Tree Clearing for Coffee Production Threatens the Tropical Cloud Montane Forests of the Dominican Republic and Haiti, with Implications for Soil Fertility
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Sites
- 12 soil profiles from Paraíso (Barahona; Dominican Republic; 18°5′29.81″ N, 71°06′38.93″ W; altitude >1100 m a.s.l.; annual precipitation 2200 mm; average temperature 26 °C);
- 12 soil profiles from Barahona (Dominican Republic; 18°5′39.76″ N, 71°16′49.22″ W; altitude >1200 m a.s.l.; annual precipitation 1900 mm; average temperature 25 °C);
- 12 soil profiles from Pic Macaya National Park (Département Sud, Haiti; 18°22′17″ N, 74°01′13″ W; altitude >1200 m a.s.l.).
2.2. Soil Sampling, Processing, and Analysis
2.3. Statistical Analyses
3. Results
3.1. Paired t-Tests: Comparison of Paired Samples of Each Unalterated TMFC Plots Versus the Close Altered Coffee Plots
- ○
- The TOC was higher in undisturbed plots of TMFCs than in cleared plots of TMFCs for coffee cultivation (p-value < 0.0001; paired t-test with 14 d.f.). The mean value of soil TOC (%) in undisturbed plots of TMFCs was 4.83 units higher than in cleared plots of TMFCs (95% CI interval from 0.28 to 0.64 units).
- ○
- The N was higher in undisturbed plots of TMFCs than in cleared plots of TMFCs for coffee cultivation (p-value < 0.001; paired t-test with 14 d.f.). The mean value of soil N (%) in undisturbed plots of TMFCs was 0.56 units higher than in cleared plots of TMFCs (95% CI interval from 0.17 to 0.45 units).
- ○
- The exchangeable K+ was higher in undisturbed plots of TMFCs than in cleared plots of TMFCs for coffee cultivation (p-value < 0.001; paired t-test with 14 d.f.). The mean value of soil exchangeable K+ (mg kg−1) in undisturbed plots of TMFCs was 139.09 units higher than in cleared plots of TMFCs (95% CI interval from 2.47 to 7.78 units).
- ○
- The exchangeable Mg2+ was higher in undisturbed plots of TMFCs than in cleared plots of TMFCs for coffee cultivation (p-value < 0.005; paired t-test with 14 d.f.). The mean value of soil exchangeable Mg2+ (mg kg−1) in undisturbed plots of TMFCs was 156.05 units higher than in cleared plots of TMFCs (95% CI interval from 1.96 to 8.49 units).
- ○
- The exchangeable Na+ was higher in undisturbed plots of TMFCs than in cleared plots of TMFCs for coffee cultivation (p-value < 0.002; paired t-test with 14 d.f.). The mean value of soil exchangeable Na+ (mg kg−1) in undisturbed plots of TMFCs was 33.03 units higher than in cleared plots of TMFCs (95% CI interval from 1.07 to 3.73 units).
- ○
- The available Cu was higher in undisturbed plots of TMFCs than in cleared plots of TMFCs for coffee cultivation (p-value < 0.002; paired t-test with 14 d.f.). The mean value of soil available Cu (mg kg−1) in undisturbed plots of TMFCs was 2.19 units higher than in cleared plots of TMFCs (95% CI interval from 0.14 to 0.82 units).
- ○
- The pseudo-total Ca was higher in undisturbed plots of TMFCs than in cleared plots of TMFCs for coffee cultivation (p-value < 0.03; paired t-test with 14 d.f.). The mean value of soil pseudo-total Ca (mg kg−1) in undisturbed plots of TMFCs was 1258.40 units higher than in cleared plots of TMFCs (95% CI interval from 0.14 to 1.42 units).
- ○
- The pseudo-total K was higher in undisturbed plots of TMFCs than in cleared plots of TMFCs for coffee cultivation (p-value < 0.02; paired t-test with 14 d.f.). The mean value of soil pseudo-total K (mg kg−1) in undisturbed plots of TMFCs was 239.01 units higher than in cleared plots of TMFCs (95% CI interval from 0.16 to 1.10 units).
- ○
- The pseudo-total Mn was higher in undisturbed plots of TMFCs than in cleared plots of TMFCs for coffee cultivation (p-value < 0.05; paired t-test with 14 d.f.). The mean value of soil pseudo-total Mn (mg kg−1) in undisturbed plots of TMFCs was 368.04 units higher than in cleared plots of TMFCs (95% CI interval from 0.03 to 2.29 units.
