Decoding Potential Co-Relation Between Endosphere Microbiome Community Composition and Mycotoxin Production in Forage Grasses
Abstract
1. Introduction
2. Grass–Endophyte Microbial Community Dynamics
2.1. Composition, Distribution, and Diversity of Endosphere Microbiome
Plant Species | Type | Locations | Compartments | Dominant Microbial Communities | Refs. |
---|---|---|---|---|---|
Bahia Grass (Paspalum notatum) | Warm season | Northwest Florida | Leaves and inflorescence | Sordariomycetes, Glomeromycetes, Dothideomycetes, and Agaricomycetes Penicillium spp., Fusarium sp. | [12,32] |
Ryegrass (Lolium perenne L.) | Cool season | Southern USA, Australia, and New Zealand | The base, leaves, and inflorescence | E. festucae var. lolii or Neotyphodium lolii, L. perenne | [57,58] |
Switch Grass (Panicum virgatum) | Warm Season | Central North America, Texas, Minnesota, and Oklahoma | The shoot and root tissues | Alternaria, Epicoccum, Phoma, Phaeosphaeria, and Stagonospora | [23,24,26,43] |
Centipede Grass (Eremochloa ophiuroides) | Warm Season | Southeastern US and Hawaii | The shoot and root tissues | Neotyphodium coenophialum | [10,51] |
Star Grass (Cynodon nlemfuensis) | Warm Season | Florida and Texas | Aerial parts | Sarocladium sp., Penicillium spp., Aspergillus, and Cladosporium spp. | [3,4] |
2.2. Mycotoxin Production in Grasses: The Role of Associated Microbes
2.3. Ideation of Microbial Manipulation to Reduce Toxin Production
2.4. Impact of Elevated Mycotoxin Production on Herbivory and Livestock
3. How Do Microbial Communities Modulate Mycotoxin Levels in Grasses?
3.1. Role of Endosphere Consortium in Mycotoxin Production
3.2. Host Genotype and Host Selectivity in Toxin Production
4. Biological Control Strategies for Mycotoxigenic Microorganisms
4.1. Microbe-Mediated Regulation of Toxin Production
4.2. Microbial Detoxification of Produced Toxins
4.3. Eliciting Systemic Resistance by Colonization
5. Recent Novel Approaches to Cope with Elevated Toxin Levels
5.1. Microbial Manipulation to Reduce Toxin Production
5.2. Engineered Microorganisms for Detoxification of Toxins
5.3. Microbiome-Engineered Plants for Reduced Production of Toxins
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FLEPPC. List of Invasive Plant Species. Florida Exotic Pest Plant Council. 2019. Available online: https://www.floridainvasives.org/ (accessed on 25 June 2025).
- Blount, A.R. Presence of grass endophytes and mycotoxins in Florida pastures? In Proceedings of the 68th Annual Florida Beef Cattle Short Course Proceedings. Connecting the Dots, Calf to Carcass, Gainesville, FL, USA, 8–10 May 2019. [Google Scholar]
- Gott, P.; Stam, A.; Johns, A.; Hendel, E.; Mendoza, S.; Hofstetter-Schahs, U.; Bell, B.; Murugesan, G. 424 Mycotoxin survey of southern US pasture grasses. J. Anim. Sci. 2018, 96, 209. [Google Scholar] [CrossRef]
- Gallo, A.; Giuberti, G.; Frisvad, J.C.; Bertuzzi, T.; Nielsen, K.F. Review on mycotoxin issues in ruminants: Occurrence in forages, effects of mycotoxin ingestion on health status and animal performance and practical strategies to counteract their negative effects. Toxins 2015, 7, 3057–3111. [Google Scholar] [CrossRef] [PubMed]
- Wemheuer, F.; Wemheuer, B.; Daniel, R.; Vidal, S. Deciphering bacterial and fungal endophyte communities in leaves of two maple trees with green islands. Sci. Rep. 2019, 9, 14183. [Google Scholar] [CrossRef]
- Tidke, S.A.; Kiran, S.; Giridhar, P.; Gokare, R.A. Current understanding and future perspectives of endophytic microbes vis-a-vis production of secondary metabolites. In Endophytes and Secondary Metabolites. Reference Series in Phytochemistry; Jha, S., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Card, S.; Johnson, L.; Teasdale, S.; Caradus, J. Deciphering endophyte behaviour: The link between endophyte biology and efficacious biological control agents. FEMS Microb. Ecol. 2016, 92, 114. [Google Scholar] [CrossRef]
- Bacon, C.W.; Porter, J.K.; Robbins, J.D.; Luttrell, E.S. Epichloe typhina from toxic tall fescue grasses. Appl. Environ. Microbiol. 1977, 34, 576–581. [Google Scholar] [CrossRef]
- Saikkonen, K.; Lehtonen, P.; Helander, M.; Koricheva, J.; Faeth, S.H. Model systems in ecology: Dissecting the endophyte-grass literature. Trends Plant Sci. 2006, 11, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Gott, P.N.; Stam, A.; Johns, A.; Miller, B.G.; Bell, B.; Jenkins, T.; Murugesan, T.R. Mycotoxin survey of common bermuda grass in south-central Florida. J. Anim. Sci. 2017, 95, 19–20. [Google Scholar] [CrossRef]
- Whitlow, L.W.; Hagler, W.M., Jr. Mold and Mycotoxin Issues in Dairy Cattle: Effects, Prevention and Treatment. eXtension. 2017. Available online: https://dairy-cattle.extension.org/mold-and-mycotoxin-issues-in-dairy-cattle-effects-prevention-and-treatment/ (accessed on 11 July 2018).
