Spatiotemporal Evaluation of Soil Water Resources and Coupling of Crop Water Demand Under Dryland Conditions
Abstract
1. Introduction
- (1)
- Classify hydrological years (dry, normal, wet) in Shanxi Province using daily precipitation data (1963–2023) and theoretical frequency curves.
- (2)
- Quantify soil water resource availability under rainfed conditions across different hydrological years.
- (3)
- Analyze the reproductive-stage water demand and deficits of key crops (millet, soybean, sorghum, winter wheat, maize, and potato).
- (4)
- Propose irrigation optimization strategies tailored to hydrological variability and crop-specific needs.
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Collection
2.3. Evaluation of Coupling
3. Results
3.1. Trends in Precipitation in Shanxi Province
3.1.1. Frequency Analysis of Precipitation in Shanxi Province
3.1.2. Frequency Analysis of Annual Areal Precipitation in Shanxi Province
3.1.3. Characteristics of Typical Annual Areal Precipitation Distribution
3.2. Spatial and Temporal Distribution of Soil Water Resources
Temporal Distribution of Soil Water Resources
3.3. Soil Water Resources During the Reproductive Period of Crops
4. Discussion
4.1. Analysis of Precipitation Trends in Shanxi Province
4.2. Analysis of the Spatial and Temporal Distribution of Soil Water Resources
4.3. Soil Water Resources During the Reproductive Period of Crops
4.4. Limitations and Prospects
5. Conclusions
- (1)
- Precipitation Trends: From 1963 to 2023, Shanxi Province experienced a statistically significant decrease in annual precipitation, with over 70% of rainfall occurring between June and September. The dominance of light rainfall events (<5 mm/day) limits effective soil infiltration and increases drought vulnerability.
- (2)
- Soil Water Resource Patterns: Soil water availability showed strong spatial heterogeneity—higher in the southwest (e.g., Yuncheng) and lower in the central and eastern regions (e.g., Taiyuan, Yangquan). The average utilization rate of precipitation exceeded 80%, indicating efficient conversion of rainfall into plant-available water under current agronomic practices.
- (3)
- Crop-Specific Water Deficits: Reproductive-stage water deficits were most severe in dry years, especially for millet, soybean, and winter wheat. Even in wet years, elevated temperatures during flowering and grain-filling stages led to evapotranspiration-driven deficits. These findings emphasize the need for stage-specific irrigation scheduling, combining precipitation forecasting with thermal condition monitoring.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, C.-Y.; Singh, V.P. Review on regional water resources assessment models under stationary and changing climate. Water Resour. Manag. 2004, 18, 591–612. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Yin, M.; Wu, Y.; Danyal, A.; Guo, B. Effect of unsaturated soil water transport function linearization for mulched drip irrigation. Soil Tillage Res. 2024, 237, 105964. [Google Scholar] [CrossRef]
- Li, M.; Zhou, S.; Shen, S.; Wang, J.; Yang, Y.; Wu, Y.; Chen, F.; Lei, Y. Climate-smart irrigation strategy can mitigate agricultural water consumption while ensuring food security under a changing climate. Agric. Water Manag. 2024, 292, 108663. [Google Scholar] [CrossRef]