Location | Wood | UTM-E 1 | UTM-N 1 | Altitude 2 | Horizon (Code) | Depth | pH | TOC | N | P av. | Ca av. | Mg av. | K av. | Na av. | Fe av. | Mn av. | Zn av. | Cu av. | Al av. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cachote | Primary TMCF | 267009 | 2002778 | 1141.83 | Profile (1) | 32.83 | 4.62 | 5.73 | 0.64 | 20.97 ** | 1153.97 | 201.65 | 141.48 ** | 48.02 | 148.07 | 142.38 | 4.76 | 3.50 | 528.74 |
SD | 9.02 | 0.51 | 2.93 | 0.36 | 24.21 | 1027.12 | 112.04 | 68.27 | 29.03 | 101.26 | 216.60 | 2.66 | 3.62 | 465.56 | |||||
Coffee crop | Profile (2) | 35.00 | 4.56 | 3.12 | 0.24 | 78.74 ** | 480.53 | 56.66 | 43.19 ** | 16.51 | 72.74 | 9.89 | 2.50 | 0.57 | 34.81 | ||||
SD | 12.25 | 0.41 | 1.59 | 0.12 | 62.21 | 643.63 | 41.66 | 13.80 | 6.16 | 25.19 | 12.78 | 3.43 | 0.31 | 12.52 | |||||
Primary TMCF | Organic (1.1) | 7.00 | 4.37 | 9.36 | 1.20 * | 19.64 | 1798.09 | 350.05 | 263.93 ** | 79.76 | 94.83 | 170.34 | 5.15 | 3.17 | 592.40 | ||||
SD | 4.60 | 0.64 | 5.95 | 0.69 | 41.68 | 1528.30 | 191.35 | 147.27 | 57.59 | 52.24 | 227.16 | 5.82 | 3.20 | 590.53 | |||||
Coffee crop | Organic (2.1) | 10.00 | 4.26 | 4.50 | 0.33 * | 55.59 | 666.32 | 78.07 | 60.98 ** | 18.77 | 58.12 | 15.30 | 1.22 | 0.40 | 34.65 | ||||
SD | 0.00 | 0.27 | 2.22 | 0.13 | 33.27 | 865.00 | 54.38 | 18.46 | 5.64 | 42.90 | 21.80 | 0.86 | 0.27 | 26.01 | |||||
Primary TMCF | Mineral (1.2) | 17.50 | 4.82 | 3.20 | 0.26 | 18.74 | 689.37 | 88.18 | 53.87 | 23.35 | 170.02 | 94.10 | 3.78 | 3.60 | 539.17 | ||||
SD | 9.87 | 0.45 | 1.92 | 0.16 | 12.76 | 740.91 | 81.58 | 32.58 | 9.90 | 61.54 | 153.44 | 2.21 | 3.82 | 404.10 | |||||
Coffee crop | Mineral (2.2) | 20.00 | 4.65 | 2.02 | 0.16 | 107.49 | 314.15 | 37.92 | 29.03 | 14.88 | 76.42 | 4.60 | 3.85 | 0.65 | 37.32 | ||||
SD | 0.00 | 0.22 | 1.03 | 0.10 | 124.10 | 419.75 | 29.25 | 9.06 | 6.78 | 52.74 | 5.13 | 6.42 | 0.68 | 20.88 | |||||
Cachote | P pse. | Ca pse. | Mg pse. | K pse. | Na pse. | Fe pse. | Mn pse. | Zn pse. | Cu pse. | Al pse. | |||||||||
Primary TMCF | 267009 | 2002778 | 1141.83 | Profile (1) | 528.22 | 1660.23 | 821.34 | 530.52 | 97.97 | 3997.86 | 353.28 | 31.48 | 9.47 | 5677.57 | |||||
SD | 448.40 | 1426.61 | 912.14 | 364.61 | 41.39 | 4087.49 | 505.01 | 36.86 | 10.16 | 5792.43 | |||||||||
Coffee crop | Profile (2) | 164.09 | 726.58 | 552.27 | 389.13 | 70.98 | 7008.93 | 38.40 | 14.76 | 7.41 | 6999.72 | ||||||||
SD | 154.94 | 831.18 | 791.32 | 469.09 | 29.41 | 8191.94 | 49.78 | 14.49 | 11.27 | 9149.30 | |||||||||
Primary TMCF | Organic (1.1) | 753.92 | 2443.93 | 819.93 | 615.14 | 118.46 | 3330.20 | 317.99 | 35.50 | 9.94 | 5333.31 | ||||||||
SD | 492.19 | 1921.79 | 585.69 | 256.21 | 49.98 | 2075.94 | 411.51 | 38.30 | 8.74 | 3781.82 | |||||||||
Coffee crop | Organic (2.1) | 195.03 | 865.56 | 437.65 | 343.59 | 70.04 | 4695.48 | 32.33 | 13.01 | 5.81 | 5013.42 | ||||||||
SD | 164.24 | 1022.88 | 583.94 | 332.49 | 24.69 | 5330.71 | 42.84 | 9.89 | 7.37 | 6021.74 | |||||||||
Primary TMCF | Mineral (1.2) | 376.29 | 823.73 | 676.21 | 426.95 | 75.80 | 3475.71 | 330.13 | 25.15 | 7.48 | 5311.42 | ||||||||
SD | 488.51 | 812.04 | 951.70 | 439.09 | 44.26 | 4067.86 | 500.14 | 31.28 | 8.82 | 6181.78 | |||||||||
Coffee crop | Mineral (2.2) | 142.23 | 615.74 | 672.57 | 447.09 | 72.28 | 9407.55 | 44.79 | 16.96 | 9.09 | 9094.63 | ||||||||