- Beule, L.; Chen, K.H.; Hsu, C.M.; Mackowiak, C.; Dubeux, J.C.B.; Blount, A.; Liao, H.L. Soil bacterial and fungal communities of six bahiagrass cultivars. Peer J. 2019, 7, 7014. [Google Scholar] [CrossRef]
- Bony, S.; Pichon, N.; Ravel, C.; Durix, A.; Balfourier, C.; Guillaumin, J.J. The relationship between myotoxin synthesis in fungal endophytes of Lolium perenne. New Phytol. 2001, 152, 125–137. [Google Scholar] [CrossRef]
- Chen, K.; Marcón, F.; Duringer, J.; Blount, A.; Mackowiak, C.; Liao, H. Leaf Mycobiome and Mycotoxin Profile of Warm-Season Grasses Structured by Plant Species, Geography, and Apparent Black-Stroma Fungal Structure. Appl. Environ. Microbiol. 2022, 88, e00942-22. [Google Scholar] [CrossRef]
- Afzal, F.; Li, H.; Gul, A.; Subhani, A.; Ali, A.; Mujeeb-Kazi, A.; Ogbonnaya, F.; Trethowan, R.; Xia, X.; He, Z.; et al. Genome-wide analyses reveal footprints of divergent selection and drought adaptive traits in synthetic-derived wheats. G3 Genes Genomes Genet. 2019, 9, 1957–1973. [Google Scholar] [CrossRef]
- Skladanka, J.; Adam, V.; Dolezal, P.; Nedelnik, J.; Kizek, R.; Linduskova, H.; Mejia, J.E.A.; Nawrath, A. How do grass species, season and ensiling influence mycotoxin content in forage? Int. J. Environ. Res. Public. Health 2013, 10, 6084–6095. [Google Scholar] [CrossRef]
- Bever, J.D.; Platt, T.G.; Morton, E.R. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu. Rev. Microbiol. 2012, 66, 265–283. [Google Scholar] [CrossRef]
- Lundberg, D.S.; Lebeis, S.L.; Paredes, S.H.; Yourstone, S.; Gehring, J.; Malfatti, S.; Trimblay, J.; Engelbrektson, A.; Kunin, V.; Glavina Del Rio, T.; et al. Defining the core Arabidopsis thaliana root microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef]
- Wagner, M.; Lundberg, D.; del Rio, T.; Tringe, S.G.; Dangl, J.L.; Mitchell-Olds, T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 2016, 7, 12151. [Google Scholar] [CrossRef]
- Allgaier, M.; Reddy, A.; Park, J.I.; Ivanova, N.; D’haeseleer, P.; Lowry, S.; Sapra, R.; Hazen, T.C.; Simmons, B.A.; Hugenholtz, P. Targeted discovery of glycoside hydrolases from a switch grass-adapted compost community. PLoS ONE 2010, 5, 8812. [Google Scholar] [CrossRef]
- Gladden, J.M.; Allgaier, M.; Miller, C.S.; Hazen, T.C.; Vander Gheynst, J.S.; Hugenholtz, P.; Simmons, B.A.; Singer, S.W. Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switch grass. Appl. Environ. Microbiol. 2011, 77, 5804–5812. [Google Scholar] [CrossRef]
- D’haeseleer, P.; Gladden, J.M.; Allgaier, M.; Chain, P.S.G.; Tringe, S.G.; Malfatti, S.A.; Aldrich, J.T.; Nicora, C.D.; Robinson, E.W.; Paša-Tolić, L.; et al. Proteogenomic analysis of a thermophilic bacterial consortium adapted to deconstruct switch grass. PLoS ONE 2013, 8, 68465. [Google Scholar]
- Gagne-Bourgue, F.; Aliferis, K.A.; Seguin, P.; Rani, M.; Samson, R.; Jabaji, S. Isolation and characterization of indigenous endophytic bacteria associated with leaves of switch grass (Panicum virgatum L.) cultivars. J. Appl. Microbiol. 2013, 114, 836–853. [Google Scholar] [CrossRef]
- Xia, Y.; Greissworth, E.; Mucci, C.; Williams, M.A.; Debolt, S. Characterization of culturable bacterial endophytes of switch grass (Panicum virgatum L.) and their capacity to influence plant growth. GCB Bioenergy 2013, 5, 674–682. [Google Scholar] [CrossRef]
- Piao, H.; Lachman, M.; Malfatti, S.; Sczyrba, A.; Knierim, B.; Auer, M.; Tringe, S.G.; Mackie, R.I.; Yeoman, C.J.; Hess, M. Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in-situ incubation of switch grass determined by 16S rRNA gene profiling. Front. Microbiol. 2014, 5, 307. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Guo, L.; Niu, M.; Miao, F.; Jiao, S.; Hu, T.; Long, M. Ecological diversity and co-occurrence patterns of bacterial community through soil profile in response to long-term switch grass cultivation. Sci. Rep. 2017, 7, 3608. [Google Scholar]
- Chen, H.; Yang, Z.K.; Yip, D.; Morris, R.H.; Lebreux, S.J.; Cregger, M.A.; Klingerman, D.M.; Hui, D.; Hettich, R.L.; Wilhelm, S.W.; et al. One-time nitrogen fertilization shifts switch grass soil microbiomes within a context of larger spatial and temporal variation. PLoS ONE 2019, 14, 0211310. [Google Scholar]