- Ding, B.; Zhang, J.; Zheng, P.; Li, Z.; Wang, Y.; Jia, G.; Yu, X. Water security assessment for effective water resource management based on multi-temporal blue and green water footprints. J. Hydrol. 2024, 632, 130761. [Google Scholar] [CrossRef]
- Xu, C.-Y.; Singh, V.P. A review on monthly water balance models for water resources investigations. Water Resour. Manag. 1998, 12, 20–50. [Google Scholar] [CrossRef]
- Achite, M.; Katipoğlu, O.M.; Javari, M.; Caloiero, T. Hybrid interpolation approach for estimating the spatial variation of annual precipitation in the Macta basin, Algeria. Theor. Appl. Climatol. 2024, 155, 1139–1166. [Google Scholar] [CrossRef]
- Sahu, R.T.; Verma, S.; Verma, M.K.; Ahmad, I. Characterizing spatiotemporal properties of precipitation in the middle Mahanadi subdivision, India during 1901–2017. Acta Geophys. 2024, 72, 1143–1158. [Google Scholar] [CrossRef]
- Yinhui, L.; Zilong, L. Surface precipitation calculation of Qingyang area based on Thiessen polygons method. J. Hebei Univ. Eng. Nat. Sci. Ed. 2012, 29, 64–67. [Google Scholar]
- Ly, S.; Charles, C.; Degre, A. Geostatistical interpolation of daily rainfall at catchment scale: The use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrol. Earth Syst. Sci. 2011, 15, 2259–2274. [Google Scholar] [CrossRef]
- Zai, S.; Feng, X.; Wu, F.; Li, L. Effect of time scales on probability of irrigation water requirement of farmland. Trans. Chin. Soc. Agric. Eng 2018, 34, 96–102. [Google Scholar] [CrossRef]
- Uttarwar, S.B.; Napoli, A.; Avesani, D.; Majone, B. Elevation-driven biases in seasonal weather forecasts: Insights from the Alpine region. Phys. Chem. Earth Parts A/B/C 2025, 139, 103957. [Google Scholar] [CrossRef]
- Zhang, W.; Furtado, K.; Wu, P.; Zhou, T.; Chadwick, R.; Marzin, C.; Rostron, J.; Sexton, D. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv. 2021, 7, eabf8021. [Google Scholar] [CrossRef]
- do Nascimento, T.V.M.; de Oliveira, R.P.; de Melo, M.T.C. Impacts of large-scale irrigation and climate change on groundwater quality and the hydrological cycle: A case study of the Alqueva irrigation scheme and the Gabros de Beja aquifer system. Sci. Total Environ. 2024, 907, 168151. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Z.; Liu, D.; Zhang, L.; Li, M.; Khan, M.I.; Li, T.; Cui, S. Optimization of agricultural planting structure in irrigation areas of Heilongjiang province considering the constraints of water resource system resilience. J. Clean. Prod. 2024, 434, 140329. [Google Scholar] [CrossRef]
- Zhu, X.; Miao, P.; Zhu, H.; Li, W.; Liang, X.; Wang, L.; Wang, L.; Chen, Z.; Zhou, J. Extreme precipitation accelerates nitrate leaching in the intensive agricultural region with thick unsaturated zones. Sci. Total Environ. 2024, 918, 170789. [Google Scholar] [CrossRef]
- Chen, C.; He, Q.; Li, Y. Downscaling and merging multiple satellite precipitation products and gauge observations using random forest with the incorporation of spatial autocorrelation. J. Hydrol. 2024, 632, 130919. [Google Scholar] [CrossRef]