SD | 145.26 | 684.54 | 1004.52 | 601.38 | 34.74 | 11,284.35 | 57.01 | 18.82 | 15.24 | 12,261.46 | |||||||||
Polo-Cortico | Primary TMCF | 265430 | 2003692 | 1276.67 | Profile (3) | 28.50 | 4.70 | 5.37 | 0.43 | 17.27 ** | 523.43 | 126.73 | 139.91 ** | 23.55 | 108.17 | 4.51 | 1.90 | 0.52 | 112.58 |
SD | 5.28 | 0.35 | 3.45 | 0.17 | 19.19 | 295.92 | 86.16 | 45.53 | 5.84 | 81.60 | 3.35 | 2.00 | 0.43 | 192.22 | |||||
Coffee crop | Profile (4) | 28.17 | 5.13 | 4.46 | 0.45 | 75.40 ** | 1135.20 | 163.37 | 90.52 ** | 22.93 | 197.09 | 73.37 | 11.37 | 1.75 | 430.47 | ||||
SD | 8.59 | 0.62 | 2.57 | 0.26 | 88.60 | 821.13 | 122.59 | 39.81 | 7.10 | 71.54 | 103.14 | 14.54 | 1.79 | 344.03 | |||||
Primary TMCF | Organic (3.1) | 6.83 | 4.22 | 11.83 | 0.91 * | 12.30 | 1101.77 | 273.95 | 291.57 ** | 41.50 | 56.52 | 3.11 | 2.63 | 0.37 | 24.42 | ||||
SD | 3.54 | 0.30 | 10.22 | 0.54 | 20.22 | 847.38 | 246.33 | 122.87 | 18.14 | 92.35 | 1.92 | 3.90 | 0.43 | 33.18 | |||||
Coffee crop | Organic (4.1) | 4.50 | 4.83 | 5.92 | 0.55 * | 24.99 | 1324.54 | 228.74 | 149.24 ** | 23.50 | 132.57 | 28.63 | 2.47 | 0.93 | 302.10 | ||||
SD | 0.84 | 0.64 | 3.41 | 0.31 | 31.32 | 1252.27 | 209.90 | 75.63 | 4.71 | 74.55 | 60.62 | 2.24 | 1.09 | 401.76 | |||||
Primary TMCF | Mineral (3.2) | 15.83 | 4.97 | 1.75 | 0.11 | 21.61 | 176.58 | 37.48 | 36.87 | 11.85 | 155.98 | 6.55 | 0.82 | 0.77 | 201.67 | ||||
SD | 4.92 | 0.79 | 1.79 | 0.09 | 26.27 | 137.46 | 29.47 | 24.87 | 4.80 | 98.13 | 6.92 | 0.92 | 1.10 | 353.22 | |||||
Coffee crop | Mineral (4.2) | 13.67 | 5.03 | 4.21 | 0.44 | 153.95 | 1131.88 | 156.63 | 80.10 | 23.10 | 297.97 | 97.58 | 21.92 | 2.33 | 607.75 | ||||
SD | 4.97 | 0.79 | 2.79 | 0.25 | 204.88 | 820.40 | 123.68 | 39.35 | 7.52 | 146.95 | 147.23 | 28.20 | 2.60 | 420.80 | |||||
Polo-Cortico | P pse. | Ca pse. | Mg pse. | K pse. | Na pse. | Fe pse. | Mn pse. | Zn pse. | Cu pse. | Al pse. | |||||||||
Primary TMCF | 265430 | 2003692 | 1276.67 | Profile (3) | 231.15 | 1073.70 | 196.03 | 241.67 | 51.10 | 928.94 | 114.33 | 7.83 | 3.04 | 1302.46 | |||||
SD | 153.88 | 845.52 | 126.86 | 77.91 | 10.39 | 233.48 | 68.86 | 2.70 | 2.98 | 620.55 | |||||||||
Coffee crop | Profile (4) | 992.12 | 1581.69 | 1442.71 | 836.12 | 128.59 | 25,533.36 | 1886.25 | 104.42 | 65.21 | 36,244.29 | ||||||||
SD | 1087.33 | 1124.65 | 1477.07 | 767.64 | 99.72 | 27,507.13 | 2291.55 | 109.86 | 70.15 | 39,776.13 | |||||||||
Primary TMCF | Organic (3.1) | 513.02 | 1709.71 | 416.72 | 454.55 | 67.43 | 1525.22 | 271.28 | 13.24 | 5.86 | 2209.83 | ||||||||
SD | 469.50 | 1563.54 | 371.28 | 151.74 | 24.07 | 654.52 | 202.46 | 6.26 | 6.83 | 1044.72 | |||||||||
Coffee crop | Organic (4.1) | 1045.25 | 2073.90 | 1508.66 | 896.34 | 133.92 | 25,095.52 | 1830.41 | 101.37 | 62.07 | 35,400.40 | ||||||||
SD | 1089.00 | 1787.35 | 1508.85 | 839.19 | 108.27 | 27,511.32 | 2119.88 | 110.04 | 68.30 | 40,389.68 | |||||||||
Primary TMCF | Mineral (3.2) | 53.30 | 1044.23 | 59.23 | 77.17 | 39.55 | 520.83 | 13.92 | 3.96 | 1.48 | 640.62 | ||||||||
SD | 59.31 | 1339.06 | 45.81 | 41.73 | 7.66 | 345.75 | 20.29 | 2.43 | 1.83 | 469.06 | |||||||||
Coffee crop | Mineral (4.2) | 893.36 | 1463.58 | 1379.93 | 806.76 | 121.91 | 25,653.24 | 1788.73 | 101.35 | 63.80 | 34,851.08 | ||||||||