- Yakti, W.; Andrade-Linares, D.; Ngwene, B.; Bitterlich, M.; Kovács, G.; Franken, P. Phosphate Nutrition in Root–Fungus Interactions. In Endophytes for a Growing World; Hodkinson, T., Doohan, F., Saunders, M., Murphy, B., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 120–142. [Google Scholar]
- Kovács, G.M.; Szigetvári, C. Mycorrhizae and other root-associated fungal structures of the plants of a sandy grassland on the Great Hungarian Plain. Phyton—Annales Rei Botanicae 2002, 42, 211–223. [Google Scholar]
- Mandyam, K.; Jumpponen, A. Seeking the elusive functions of the root-colonizing dark septate endophytic fungi. Stud. Mycol. 2005, 53, 173–189. [Google Scholar] [CrossRef]
- Porras-Alfaro, A.; Herrera, J.; Odenbach, K.; Lowrey, T.; Sinsabaugh, R.L.; Natvig, D.O. A novel root fungal consortium associated with a dominant desert grass. Appl. Environ. Microbiol. 2008, 74, 2805–2813. [Google Scholar] [CrossRef]
- Sánchez Márquez, S.; Bills, G.F.; Zabalgogeazcoa, I. Diversity and structure of the fungal endophytic assemblages from two sympatric coastal grasses. Fungal Divers. 2008, 33, 87–100. [Google Scholar]
- Knapp, D.G.; Pintye, A.; Kovács, G.M. The dark side is not fastidious—Dark septate endophytic fungi of native and invasive plants of semiarid sandy areas. PLoS ONE 2012, 7, 32570. [Google Scholar] [CrossRef]
- Li, B.; He, X.; He, C.; Chen, Y.; Wang, X. Spatial dynamics of dark septate endophytes and soil factors in the rhizosphere of Ammopiptanthus mongolicus in inner mongolia. China. Symbiosis 2015, 65, 75–84. [Google Scholar] [CrossRef]
- Li, X.; He, X.; Hou, L.; Ren, Y.; Wang, S.; Su, F. Dark septate endophytes isolated from a xerophyte plant promote the growth of Ammopiptanthus mongolicus under drought condition. Sci. Rep. 2018, 8, 7896. [Google Scholar] [CrossRef]
- Li, X.; He, C.; He, X.L.; Su, F.; Hou, L.F.; Ren, Y.; Hou, Y. Dark septate endophytes improve the growth of host and non-host plants under drought stress through altered root development. Plant Soil 2019, 439, 259–272. [Google Scholar] [CrossRef]
- Xie, L.; He, X.; Wang, K.; Hou, L.; Sun, Q. Spatial dynamics of dark septate endophytes in the roots and rhizospheres of Hedysarum scoparium in northwest China and the influence of edaphic variables. Fungal Ecol. 2017, 26, 135–143. [Google Scholar] [CrossRef]
- Khidir, H.H.; Eudy, D.M.; Porras-Alfaro, A.; Herrera, J.; Natvig, D.O.; Sinsabaugh, R.L. A general suite of fungal endophytes dominate the roots of two dominant grasses in semiarid grassland. J. Arid. Environ. 2010, 74, 35–42. [Google Scholar] [CrossRef]
- Knapp, A.K.; Fay, P.A.; Blair, J.M.; Collins, S.L.; Smith, M.D.; Carlisle, J.D.; Harper, C.W.; Danner, B.T.; Lett, M.S.; McCarron, J.K. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 2002, 298, 2202–2205. [Google Scholar] [CrossRef] [PubMed]
- Sielaff, A.C.; Upton, R.N.; Hofmockel, K.S.; Xu, X.; Wayne Polley, H.; Wilsey, B.J. Microbial community structure and functions differ between native and novel (exotic-dominated) grassland ecosystems in an 8-year experiment. Plant Soil 2018, 432, 359–372. [Google Scholar] [CrossRef]
- Ugarelli, K.; Laas, P.; Stingl, U. The microbial communities of leaves and roots associated with Turtle Grass (Thalassia testudinum) and Manatee Grass (Syringodium filliforme) are distinct from seawater and sediment communities, but are similar between species and sampling sites. Microorganisms 2019, 7, 4. [Google Scholar] [CrossRef]
- Cúcio, C.; Engelen, A.H.; Costa, R.; Muyzer, G. Rhizosphere microbiomes of European sea grasses are selected by the plant, but are not species specific. Front. Microbiol. 2016, 7, 440. [Google Scholar] [CrossRef]
- Ghimire, S.R.; Charlton, N.D.; Bell, J.D.; Krishnamurthy, Y.L.; Craven, K.D. Biodiversity of fungal endophyte communities inhabiting switch grass (Panicum virgatum L.) growing in the native tall grass prairie of northern Oklahoma. Fungal Divers. 2011, 47, 19–27. [Google Scholar] [CrossRef]
- Singer, E.; Bonnette, J.; Woyke, T.; Juenger, T.E. Conservation of endophyte bacterial community structure across two panicum grass species. Front. Microbiol. 2019, 10, 2181. [Google Scholar] [CrossRef]