- Bayat, B.; Nasseri, M.; Delmelle, E. Uncertainty-based rainfall network design using a fuzzy spatial interpolation method. Appl. Soft Comput. 2021, 106, 107296. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Y.; Wang, K.; Wang, G.; Wu, J.; Zhang, Y. Differences in soil water storage, consumption, and use efficiency of typical vegetation types and their responses to precipitation in the Loess Plateau, China. Sci. Total Environ. 2023, 869, 161710. [Google Scholar] [CrossRef]
- Shao, R.; Zhang, B.; He, X.; Su, T.; Li, Y.; Long, B.; Wang, X.; Yang, W.; He, C. Historical water storage changes over China’s Loess Plateau. Water Resour. Res. 2021, 57, e2020WR028661. [Google Scholar] [CrossRef]
- Pani, P.; Jia, L.; Menenti, M.; Hu, G.; Zheng, C.; Chen, Q.; Zeng, Y. Evaluating crop water requirements and actual crop water use with center pivot irrigation system in Inner Mongolia of China. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 4–8 May 2020; p. 12539. [Google Scholar]
- Zhi, Y.W. Soil water resources and afforestation in Loess Plateau. J. Nat. Resour. 2001, 16, 433–438. [Google Scholar]
- Li, Y.S. The properties of water cycle in soil and their effect on water cycle for land in the Loess region. Acta Ecol. Sin. 1983, 3, 91–101. [Google Scholar]
- Zhang, R.; Li, P.Z.; Wang, L. Relationship between soil moisture dynamics, crop growth and precipitation in rain-fed area of the Loess Tableland, China. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2019, 30, 359–369. [Google Scholar] [CrossRef]
- Xue, L.; Liu, Y.; Zhang, M.; Wang, S.; Li, J. Mutation Test on Rainfall and Runoff Time Series Based on Sample Entropy. J. Earth Sci. Environ. 2015, 37, 75–80. [Google Scholar]
- Du, J.; Xu, W.; Zhao, Z.; Chen, B.; He, F.; Shi, P. Trends of runoff and water level over the past thirty years in Xiang River basin. J. Basic Sci. Eng. 2010, 18, 369–378. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, J.; Huang, B.; Wang, X.; Yang, X. Analysis on annual soil moisture change and its effect on agricultural production during winter wheat growth period. Agric. Res. Arid. Areas 2008, 246–248+252. [Google Scholar]
- Zhang, R.; Cao, H.; Wang, Y.; Huang, C.; Tan, W. Spatial variability of soil moisture and its influence factors in watershed of gully region on the Loess Plateau. Res. Soil Water Conserv. 2012, 19, 52. [Google Scholar]
- Zhang, J.; Lan, Z.; Li, H.; Jaffar, M.T.; Li, X.; Cui, L.; Han, J. Coupling effects of soil organic carbon and moisture under different land use types, seasons and slope positions in the Loess Plateau. Catena 2023, 233, 107520. [Google Scholar] [CrossRef]
- Philip, R.J. Plant Water Relations: Some Physical Aspects. Ann. Rev. Plant Physiol. 1966, 17, 245–268. [Google Scholar] [CrossRef]
- Qu, T.; Li, Y.; Zhao, Q.; Yin, Y.; Wang, Y.; Li, F.; Zhang, W. Drone-Based Multispectral Remote Sensing Inversion for Typical Crop Soil Moisture under Dry Farming Conditions. Agriculture 2024, 14, 484. [Google Scholar] [CrossRef]
- Shaozhong, K. A Study of the Mathematics Model for the Computation and Prediction of Evapotranspiration form the Farmlands. J. Northwest Sci-Tech Univ. Agric. For. Nat. Sci. Ed. 1986, 90–101. [Google Scholar]