SD | 962.54 | 789.34 | 1417.60 | 676.14 | 88.65 | 27,736.11 | 2208.53 | 107.09 | 68.88 | 37,300.50 |
Location | Wood | UTM-E 1 | UTM-N 1 | Altitude 2 | Horizon (Code) | Depth | pH | TOC | N | P av. | Ca av. | Mg av. | K av. | Na av. | Fe av. | Mn av. | Zn av. | Cu av. | Al av. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Macaya | Secondary TMCF | 597247 | 2031597 | 1282.17 | Profile (5) | 32.00 | 4.53 | 7.35 | 0.53 | 9.47 | 402.19 | 117.10 | 100.18 | 17.23 | 168.41 | 159.58 | 5.67 | 7.91 | 1224.66 |
SD | 7.77 | 0.24 | 2.25 | 0.16 | 10.30 | 181.13 | 60.52 | 32.00 | 5.91 | 47.29 | 168.96 | 6.20 | 3.63 | 344.06 | |||||
Coffee crop | Profile (6) | 27.00 | 4.95 | 7.72 | 0.53 | 10.50 | 1068.76 | 120.71 | 109.78 | 15.02 | 151.76 | 65.77 | 11.28 | 4.18 | 1109.34 | ||||
SD | 6.81 | 0.57 | 1.47 | 0.09 | 10.40 | 1243.75 | 20.95 | 21.36 | 2.61 | 33.25 | 29.22 | 4.25 | 1.79 | 366.62 | |||||
Secondary TMCF | Organic (5.1) | 3.67 | 4.59 | 12.58 | 0.86 | 16.95 | 922.54 | 222.96 | 191.02 | 21.44 | 219.87 | 258.67 | 10.05 | 7.77 | 953.05 | ||||
SD | 1.03 | 0.28 | 5.48 | 0.31 | 24.01 | 558.81 | 157.37 | 98.70 | 12.98 | 74.39 | 258.02 | 8.49 | 2.50 | 207.79 | |||||
Coffee crop | Organic (6.1) | 3.67 | 5.11 | 11.05 | 0.74 | 22.28 | 2149.80 | 227.82 | 172.67 | 18.65 | 171.50 | 127.83 | 19.97 | 4.45 | 891.38 | ||||
SD | 1.03 | 0.96 | 3.10 | 0.18 | 20.61 | 2467.41 | 57.34 | 38.80 | 3.06 | 64.57 | 51.82 | 9.85 | 2.04 | 429.91 | |||||
Secondary TMCF | Mineral (5.2) | 13.33 | 4.45 | 5.62 | 0.42 | 2.65 | 240.33 | 72.07 | 75.25 | 16.45 | 150.18 | 123.88 | 5.68 | 8.40 | 1298.37 | ||||
SD | 4.08 | 0.27 | 2.01 | 0.20 | 6.48 | 233.88 | 60.22 | 38.28 | 5.13 | 57.74 | 184.02 | 10.16 | 4.26 | 353.03 | |||||
Coffee crop | Mineral (6.2) | 19.17 | 4.79 | 5.18 | 0.36 | 0.00 | 97.25 | 30.82 | 59.25 | 12.02 | 129.43 | 8.95 | 4.45 | 4.07 | 1354.57 | ||||
SD | 5.85 | 0.19 | 1.26 | 0.13 | 0.00 | 20.93 | 8.05 | 18.09 | 3.49 | 10.80 | 1.58 | 2.70 | 1.74 | 497.24 | |||||
Macaya | P pse. | Ca pse. | Mg pse. | K pse. | Na pse. | Fe pse. | Mn pse. | Zn pse. | Cu pse. | Al pse. | |||||||||
Secondary TMCF | 597247 | 2031597 | 1282.17 | Profile (5) | 301.42 | 634.19 | 1358.80 | 411.32 | 112.81 | 99,553.75 | 292.93 | 31.23 | 136.23 | 85,072.22 | |||||
SD | 49.72 | 423.04 | 684.20 | 222.50 | 21.80 | 9855.36 | 144.72 | 7.22 | 40.56 | 17,277.23 | |||||||||
Coffee crop | Profile (6) | 885.28 | 3300.23 | 809.80 | 307.39 | 105.61 | 96,698.47 | 214.52 | 47.09 | 85.39 | 85,436.11 | ||||||||
SD | 816.32 | 6344.21 | 374.23 | 84.74 | 29.56 | 11,580.96 | 129.48 | 32.68 | 21.63 | 10,862.85 | |||||||||
Secondary TMCF | Organic (5.1) | 484.20 | 1430.24 | 1234.73 | 499.98 | 112.72 | 86,680.00 | 388.43 | 31.14 | 93.68 | 71,800.00 | ||||||||
SD | 135.97 | 1066.46 | 647.99 | 270.88 | 29.55 | 14,743.95 | 253.55 | 6.58 | 26.56 | 21,479.01 | |||||||||
Coffee crop | Organic (6.1) | 1421.58 | 6431.50 | 976.79 | 413.54 | 105.77 | 83,690.83 | 324.18 | 68.44 | 71.25 | 76,808.33 | ||||||||
SD | 1617.22 | 12,673.33 | 556.26 | 182.46 | 34.24 | 20,277.77 | 237.66 | 63.51 | 21.38 | 8038.87 | |||||||||
Secondary TMCF | Mineral (5.2) | 257.62 | 311.25 | 1373.40 | 423.73 | 116.83 | 105,702.50 | 273.47 | 30.79 | 146.70 | 89,875.00 | ||||||||
SD | 102.38 | 267.27 | 640.42 | 320.05 | 21.11 | 9479.56 | 164.69 | 7.15 | 59.14 | 18,788.13 | |||||||||