- Grady, K.L.; Sorensen, J.W.; Stopnisek, N.; Guittar, J.; Shade, A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat. Commun. 2019, 10, 4135. [Google Scholar] [CrossRef]
- Wemheuer, B.; Thomas, T.; Wemheuer, F. Fungal endophyte communities of three agricultural important grass species differ in their response towards management regimes. Microorganisms 2019, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Harman, G.; Uphoff, N. Symbiotic root-endophytic soil microbes improve crop productivity and provide environmental benefits. Scientifica 2019, 2019, 9106395. [Google Scholar] [CrossRef]
- Young, C.A.; Hume, D.E.; McCulley, R.L. Forages and pastures symposium: Fungal endophytes of tall fescue and perennial ryegrass: Pasture friend or foe? J. Anim. Sci. 2013, 91, 2379–2394. [Google Scholar] [CrossRef]
- Song, H.; Nan, Z.; Song, Q.; Xia, C.; Li, X.; Yao, X.; Xu, W.; Kuang, Y.; Tian, P.; Zhang, Q. Advances in research on Epichloë endophytes in Chinese native grasses. Front. Microbiol. 2016, 7, 1399. [Google Scholar] [CrossRef] [PubMed]
- Skladanka, J.; Nedelnik, J.; Adam, V.; Dolezal, P.; Moravcova, H.; Dohnal, V. Forage as a primary source of mycotoxins in animal diets. Int. J. Environ. Res. Public Health 2011, 8, 37–50. [Google Scholar] [CrossRef]
- Pirelli, G.J.; Anderson, N.P.; Craig, A.M.; Young, C.A. Endophyte Toxins in Grass and Other Feed Sources: Risks to Livestock. Oregon State University Endophyte Service Laboratory. 2016. Available online: https://emt.oregonstate.edu/sites/agscid7/files/emt/endophyte-lab/ext-pub-nov-2016.pdf (accessed on 25 June 2022).
- Tian, P.; Le, T.N.; Ludlow, E.J.; Smith, K.F.; Forster, J.W.; Guthridge, K.M.; Spangenberg, G.C. Characterisation of novel perennial ryegrass host–Neotyphodium endophyte associations. Crop Pasture Sci. 2013, 64, 716–725. [Google Scholar] [CrossRef]
- Ruemmele, B.A.; Brilman, L.A.; Huff, D.R. Fine fescue germplasm diversity and vulnerability. Crop Sci. 1995, 35, 313–316. [Google Scholar] [CrossRef]
- Guerre, P. Ergot alkaloids produced by endophytic fungi of the genus Epichloë. Toxins 2015, 7, 773–790. [Google Scholar] [CrossRef] [PubMed]
- Low, S.G. Signal grass (Brachiaria decumbens) toxicity in grazing ruminants. Agriculture 2015, 5, 971–990. [Google Scholar] [CrossRef]
- Cheeke, P.R. Endogenous toxins and mycotoxins in forage grasses and their effects on livestock. J. Anim. Sci. 1995, 73, 909–918. [Google Scholar] [CrossRef]
- Lin, W.; Kuang, Y.; Wang, J.; Duan, D.; Xu, W.; Tian, P.; Nzabanita, C.; Wang, M.; Li, M.; Ma, B. Effects of seasonal variation on the alkaloids of different ecotypes of Epichloë endophyte-Festuca sinensis associations. Front. Microbiol. 2019, 10, 1695. [Google Scholar] [CrossRef]
- Saikkonen, K.; Young, C.A.; Helander, M.; Schardl, C.L. Endophytic Epichloë species and their grass hosts: From evolution to applications. Plant Mol. Biol. 2016, 90, 665–675. [Google Scholar] [CrossRef]
- Luyckx, M.; Hausman, J.F.; Lutts, S.; Guerriero, G. Silicon and plants: Current knowledge and technological perspectives. Front. Plant Sci. 2017, 8, 411. [Google Scholar] [CrossRef]
- Hawkes, C.V.; Sullivan, J.J. The impact of herbivory on plants in different resource conditions: A meta-analysis. Ecology 2001, 82, 2045–2058. [Google Scholar] [CrossRef]
- Saikkonen, K.; Gundel, P.E.; Helander, M. Chemical ecology mediated by fungal endophytes in grasses. J. Chem. Ecol. 2013, 39, 962–968. [Google Scholar] [CrossRef]
- Ryan, G.D.; Rasmussen, S.; Parsons, A.J.; Newman, J.A. The effects of carbohydrate supply and host genetic background on Epichloë endophyte and alkaloid concentrations in perennial ryegrass. Fungal Ecol. 2015, 18, 115–125. [Google Scholar] [CrossRef]
- Helander, M.; Phillips, T.; Faeth, S.H.; Bush, L.P.; McCulley, R.; Saloniemi, I.; Saikkonen, K. Alkaloid quantities in endophyte-infected tall fescue are affected by the plant-fungus combination and environment. J. Chem. Ecol. 2016, 42, 118–126. [Google Scholar] [CrossRef]
