahmad, U.; Nasirahmadi, A.; Hensel, O.; Marino, S. Technology and Data Fusion Methods to Enhance Site-Specific Crop Monitoring. Agronomy 2022, 12, 555. [Google Scholar] [CrossRef]
- Wu, B.; Fan, L.; Xu, B.; Yang, J.; Zhao, R.; Wang, Q.; Ai, X.; Zhao, H.; Yang, Z. UAV-based LiDAR and multispectral sensors fusion for cotton yield estimation: Plant height and leaf chlorophyll content as a bridge linking remote sensing data to yield. Ind. Crop. Prod. 2025, 230, 121110. [Google Scholar] [CrossRef]
- Fei, S.; Hassan, M.A.; Xiao, Y.; Su, X.; Chen, Z.; Cheng, Q.; Duan, F.; Chen, R.; Ma, Y. UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat. Precis. Agric. 2023, 24, 187–212. [Google Scholar] [CrossRef]
- Zhou, B.; Lastiri, D.R.; Wang, N.; Yang, Q.; van Henten, E. An opensource indoor climate and yield prediction model for Chinese solar green-houses. Biosyst. Eng. 2025, 250, 183–212. [Google Scholar] [CrossRef]
- Ji, W.; Zhang, J.; Xu, B.; Tang, C.; Zhao, D. Grasping mode analysis and adaptive impedance control for apple harvesting robotic grippers. Comput. Electron. Agric. 2021, 186, 106210. [Google Scholar] [CrossRef]
- Guo, J.; Yang, Z.; Karkee, M.; Jiang, Q.; Feng, X.; He, Y. Technology progress in mechanical harvest of fresh market strawberries. Comput. Electron. Agric. 2024, 226, 109468. [Google Scholar] [CrossRef]
- McDonald, G.; Minkey, D.; Desbiolles, J.; Clarke, G.; Allen, R.; Noack, S.; Schmitt, S.; Amougis, A. Responses to precision planting in canola and grain legume crops. Field Crop. Res. 2024, 315, 109451. [Google Scholar] [CrossRef]
- Bhandarkar, M.S.; Dewan, B.; Bansal, P. Real Time Crop Harvest Time Prediction Model Using Raspberry Pi and Image Pro-cessing. In Proceedings of the 2024 3rd International Conference for Advancement in Technology (ICONAT), Goa, India, 6–8 September 2024; pp. 1–6. [Google Scholar]
- Yuan, H.; Liang, Y.; Li, Z. Development of autonomous navigation system based on neural network and visual servoing for row-crop tracking in vegetable greenhouses. Smart Agric. Technol. 2024, 9, 100572. [Google Scholar] [CrossRef]
- Clarke, A.; Yates, D.; Blanchard, C.; Islam, Z.; Ford, R.; Rehman, S.-U.; Walsh, R.P. Integrating Climate and Satellite Data for Multi-Temporal Pre-Harvest Prediction of Head Rice Yield in Australia. Remote. Sens. 2024, 16, 1815. [Google Scholar] [CrossRef]
- Escribà-Gelonch, M.; Liang, S.; van Schalkwyk, P.; Fisk, I.; Long, N.V.D.; Hessel, V. Digital Twins in Agriculture: Orchestration and Applications. J. Agric. Food Chem. 2024, 72, 10737–10752. [Google Scholar] [CrossRef]
- Wang, H.; Yang, L.; Zhang, D.; Cui, T.; He, X.; Xiao, T.; Li, H.; Du, Z.; Xie, C. Comparative investigation and evaluation of electric-drive seed-metering systems across diverse speed ranges for enhanced high-precision seeding applications. Comput. Electron. Agric. 2024, 222, 108976. [Google Scholar] [CrossRef]
- Xing, S.; Yu, Y.; Cao, G.; Hu, J.; Zhu, L.; Liu, J.; Wu, Q.; Li, Q.; Xu, L. Design and Parametric Optimization Study of an Eccentric Parallelogram-Type Uprighting De-vice for Ratoon Rice Stubbles. Agriculture 2024, 14, 534. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, X.; Cao, G.; Gong, Y.; Chen, X. Design and Experiment of Electric Control System for Self-Propelled Chinese Herbal Medicine Materials Transplanter. Agriculture 2025, 15, 621. [Google Scholar] [CrossRef]
- Wang, L.; Chai, X.; Huang, J.; Hu, J.; Cui, Z. Efficient and Low-Loss Cleaning Method for Non-Uniform Distribution of Threshed Materials Based on Multi-Wing Curved Combination Air Screen in Computational Fluid Dynamics/Discrete Element Method Simulations. Agriculture 2024, 14, 895. [Google Scholar] [CrossRef]
- Yao, M.; Hu, J.; Liu, W.; Shi, J.; Jin, Y.; Lv, J.; Sun, Z.; Wang, C. Precise Servo-Control System of a Dual-Axis Positioning Tray Conveying Device for Automatic Transplanting Machine. Agriculture 2024, 14, 1431. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, Y.; Li, J.; Zhou, B.; Chen, J.; Zhang, M.; Cui, Y.; Tang, J. RT-DETR-Tea: A Multi-Species Tea Bud Detection Model for Unstructured Environments. Agriculture 2024, 14, 2256. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, H.; Feng, X. Research Progress on Agricultural Equipments for Precision Planting and Harvesting. Agriculture 2025, 15, 1513. https://doi.org/10.3390/agriculture15141513
Wang Y, Li H, Feng X. Research Progress on Agricultural Equipments for Precision Planting and Harvesting. Agriculture. 2025; 15(14):1513. https://doi.org/10.3390/agriculture15141513
Chicago/Turabian StyleWang, Yongjian, Hua Li, and Xuebin Feng. 2025. "Research Progress on Agricultural Equipments for Precision Planting and Harvesting" Agriculture 15, no. 14: 1513. https://doi.org/10.3390/agriculture15141513
APA StyleWang, Y., Li, H., & Feng, X. (2025). Research Progress on Agricultural Equipments for Precision Planting and Harvesting. Agriculture, 15(14), 1513. https://doi.org/10.3390/agriculture15141513