Coffee crop | Mineral (6.2) | 408.53 | 202.18 | 649.03 | 226.12 | 99.78 | 107,908.33 | 112.63 | 28.67 | 97.72 | 93,200.00 | ||||||||
SD | 76.83 | 62.08 | 343.16 | 59.51 | 22.41 | 17,962.96 | 25.99 | 7.22 | 34.87 | 15,538.66 |
- ○
- The available Cu was higher in undisturbed TMFCs plots than in cleared TMFCs plots used for coffee cultivation (p-value < 0.03; paired t-test with 14 d.f.). The mean value of soil available Cu (mg kg−1) in undisturbed TMFCs was 2.73 units higher than in cleared TMFCs (95% CI interval from 0.07 to 0.81 units);
- ○
- The available P was lower in undisturbed plots of TMFCs than in cleared plots of TMFCs for coffee cultivation (p-value < 0.05; paired t-test with 14 d.f.). The mean value of soil available P (mg kg−1) in cleared plots of TMFCs was 80.19 units higher than in undisturbed plots of TMFCs (95% CI interval from 0.05 to 6.91 units).
3.2. ANOVAs: Differences in the Coffee Agroforesty Management (Tree Clearing) Impact on the Primary TFMCs (Dominican Area) Versus Secondary TFMCs (Haitian Area)
- (1)
- (2)
- Similarly, a comparison of the entire soil profiles revealed that the available K levels in TMCF-1 were significantly higher than those in COFFEE-1 [ANOVA (log-transformed data): F3,36 = 6.15; p = 0.0020] (Table 1; LSD test post-hoc p = 0.0014);
- (3)
- (4)
- (5)
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMF | Arbuscular mycorrhizal fungi |
ANOVA | Analysis of variance |
a.s.l. | Above sea level |
CRM | Certified Reference Material |
ICP-OES | Inductively Coupled Plasma Optical Emission Spectrometry |
LSD | Least Significant Difference |
SD | Standard Deviation |
SOP | Standard Operating Procedure |
SQI | Soil Quality Index |
TOC | Total organic carbon |
TMCF | Tropical montane cloud forests |
References
- Scatena, F.N.; Bruijnzeel, L.A.; Bubb, P.; Das, S. Setting the stage. In Tropical Montane Cloud Forests: Science for Conservation and Management; Bruijnzeel, L.A., Scatena, F.N., Hamilton, L.S., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 38–63. [Google Scholar]
- Toledo-Aceves, T.; Meave, J.A.; González-Espinoza, M.; Ramírez-Marcial, N. Tropical montane cloud forest: Current threats and opportunities for their conservation and sustainable management in Mexico. J. Environ. Manag. 2009, 92, 974–981. [Google Scholar] [CrossRef] [PubMed]
- Ledo, A.; Condes, S.; Alberdi, I. Forest biodiversity assessment in Peruvian Andean Montane cloud forest. J. Mt. Sci. 2012, 9, 372–384. [Google Scholar] [CrossRef]
- Bubb, P.; May, I.; Miles, L.; Sayer, J. Cloud Forest Agenda; UNEP World Conservation Monitoring Centre: Cambridge, UK, 2004; p. 32. [Google Scholar]
- Leo, M. The importance of tropical montane cloud forest for preserving vertebrate endemism in Peru: The Rio Abiseo National Park as a case study. In Tropical Montane Cloud Forests; Hamilton, L.S., Juvik, J.O., Scatena, F.N., Eds.; Springer: New York, NY, USA, 1995; pp. 198–211. [Google Scholar]
- Long, A. Restricted-range and threatened bird species in tropical montane cloud forests. In Tropical Montane Cloud Forests; Hamilton, L.S., Juvik, J.O., Scatena, F.N., Eds.; Springer: New York, NY, USA, 1995; pp. 47–65. [Google Scholar]