- McCulley, R.L.; Bush, L.P.; Carlisle, A.E.; Ji, H.; Nelson, J.A. Warming reduces tall fescue abundance but stimulates toxic alkaloid concentrations in transition zone pastures of the U.S. Front. Chem. 2014, 2, 88. [Google Scholar] [CrossRef]
- Bush, L.P.; Wilkinson, H.H.; Schardl, C.L. Bio-protective alkaloids of grass-fungal endophyte symbioses. Plant Physiol. 1997, 114, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Schardl, C.L.; Young, C.A.; Pan, J.; Florea, S.; Takach, J.E.; Panaccione, D.; Farman, M.L.; Webb, J.S.; Jaromczyk, J.; Charlton, N.D.; et al. Currencies of mutualisms: Sources of alkaloid genes in vertically transmitted Epichloë. Toxins 2013, 5, 1064–1088. [Google Scholar] [CrossRef] [PubMed]
- Montañez, A.; Blanco, A.R.; Barlocco, C.; Beracochea, M.; Sicardi, M. Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in-vitro. Appl. Soil Ecol. 2012, 58, 21–28. [Google Scholar] [CrossRef]
- Sessitsch, A.; Hardoim, P.; Döring, J.; Weilharter, A.; Krause, A.; Woyke, T.; Woyke, T.; Mitter, B.; Hauberg-Lotte, L.; Friedrich, F.; et al. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol. Plant Microbe Interact. 2012, 25, 28–36. [Google Scholar] [CrossRef]
- Kauppinen, M.; Saikkonen, K.; Helander, M.; Pirttilä, A.M.; Wäli, P.R. Epichloë grass endophytes in sustainable agriculture. Nat. Plants 2016, 2, 15224. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.J.; De Bonth, A.C.M.; Briggs, L.R.; Caradus, J.R.; Finch, S.C.; Fleetwood, D.J.; Fletcher, L.R.; Hume, D.E.; Johnson, R.D.; Popay, A.J.; et al. The exploitation of Epichloë endophytes for agricultural benefit. Fungal Divers. 2013, 60, 17188. [Google Scholar] [CrossRef]
- Finch, S.C.; Fletcher, L.R.; Babu, J.V. The evaluation of endophyte toxin residues in sheep fat. N. Z. Vet. J. 2012, 60, 5660. [Google Scholar] [CrossRef]
- Tapper-Bor, A.; Lane, G.A. Janthitrems Found in a Neotyphodium Endophyte of Perennial Ryegrass, Proceedings of the 5th International Symposium on Neotyphodium/Grass Interactions Fayetteville, Fayetteville, AR, USA, 23–26 May 2004; Kallenbach, R., Rosenkrans, C.J., Lock, T.R., Eds.; AR University of Arkansas Press: Fayetteville, AR, USA, 2014; p. 301. [Google Scholar]
- Bacon, C.W. Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescue. Agric. Ecosyst. Environ. 1993, 44, 123–141. [Google Scholar] [CrossRef]
- Bacon, C.W. Toxic endophyte-infected tall fescue and range grasses: Historic perspectives. J. Anim. Sci. 1995, 73, 86170. [Google Scholar] [CrossRef]
- Brakhage, A.A. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol. 2013, 11, 21–32. [Google Scholar] [CrossRef]
- Netzker, T.; Fischer, J.; Weber, J.; Mattern, D.J.; König, C.C.; Valiante, V.; Schroeckh, V.; Brakhage, A.A. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front. Microbiol. 2015, 6, 299. [Google Scholar] [CrossRef]
- Schardl, C.L.; Panaccione, D.G. Biosynthesis of ergot and loline alkaloids. In Neotyphodium in Cool-Season Grasses; Roberts, C.A., West, C.P., Spiers, D.E., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2005; pp. 73–92. [Google Scholar]
- Ola, A.R.B.; Thomy, D.; Lai, D.; Brötz-Oesterhelt, H.; Proksch, P. Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through co-culture with Bacillus subtilis. J. Nat. Prod. 2013, 76, 2094–2099. [Google Scholar] [CrossRef]
- Schroeckh, V.; Scherlach, K.; Nützmann, H.W.; Shelest, E.; Schmidt-Heck, W.; Schuemann, J.; Martin, K.; Hertweck, C.; Brakhage, A.A. Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 2009, 106, 14558–14563. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, B.; Krischke, M.; Mueller, M.J.; Krauss, J. Plant age and seasonal timing determine endophyte growth and alkaloid biosynthesis. Fungal Ecol. 2017, 29, 52–58. [Google Scholar] [CrossRef]
- Hovermale, J.T.; Craig, A.M. Correlation of ergovaline and lolitrem B levels in endophyte infected perennial ryegrass (Lolium perenne). J. Vet. Diagn. Investig. 2001, 13, 323–327. [Google Scholar] [CrossRef]
- Tor-Agbidye, J.; Blythe, L.L.; Craig, A.M. Correlation of endophyte toxins (ergovaline and lolitrem B) with clinical disease: Fescue foot and perennial ryegrass staggers. Vet. Hum. Toxicol. 2001, 43, 140–146. [Google Scholar] [PubMed]