- Li, Y.; Qu, T.; Zhao, Q.; Wang, Y.; Deng, Z.; Zhang, W.; Zhang, X.; Sun, L.; Li, F. Comparative study on water use characteristics and productivity of soybean and maize intercropping system under dry farming conditions. INMATEH-Agric. Eng. 2023, 71. [Google Scholar] [CrossRef]
- Li, Y.; Qu, T.; Wang, Y.; Zhao, Q.; Jia, S.; Yin, Z.; Guo, Z.; Wang, G.; Li, F.; Zhang, W. UAV-Based Remote Sensing to Evaluate Daily Water Demand Characteristics of Maize: A Case Study from Yuci Lifang Organic Dry Farming Experimental Base in Jinzhong City, China. Agronomy 2024, 14, 729. [Google Scholar] [CrossRef]
- Carpenter, K.E.; Niem, V.H. FAO species identification guide for fishery purposes. The living marine resources of the western central Pacific. J. R. Geogr. Soc. Lond. 1998, 2003, 212–214. [Google Scholar]
- Cheng, W. Study on the model of the plain soil water resources quantity. J. Agric. Univ. Hebei 2008, 107–111. [Google Scholar]
- Xiu, Y.I.; Yong, L.X. Evaluation of regional soil water resources and its research development. Water Resour. Prot. 2007, 1–5. [Google Scholar]
- Chen, G.; Liu, B.; Song, X.; Liu, Q.; Li, K. Distribution Pattern of Rainstorm Statistical Parameters in Shandong Province and Its Factors. J. China Hydrol. 2010, 246–251. [Google Scholar]
- Liu, C.; Dou, Q. Method of evapotranspiration estimation in soil-plant-atmosphere continuum (SPAC). Adv. Water Sci. 1992, 3, 255–263. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Wallace, J. Evaporation from sparse crops—An energy combination theory. Q. J. R. Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, Z.; Li, W. Evaluation of utilization potential of soil water resource. Chin. J. Soil Sci. 2003, 34, 15–18. [Google Scholar] [CrossRef]
- Xia, Z.-Q.; Li, Q.-F. Study on soil water resource and its evaluating methodology. Adv. Water Sci. 2001, 12, 535–540. [Google Scholar] [CrossRef]
- Zhao, F.; Xu, Z. Long term trend and jump change for major climate processes over the upper Yellow River Basin. Acta Meteorol. Sin. 2006, 64, 246–255. [Google Scholar]
- Wu, Y.L.; Liu, W.P.; Ma, Y.L.; Ban, S. Study on characteristics of winter wheat water requirements in 45 years in Shanxi. J. Anhui Agric. Sci. 2009, 37, 7380–7383. [Google Scholar]
- Feng, R.; Lei, M.; Hou, Y.; Li, H.; Cheng, H.; Wang, H.; Liu, X. Precipitation variation and its effect on agricultural production in Shanxi during 1961–2010. Guizhou Agric. Sci. 2018, 139–142. [Google Scholar]
- Zhang, L.; Yamn, J.; Liu, L. Climate change and drought and flood disasters trend in Shanxi. J. Arid. Land Resour. Environ. 2013, 27, 120–125. [Google Scholar] [CrossRef]
- Zhang, Q.; Hui, X.; Zhang, Y. Analysis on Temporal and Spatial Variation of Rainfall in Shanxi Province in Recent 61 Years. Des. Water Resour. Hydroelectr. Eng. 2021, 40. [Google Scholar]
- Zhao, G.; Zhao, C.; Li, X.; Liu, X. Analysis on Climate Change in Shanxi Province in Recent 47 Years. Arid. Zone Res. 2006, 23, 500–503. [Google Scholar] [CrossRef]
- Chen, Q.; Kravchenko, Y.S.; Chen, Y.; Li, X.; Li, H.; Song, C.; Zhang, X. Seasonal variations of soil structures and hydraulic conductivities and their effects on soil and water conservation under no-tillage and reduced tillage. Acta Pedol. Sin. [CrossRef]
- Muzylo, A.; Llorens, P.; Valente, F.; Keizer, J.; Domingo, F.; Gash, J. A review of rainfall interception modelling. J. Hydrol. 2009, 370, 191–206. [Google Scholar] [CrossRef]