- Salaman, P.; Donegan, T.M.; Mulligan, M. A new species of wood-wren (Troglodytidae: Henicorhina) from the western Andes of Colombia. Ornitol. Colomb. 2003, 1, 4–21. [Google Scholar] [CrossRef]
- Calvo-Alvarado, C.; Sánchez-Azofeifa, A.; Méndez, A. Conservation strategies for montane cloud forests in Costa Rica: The case of protected areas, payments for environmental services, and ecotourism. In Tropical Montane Cloud Forests: Science for Conservation and Management; Bruijnzeel, L.A., Scatena, F.N., Hamilton, L.S., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 686–690. [Google Scholar]
- Kappelle, M.; Brown, A.D. Bosques Nublados del Neotrópico; IMBIO: Heredia, Costa Rica, 2001; pp. 397–442. [Google Scholar]
- Beck, E.; Bendix, J.; Kottke, I.; Makeschin, F.; Mosandl, R. Gradients in a Tropical Mountain Ecosystem of Ecuador; Springer: Berlin, Germany, 2007; pp. 1–522. [Google Scholar]
- Bruijnzeel, L.A.; Kapelle, M.; Mulligan, M.; Scatena, F.N. Tropical montane cloud forests: State of knowledge and sustainability perspectives in a changing world. In Tropical Montane Cloud Forests: Science for Conservation and Management; Bruijnzeel, L.A., Scatena, F.N., Hamilton, L.S., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 691–737. [Google Scholar]
- Mulligan, M. Modeling the tropics-wide extent and distribution of cloud forest and cloud forest loss, with implications for conservation priority. In Tropical Montane Cloud Forests: Science for Conservation and Management; Bruijnzeel, L.A., Scatena, F.N., Hamilton, L.S., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 14–38. [Google Scholar]
- García, R.; Roersch, C. Política de manejo y utilización de los recursos florísticos en la República Dominicana. J. Ethnopharmacol. 1996, 51, 147–160. [Google Scholar] [CrossRef]
- Alexis, S. Estrategias de Desarrollo Sostenible en la Provincia y Cuenca Transfronteriza de Pedernales (República Dominicana-Haiti). Ph.D. Thesis, University of Alcalá, Alcalá de Henares, Spain, 2008. [Google Scholar]
- Alexis, S.; García-Montero, L.G.; Hernández, A.J.; García-Abril, A.; Pastor, J. Soil fertility and GIS raster models for tropical agroforestry planning in economically depressed and contaminated Caribbean areas (coffee and kidney bean plantations). Agrofor. Syst. 2010, 79, 381–391. [Google Scholar] [CrossRef]
- Pastor, J.; Alexis, S.; Vizcayno, C.; Hernández, A.J. Quantitative physical and chemical variables used to assess erosion and fertility loss in tropical Dominican and Haitian soils. Geophys. Res. Abstr. 2009, 11, 13717. [Google Scholar]
- Hernández, A.J.; Vizcayno, C.; Alexis, S.; Pastor, J. Parámetros cuantitativos para la evaluación de la susceptibilidad a la erosión de suelos tropicales dominicanos. Rev. Ciênc. Agrár. 2010, 33, 128–138. [Google Scholar]
- Núñez, P.A.; Pimentel, A.; Almonte, I.; Sotomayar-Ramírez, D.; Martínez, N.; Pérez, A.; Céspedes, C.M. Soil fertility evaluation of coffee (Coffea spp.) production systems and management recommendations for the Barahona province, Dominican Republic. J. Soil Sci. Plant Nutr. 2011, 11, 127–140. [Google Scholar] [CrossRef]
- CIA Central Intelligence Agency of the United States of America. The World Factbook. Available online: https://www.cia.gov/the-world-factbook/ (accessed on 24 April 2025).