- Siegel, M.R.; Bush, L.P. Defensive chemicals in grass-fungal endophyte associations. In Phytochemical Diversity and Redundancy in Ecological Interactions; Romeo, J.T., Ed.; Springer: Berlin/Heidelberg, Germany, 1996; Volume 3081, p. 119. [Google Scholar]
- Faeth, S.H.; Fagan, W.F. Fungal endophytes: Common host plant symbionts but uncommon mutualists. Integr. Comp. Biol. 2002, 42, 360–368. [Google Scholar] [CrossRef]
- Hegazi, N.; Hartmann, A.; Ruppel, S. The plant microbiome: Exploration of plant-microbe interactions for improving agricultural productivity. J. Adv. Res. 2019, 19, 1–2. [Google Scholar] [CrossRef]
- Doekes, H.M.; de Boer, R.J.; Hermsen, R. Toxin production spontaneously becomes regulated by local cell density in evolving bacterial populations. PLoS Comput. Biol. 2019, 15, 1007333. [Google Scholar] [CrossRef]
- Albinsson, M.E.; Negri, A.P.; Blackburn, S.I.; Bolch, C.J.S. Bacterial community affects toxin production by Gymnodinium catenatum. PLoS ONE 2014, 9, 104623. [Google Scholar] [CrossRef]
- Wicklow, D.T. Metabolites in the co-evolution of fungal chemical defence systems. In Co-Evolution of Fungi with Plants and Animals; Pirozynski, K.A., Hawksworth, D., Eds.; Academic Press: New York, NY, USA, 1988; pp. 173–201. [Google Scholar]
- Palumbo, J.D.; Mahoney, N.E.; Light, D.M. Navel orange worm (Amyelois transitella) as a vector of Aspergillus flavus on almonds. Phytopathology 2008, 98, S119. [Google Scholar]
- Watts, D.; Palombo, E.A.; Jaimes Castillo, A.; Zaferanloo, B. Endophytes in agriculture: Potential to improve yields and tolerances of agricultural crops. Microorganisms 2023, 11, 1276. [Google Scholar] [CrossRef]
- Goldson, S.L. An examination of the relationship between Argentine stem weevil (Listronotus bonariensis (Kuschel) and several of its host grasses. N. Z. J. Agri Res. 1982, 25, 395–403. [Google Scholar] [CrossRef]
- Vikuk, V.; Young, C.A.; Lee, S.T.; Nagabhyru, P.; Krischke, M.; Mueller, M.J.; Krauss, J. Infection rates and alkaloid patterns of different grass species with systemic Epichloë endophytes. Appl. Environ. Microbiol. 2019, 85, e00465-19. [Google Scholar] [CrossRef] [PubMed]
- Nichea, M.J.; Palacios, S.A.; Chiacchiera, S.M.; Sulyok, M.; Krska, R.; Chulze, S.N.; Torres, A.M.; Ramirez, M.L. Presence of multiple mycotoxins and other fungal metabolites in native grasses from a wetland ecosystem in Argentina intended for grazing cattle. Toxins 2015, 7, 3309–3329. [Google Scholar] [CrossRef] [PubMed]
- Gopal, M.; Gupta, A. Microbiome selection could spur next-generation plant breeding strategies. Front. Microbiol. 2016, 7, 1971. [Google Scholar] [CrossRef]
- Hardoim, P.R.; van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef]
- Bloom, E.H.; Atallah, S.S.; Casteel, C.L. Motivating organic farmers to adopt practices that support the pest-suppressive microbiome relies on understanding their beliefs. Renew. Agric. Food Syst. 2024, 39, e8. [Google Scholar] [CrossRef]
- Moebius, N.; Üzüm, Z.; Dijksterhuis, J.; Lackner, G.; Hertweck, C. Active invasion of bacteria into living fungal cells. Elife 2014, 3, 03007. [Google Scholar] [CrossRef]
- Torres-Cortés, G.; Ghignone, S.; Bonfante, P.; Schüβler, A. Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: Transkingdom gene transfer in an ancient mycoplasma-fungus association. Proc. Natl. Acad. Sci. USA 2015, 112, 7785–7790. [Google Scholar] [CrossRef]
- Giorni, P.; Bertuzzi, T.; Battilani, P. Impact of fungi co-occurrence on mycotoxin contamination in maize during the growing season. Front. Microbiol. 2019, 10, 1265. [Google Scholar] [CrossRef]
- Kovalsky, P.; Kos, G.; Nahrer, K.; Schwab, C.; Jenkins, T.; Schatzmayr, G.; Sulyok, M.; Krska, R. Co-occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize—An extensive survey. Toxins 2016, 8, 363. [Google Scholar] [CrossRef]
- Culig, B.; Bevardi, M.; Bosnir, J.; Serdar, S.; Lasic, D.; Racz, A.; Galić, A.; Kuharić, Ž. Presence of citrinin in grains and its possible health effects. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 22–30. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Rocha, A.; Sulyok, M.; Krska, R.; Mallmann, C.A. Natural mycotoxin contamination of maize (Zea mays L.) in the South region of Brazil. Food Control 2017, 73, 127–132. [Google Scholar] [CrossRef]