- Gu, H.; Feng, R.; Wang, H.; Gao, W.; Yan, G.; Guo, F. Change Trends of Temperature Variation over the 50 Years in Shanxi Province. J. Shanxi Agric. Sci. 2015, 43, 1160–1164. [Google Scholar]
- Ma, X.; Hu, X. A study on hydrological function of subtropical plantations of Cunninghamia lanceolata and Pinus massoniana. Entia Silvae Sin. 1993, 29, 199–206. [Google Scholar]
- Zhao, W.; Ji, X.; Jin, B.; Du, Z.; Zhang, J.; Jiao, D.; Yang, Q.; Zhao, L. Estimating rainfall interception loss of three dominant shrub species in an oasis–desert ecotone using in situ measurements and the revised Gash analytical model. J. Environ. Manag. 2023, 347, 119091. [Google Scholar] [CrossRef]
Crops | Parameters | Sowing Stage | Overwintering | Seedling Stage | Jointing Stage | Boot Stage | Catagen | Maturity | Fertility Cycle |
---|---|---|---|---|---|---|---|---|---|
Winter wheat | Growth period | 11.29–03.08 | 03.09–04.16 | 04.17–05.09 | 05.10–06.02 | - | 06.03–06.14 | 06.15–06.24 | 208 |
Kc | 0.48 | 0.82 | 1.00 | 1.16 | - | 0.87 | 0.50 | - | |
LAI | 3.30 | 3.30 | 4.60 | 3.50 | - | 2.50 | 2.50 | - | |
Summer corn | Growth period | 06.25–07.19 | - | 07.20–09.04 | 09.05–09.20 | - | 09.21–09.30 | 10.1–10.28 | 157 |
Kc | 0.85 | - | 1.05 | 0.95 | - | 0.6 | 0.86 | - | |
LAI | 2.50 | - | 2.50 | 4.00 | - | 4.00 | 3.30 | - | |
Growth period | 05.09–05.23 | - | 05.24–06.17 | 06.18–07.12 | - | 07.13–08.16 | 08.17–09.18 | 133 | |
Soybean | Kc | 0.40 | - | 0.40 | 1.15 | - | 1.15 | 0.50 | - |
LAI | 0.20 | - | 0.60 | 1.80 | - | 2.85 | 3.96 | - | |
Growth period | 05.09–05.15 | - | 05.16–06.09 | 06.10–07.03 | 07.04–07.28 | 07.29–08.14 | 08.15–09.04 | 120 | |
Millet | Kc | 0.30 | - | 0.30 | 1.00 | 1.00 | 1.00 | 0.30 | - |
LAI | 0.10 | - | 0.90 | 4.10 | 4.60 | 4.55 | 4.98 | - | |
Growth period | 05.09–05.23 | - | 05.24–06.22 | 06.23–07.27 | - | - | 07.28–08.19 | 103 | |
Sorghum | Kc | 0.30 | - | 1.05 | 1.05 | - | - | 0.55 | - |
LAI | 0.70 | - | 2.10 | 4.47 | - | - | 3.93 | - | |
Growth period | 05.09–07.07 | - | 07.08–07.22 | - | - | 07.23–08.21 | 08.22–10.05 | 150 | |
Potatoes | Kc | 0.50 | - | 0.50 | - | - | 1.15 | 0.75 | - |
LAI | 2.00 | - | 3.21 | - | - | 4.28 | 3.21 | - |
Year | Areal Precipitation (mm) | Year | Areal Precipitation (mm) | Year | Areal Precipitation (mm) | Year | Areal Precipitation (mm) |
---|---|---|---|---|---|---|---|
1963 | 886.05 | 1978 | 657.76 | 1994 | 620.26 | 2009 | 545.49 |
1964 | 1030.39 | 1979 | 602.21 | 1995 | 683.70 | 2010 | 523.71 |
1965 | 373.89 | 1980 | 583.00 | 1996 | 760.41 | 2011 | 594.48 |
1966 | 688.82 | 1981 | 613.46 | 1997 | 457.67 | 2012 | 583.87 |
1967 | 942.65 | 1982 | 659.30 | 1998 | 632.68 | 2013 | 579.60 |
1968 | 709.04 | 1983 | 679.91 | 1999 | 541.88 | 2014 | 547.58 |
1969 | 697.31 | 1984 | 662.92 | 2000 | 663.15 | 2015 | 513.78 |
1970 | 624.38 | 1985 | 730.06 | 2001 | 554.14 | 2016 | 648.66 |
1971 | 772.12 | 1986 | 501.22 | 2002 | 583.46 | 2017 | 569.93 |
1972 | 562.48 | 1987 | 623.41 | 2003 | 827.44 | 2018 | 532.75 |
1973 | 789.40 | 1988 | 719.06 | 2004 | 591.75 | 2019 | 461.44 |
1974 | 503.18 | 1989 | 571.52 | 2005 | 526.00 | 2020 | 553.80 |
1975 | 643.26 | 1990 | 708.52 | 2006 | 529.76 | 2021 | 763.88 |