- Nonato de Souza, H.; de Goede, R.G.M.; Brussaard, L.; Cardoso, I.M.; Duarte, E.M.G.; Fernandes, R.B.A.; Gomes, L.C.; Pulleman, M.M. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agric. Ecosyst. Environ. 2012, 146, 179–196. [Google Scholar] [CrossRef]
- De Matta, F.M. Ecophysiological constraints on the production of shaded and unshaded coffee: A review. Field Crops Res. 2004, 86, 99–114. [Google Scholar] [CrossRef]
- Toledo, T. El bosque de niebla. CONABIO. Biodivers. 2009, 83, 1–6. [Google Scholar]
- Nigussie, A.; Kissi, E. The contribution of coffee agroecosystem to soil fertility in Southwestern Ethiopia. Afr. J. Agric. Res. 2012, 7, 74–81. [Google Scholar] [CrossRef]
- Dias, K.G.D.L.; Guimarães, P.T.G.; do Carmo, D.L.; Reis, T.H.P.; Lacerda, J.J.D.J. Alternative sources of potassium in coffee plants for better soil fertility, productivity, and beverage quality. Pesq. Agropec. Bras. 2018, 53, 1355–1362. [Google Scholar] [CrossRef]
- Hanisch, S.; Dara, Z.; Brinkmann, K.; Buerkert, A. Soil fertility and nutrient status of traditional Gayo coffee agroforestry systems in the Takengon region, Aceh Province, Indonesia. J. Agric. Rural Dev. Trop. Subtrop. 2011, 112, 87–100. [Google Scholar]
- Raghubanshi, A.S. Effect of topography on selected soil properties and nitrogen mineralization in a dry tropical forest. Soil Biol. Biochem. 1992, 24, 145–150. [Google Scholar] [CrossRef]
- Yadessa, A.; Burhardt, J.; Denich, M.; Woldermariam, T.; Bekele, E.; Goldbach, H. Influence of soil properties on cup quality of wild arabica coffee in the coffee forest ecosystem of SW Ethiopia. In Proceedings of the 22nd International Conference on Coffee Science (ASIC), Campinas, Brazil, 14–19 September 2008. [Google Scholar]
- Tian, G.; Badejo, M.; Okoh, A.; Ishida, F.; Kolawole, G.; Hayashi, Y.; Salako, F. Effects of residue quality and climate on plant residue decomposition and nutrient release along the transect from humid forest to Sahel of West Africa. Biogeochemistry 2007, 86, 217–229. [Google Scholar] [CrossRef]
- Hairiah, K.; Sulistyani, H.; Suprayogo, D.; Purnomosidhi, P.; Widodo, R.H.; Van Noordwijk, M. Litter layer residence time in forest and coffee agroforestry systems in Sumberjaya, West Lampung. For. Ecol. Manag. 2006, 224, 45–57. [Google Scholar] [CrossRef]
- Kibblewhite, M.G.; Ritz, K.; Swift, M.J. Soil health in agricultural systems. Philos Trans. R. Soc. B Biol. Sci. 2008, 363, 685–701. [Google Scholar] [CrossRef]
- Mintesnot, A.; Dechassa, N.; Mohammed, A. Association of Arabica coffee quality attributes with selected soil chemical properties. East Afr. J. Sci. 2015, 9, 73–84. [Google Scholar]
- García-Santos, G. An Ecohydrological and Soils Study in a Montane (Cloud Forest in the National Park of Garajonay, La Gomera (Canaria Islands, Spain). Ph.D. Thesis, University of Amsterdam, Amsterdam, The Netherlands, 2007. [Google Scholar]
- Schrumpf, M.; Lyaruu, H.V.M.; Axmacher, J.C.; Zech, W.; Bruijnzeel, L.A. Effects of forest disturbance and regeneration on net precipitation and soil water dynamics in tropical montane rain forest on Mount Kilimanjaro, Tanzania. In Tropical Montane Cloud Forests: Science for Conservation and Management; Bruijnzeel, L.A., Scatena, F.N., Hamilton, L.S., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 491–501. [Google Scholar]
- Valladares, R. Review of Tropical Montane Cloud Forest Focused on a Case Study of Soils (Dominican Republic and Haiti). Master’s Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2012. [Google Scholar]
- Kassa, H.; Dondeyne, S.; Poesen, J.; Frankl, A.; Nyssen, J. Impact of deforestation on soil fertility, soil carbon and nitrogen stocks: The case of the Gacheb catchment in the White Nile Basin, Ethiopia. Agric. Ecosyst. Environ. 2017, 247, 273–282. [Google Scholar] [CrossRef]
- Veldkamp, E. Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Sci. Soc. Amer. J. 1994, 58, 175–180. [Google Scholar] [CrossRef]
- Veldkamp, E.; Schmidt, M.; Powers, J.S.; Corre, M.D. Deforestation and reforestation impacts on soils in the tropics. Nat. Rev. Earth. Environ. 2020, 1, 590–605. [Google Scholar] [CrossRef]
- Mohammed, A.; Bekele, L. Changes in carbon stocks and sequestration potential under native forest and adjacent land use systems at Gera: South-Western Ethiopia. Glob. J. Sci. Front. Res. D Agric. Vet. 2014, 14, 11–20. [Google Scholar]
- Hombegowda, H.C.; van Straaten, O.; Köhler, M.; Hölscher, D. On the rebound: Soil organic carbon stocks can bounce back to near forest levels when agroforests replace agriculture in southern India. Soil 2016, 2, 13. [Google Scholar] [CrossRef]