- Obradovic, A.; Krnjaja, V.; Nikolic, M.; Delibasic, G.; Filipovic, M.; Stankovic, G.; Stankovic, S. Impacts of climate conditions on aflatoxin B1 and fumonisins contamination of maize kernels and their co-occurrence. Biotechnol. Anim. Husb. 2018, 34, 469–480. [Google Scholar] [CrossRef]
- DongHo, K.; SungYong, H.; JeaWoo, K.; SungMin, C.; KvuRi, L.; TaeKyung, A.; Lee, C.; Chung, S.H. Simultaneous determination of multi-mycotoxins in cereal grains collected from South Korea by LC/MS/MS. Toxins 2017, 9, 9030106. [Google Scholar] [CrossRef] [PubMed]
- Adekova, I.; Obadina, A.; Phoku, J.; Boevre, M.; de Saeger, S.; de Niobeh, P. Fungal and mycotoxin contamination of fermented foods from selected South African markets. Food Control 2018, 90, 295–303. [Google Scholar] [CrossRef]
- Gundel, P.E.; Perez, L.I.; Helander, M.; Saikkonen, K. Symbiotically modified organisms: Nontoxic fungal endophytes in grasses. Trends Plant Sci. 2013, 18, 420–427. [Google Scholar] [CrossRef]
- Saikkonen, K.; Saari, S.; Helander, M. Defensive mutualism between plants and endophytic fungi? Fungal Divers. 2010, 41, 101–113. [Google Scholar] [CrossRef]
- Saikkonen, K.; Wäli, P.; Helander, M.; Faeth, S.H. Genetic compatibility determines endophyte-grass combinations. PLoS ONE 2010, 395, e11395. [Google Scholar] [CrossRef]
- Clay, K.; Schardl, C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am. Nat. 2002, 160, 99–127. [Google Scholar] [CrossRef]
- Khare, E.; Mishra, J.; Arora, N.K. Multifaceted interactions between endophytes and plant: Developments and prospects. Front. Microbiol. 2018, 9, 2732. [Google Scholar] [CrossRef]
- Rodriguez-Blanco, A.; Sicardi, M.; Frioni, L. Plant genotype and nitrogen fertilization effects on abundance and diversity of diazotrophic bacteria associated with maize (Zea mays L.). Biol. Fertil. Soils 2015, 51, 391–402. [Google Scholar] [CrossRef]
- Ding, T.; Melcher, U. Influences of plant species, season and location on leaf endophytic bacterial communities of non-cultivated plants. PLoS ONE 2016, 11, 0150895. [Google Scholar] [CrossRef] [PubMed]
- Partida-Martínez, L.P.; Heil, M. The microbe-free plant: Fact or artifact? Front. Plant Sci. 2011, 2, 100. [Google Scholar] [CrossRef]
- Bacon, C.W.; Glenn, A.E.; Yates, I.E. Fusarium verticillioides: Managing the endophytic association with maize for reduced fumonisins accumulation. Toxin Rev. 2008, 27, 411–446. [Google Scholar] [CrossRef]
- Gilbert, S.F.; Mcdonald, E.; Boyle, N.; Buttino, N.; Gyi, L.; Mai, M.; Prakash, N.; Robinson, J. Symbiosis as a source of selectable epigenetic variation: Taking the heat for the big guy. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 671–678. [Google Scholar] [CrossRef]
- Rudgers, J.A.; Afkhami, M.E.; Rúa, M.A.; Davitt, A.J.; Hammer, S.; Huguet, V.M. A fungus among us: Broad patterns of endophyte distribution in the grasses. Ecology 2009, 80, 1531–1539. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, N.; Keller, N.P. Mycotoxins in conversation with bacteria and fungi. Front. Microbiol. 2019, 10, 403. [Google Scholar] [CrossRef] [PubMed]
- Vannier, N.; Agler, M.; Hacquard, S. Microbiota-mediated disease resistance in plants. PLoS Pathog. 2019, 15, 1007740. [Google Scholar] [CrossRef]
- Hacquard, S.; Spaepen, S.; Garrido-Oter, R.; Schulze-Lefert, P. Interplay between innate immunity and the plant microbiota. Annu. Rev. Phytopathol. 2017, 55, 565–589. [Google Scholar] [CrossRef]
- Cagnano, G.; Roulund, N.; Jensen, C.S.; Forte, F.P.; Asp, T.; Leuchtmann, A. Large scale screening of Epichloë endophytes infecting Schedonorus pratensis and other forage grasses reveals a relation between microsatellite-based haplotypes and loline alkaloid levels. Front. Plant Sci. 2019, 10, 765. [Google Scholar] [CrossRef]
- Piano, E.; Bertoli, F.B.; Romani, M.; Tava, A.; Riccioni, L.; Valvassori, M.; Carroni, A.M.; Pecetti, L. Specificity of host–endophyte association in tall fescue populations from Sardinia, Italy. Crop Sci. 2005, 45, 1456–1463. [Google Scholar] [CrossRef]