1976 | 755.29 | 1991 | 599.82 | 2007 | 549.86 | 2022 | 649.46 |
1977 | 715.19 | 1992 | 673.23 | 2008 | 523.02 | 2023 | 562.36 |
Year | Average Areal Precipitation (mm) | Cv | Cs | Hydrographic Frequency (%) | Areal Precipitation (mm) |
---|---|---|---|---|---|
1963–2023 | 582.47 | 0.18 | 6Cv | 25 | 694.90 |
50 | 611.18 | ||||
75 | 546.42 |
Precipitation | Percentage of Dry Days in 2009 (%) | ||||||||||||
Sort/mm | January | February | March | April | May | June | July | August | September | October | November | December | Annual |
<5 | 100 | 100 | 57.9 | 100 | 23.8 | 65.9 | 25.8 | 24.4 | 35.2 | 44.6 | 18.4 | 100 | 89.01 |
5–10 | 0 | 0 | 42.1 | 0 | 30.3 | 34.1 | 16.7 | 25.5 | 0 | 16 | 18 | 0 | 4.61 |
10–25 | 0 | 0 | 0 | 0 | 45.9 | 0 | 35 | 50.1 | 64.8 | 39.4 | 63.6 | 0 | 6.03 |
>25 | 0 | 0 | 0 | 0 | 0 | 0 | 22.5 | 0 | 0 | 0 | 0 | 0 | 0.35 |
Precipitation | Percentage of normal days in 1981(%) | ||||||||||||
Sort/mm | January | February | March | April | May | June | July | August | September | October | November | December | Annual |
<5 | 100 | 100 | 46.4 | 57.5 | 64.7 | 35.2 | 19.7 | 14.8 | 69.2 | 64.5 | 64.3 | 100 | 88.70 |
5–10 | 0 | 0 | 0 | 0 | 35.3 | 20.9 | 25.6 | 36.3 | 30.8 | 35.5 | 35.7 | 0 | 6.78 |
10–25 | 0 | 0 | 53.6 | 42.5 | 0 | 43.9 | 37.9 | 30.9 | 0 | 0 | 0 | 0 | 3.87 |
>25 | 0 | 0 | 0 | 0 | 0 | 0 | 16.8 | 18 | 0 | 0 | 0 | 0 | 0.65 |
Precipitation | Percentage of wet days in 1969(%) | ||||||||||||
Sort/mm | January | February | March | April | May | June | July | August | September | October | November | December | Annual |
<5 | 100 | 100 | 72.5 | 26.4 | 41.4 | 53.7 | 15.6 | 24.8 | 17.9 | 30.5 | 100 | 100 | 86.25 |
5–10 | 0 | 0 | 27.5 | 20.8 | 35.4 | 46.3 | 39.7 | 25.2 | 7.6 | 14 | 0 | 0 | 7.19 |
10–25 | 0 | 0 | 0 | 16.2 | 23.2 | 0 | 44.7 | 50 | 74.5 | 55.5 | 0 | 0 | 6.25 |
>25 | 0 | 0 | 0 | 36.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.31 |
Typical Year | Soil Water Resources (Billion m3) | Soil Water Resource Coefficient |
---|---|---|
Dry year | 272.642 | 0.883 |
Normal year | 336.633 | 0.892 |
wet year | 358.746 | 0.894 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, K.; Liu, X.; Zhang, Z.; Gao, Z.; Wang, Q.; Wang, G.; Zhang, W. Spatiotemporal Evaluation of Soil Water Resources and Coupling of Crop Water Demand Under Dryland Conditions. Agriculture 2025, 15, 1442. https://doi.org/10.3390/agriculture15131442
Li Y, Li K, Liu X, Zhang Z, Gao Z, Wang Q, Wang G, Zhang W. Spatiotemporal Evaluation of Soil Water Resources and Coupling of Crop Water Demand Under Dryland Conditions. Agriculture. 2025; 15(13):1442. https://doi.org/10.3390/agriculture15131442
Chicago/Turabian StyleLi, Yaoyu, Kaixuan Li, Xifeng Liu, Zhimin Zhang, Zihao Gao, Qiang Wang, Guofang Wang, and Wuping Zhang. 2025. "Spatiotemporal Evaluation of Soil Water Resources and Coupling of Crop Water Demand Under Dryland Conditions" Agriculture 15, no. 13: 1442. https://doi.org/10.3390/agriculture15131442
APA StyleLi, Y., Li, K., Liu, X., Zhang, Z., Gao, Z., Wang, Q., Wang, G., & Zhang, W. (2025). Spatiotemporal Evaluation of Soil Water Resources and Coupling of Crop Water Demand Under Dryland Conditions. Agriculture, 15(13), 1442. https://doi.org/10.3390/agriculture15131442