- Hernández, A.J.; Alexis, S.; Pastor, J. Soil degradation in the tropical forests of the Dominican Republic’s Pedernales province in relation to heavy metal contents. Sci. Total Environ. 2007, 378, 36–41. [Google Scholar] [CrossRef] [PubMed]
- FAO. Guidelines for Soil Description; FAO: Roma, Italy, 1990; pp. 1–109. [Google Scholar]
- Martínez, E. Los bosques nublados de la República Dominicana. Cienc. Soc. 1990, 15, 192–218. [Google Scholar] [CrossRef]
- Schutt-Ainé, P. Haiti: A Basic Reference Book; Librairie Au Service de la Culture: Miami, FL, USA, 1994; p. 20. ISBN 0-9638599-0-0. [Google Scholar]
- Hernández, A.J.; Pastor, J. Técnicas analíticas para el estudio de las interacciones suelo-planta. Rev. Geol. 1989, 3, 51–92. [Google Scholar]
- Lakanen, E.; Erviö, R. A Comparison of eight extractants for the determination of plant available micronutrients in soils. Finn. Soc. Agric. Sci. Publ. 1971, 123, 223–232. [Google Scholar]
- Walsh, L.M. Instrumental Methods for Analysis of Soils and Plant Tissue; Soil Science Society of America: Madison, WI, USA, 1971; Volume 7, pp. 1–220. [Google Scholar]
- Ministerio de Agricultura Pesca y Alimentación (MAPA); Dirección General de Alimentación. Métodos Oficiales de Análisis de la Unión Europea Madrid; MAPA Centro de Publicaciones: Madrid, Spain, 1998. [Google Scholar]
- Mukherjee, A.; Lal, R. Comparison of soil quality index using three methods. PLoS ONE 2014, 9, e105981. [Google Scholar] [CrossRef]
- Benner, J.; Vitousek, P.M.; Ostertag, R. Nutrient cycling and nutrient limitation in tropical montane cloud forests. In Tropical Montane Cloud Forests: Science for Conservation and Management; Bruijnzeel, L.A., Scatena, F.N., Hamilton, L.S., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 90–100. [Google Scholar]
- Roman, L.; Scatena, F.N.; Bruijnzeel, L.A. Global and local variations in tropical montane cloud forest soils. In Tropical Montane Cloud Forests: Science for Conservation and Management; Bruijnzeel, L.A., Scatena, F.N., Hamilton, L.S., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 772–789. [Google Scholar]
- Letts, M.G.; Mulligan, M.; Rincón-Romero, M.E.; Bruijnzeel, L.A. Environmental controls of photosynthetic rates of lower montane cloud forest vegetation in south-western Colombia. In Tropical Montane Cloud Forests: Science for Conservation and Management; Bruijnzeel, L.A., Scatena, F.N., Hamilton, L.S., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 465–478. [Google Scholar]
- Bruijnzeel, L.A. Hydrological functions of tropical forests: Not seeing the soil for the trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Sidle, R.C.; Ziegler, A.D.; Negishi, J.N. Erosion process in steep terrain: Truths, myths, and uncertainties related to forest management in Southeast Asia. For. Ecol. Manag. 2006, 224, 199–225. [Google Scholar] [CrossRef]
- Bautista-Cruz, A.; del Castillo, R.F.; Etchevers-Barra, J.D.; Gutiérrez-Castorena, M.C.; Baez, A. Selection and interpretation of soil quality indicators for forest recovery after clearing of a tropical montane cloud forest in Mexico. For. Ecol. Manag. 2012, 277, 74–80. [Google Scholar] [CrossRef]
- Senbeta, F. Biodiversity and ecology of Afromontane rainforests with wild Coffea arabica L. populations in Ethiopia. In Ecology and Development Series 38; Vlek, P.L.G., Denich, M., Martius, C., Rodgers, C., Eds.; Cuvillier Verlag: Göttingen, Germany, 2006; pp. 1–120. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Montero, L.G.; Fragela, M.; Alexis, S.; Almendros, G. Tree Clearing for Coffee Production Threatens the Tropical Cloud Montane Forests of the Dominican Republic and Haiti, with Implications for Soil Fertility. Agriculture 2025, 15, 1402. https://doi.org/10.3390/agriculture15131402
García-Montero LG, Fragela M, Alexis S, Almendros G. Tree Clearing for Coffee Production Threatens the Tropical Cloud Montane Forests of the Dominican Republic and Haiti, with Implications for Soil Fertility. Agriculture. 2025; 15(13):1402. https://doi.org/10.3390/agriculture15131402
Chicago/Turabian StyleGarcía-Montero, Luis G., Marisol Fragela, Stervins Alexis, and Gonzalo Almendros. 2025. "Tree Clearing for Coffee Production Threatens the Tropical Cloud Montane Forests of the Dominican Republic and Haiti, with Implications for Soil Fertility" Agriculture 15, no. 13: 1402. https://doi.org/10.3390/agriculture15131402
APA StyleGarcía-Montero, L. G., Fragela, M., Alexis, S., & Almendros, G. (2025). Tree Clearing for Coffee Production Threatens the Tropical Cloud Montane Forests of the Dominican Republic and Haiti, with Implications for Soil Fertility. Agriculture, 15(13), 1402. https://doi.org/10.3390/agriculture15131402