- Faeth, S.H.; Saikkonen, K. Variability is the Nature of the Endophyte-Grass Interaction, Proceedings of the 6th International Symposium on Fungal Endophytes in Grasses, Christchurch, New Zealand, 25–28 March 2007; Popay, A.J., Thorn, E.R., Eds.; New Zealand Grassland Association: Christchurch, New Zealand, 2007; pp. 37–48. [Google Scholar]
- Faeth, S.H. Are endophytic fungi defensive plant mutualists? Oikos 2002, 98, 25–36. [Google Scholar] [CrossRef]
- Wang, W.; Liang, X.; Li, Y.; Wang, P.; Keller, N.P. Genetic regulation of mycotoxin biosynthesis. J. Fungi 2022, 22, 21. [Google Scholar] [CrossRef]
- Howitz, K.T.; Sinclair, D.A. Xenohormesis: Sensing the chemical cues of other species. Cell 2008, 133, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Ray, T.; Pandey, S.S.; Pandey, A.; Srivastava, M.; Shanker, K.; Kalra, A. Endophytic consortium with diverse gene-regulating capabilities of benzylisoquinoline alkaloids biosynthetic pathway can enhance endogenous morphine biosynthesis in Papaver somniferum. Front. Microbiol. 2019, 10, 925. [Google Scholar] [CrossRef]
- Pandey, S.S.; Singh, S.; Babu, C.V.; Shanker, K.; Srivastava, N.K.; Kalra, A. Endophytes of opium poppy differentially modulate host plant productivity and genes for the biosynthetic pathway of benzylisoquinoline alkaloids. Planta 243, 1097–1114. [CrossRef]
- Pandey, S.S.; Singh, S.; Babu, C.V.; Shanker, K.; Srivastava, N.K.; Shukla, A.K.; Kalra, A. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis. Sci. Rep. 6, 26583. [CrossRef]
- Sreekanth, D.; Kristin, I.M.; Brett, A.N. Endophytic fungi from Cathranthus roseus: A potential resource for the discovery of antimicrobial polyketides. Nat. Prod. Chem. Res. 2017, 5, 256. [Google Scholar]
- Irmer, S.; Podzun, N.; Langel, D.; Heidemann, F.; Kaltenegger, E.; Schemmerling, B.; Geilfus, C.; Zorb, C.; Ober, D. New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in Crotalaria depends on nodulation. Proc. Natl. Acad. Sci. USA 2015, 112, 4164–4169. [Google Scholar] [CrossRef]
- Abdallah, M.F.; De Boevre, M.; Landschoot, S.; De Saeger, S.; Haesaert, G.; Audenaert, K. Fungal endophytes control Fusarium graminearum and reduce Trichothecenes and Zearalenone in Maize. Toxins 2018, 10, 493. [Google Scholar] [CrossRef]
- Hewitt, K.G.; Hofmann, R.W.; Ball, O.J.; Finch, S.C.; Bryant, R.H.; Popay, A.J. Phosphorus induced changes in food quality enhance porina fitness feeding on Epichloë endophyte free forage grasses. Sci Rep. 2025, 15, 6448. [Google Scholar] [CrossRef] [PubMed]
- Taheur, F.B.; Kouidhi, B.; Al Qurashi, Y.M.A.; Salah-Abbes, J.B.; Chaieb, K. Review: Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 2019, 160, 12–22. [Google Scholar] [CrossRef]
- Vanhoutte, I.; Audenaert, K.; De Gelder, L. Biodegradation of mycotoxins: Tales from known and unexplored worlds. Front. Microbiol. 2016, 7, 561. [Google Scholar] [CrossRef] [PubMed]
- McCormick, S.P. Microbial detoxification of mycotoxins. J. Chem. Ecol. 2013, 39, 907–918. [Google Scholar] [CrossRef]
- Tétard-Jones, C.; Edwards, R. Potential roles for microbial endophytes in herbicide tolerance in plants. Pest. Manag. Sci. 2016, 72, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Kuklinsky-Sobral, J.; Araújo, W.L.; Mendes, R.; Pizzirani-Kleiner, A.A.; Azevedo, J.L. Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil 2005, 273, 91–99. [Google Scholar] [CrossRef]
- Trognitz, F.; Hackl, E.; Widhalm, S.; Sessitsch, A. The role of plant–microbiome interactions in weed establishment and control. FEMS Microbiol Ecol. 2016, 92, fiw138. [Google Scholar] [CrossRef]
- Vila-Aiub, M.M.; Neve, P.; Roux, F. A unified approach to the estimation and interpretation of resistance costs in plants. Heredity 2011, 107, 386–394. [Google Scholar] [CrossRef]
- Cummins, T.R.; Dib-Hajj, S.D.; Black, J.A.; Akopian, A.N.; Wood, J.N.; Waxman, S.G. A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J. Neurosci. 1999, 19, RC43. [Google Scholar] [CrossRef]
- Edwards, R.; Brazier-Hicks, M.; Dixon, D.P.; Cummins, I. Chemical manipulation of antioxidant defences in plants. Adv. Bot. Res. 2005, 42, 1–32. [Google Scholar]
- Young, C.A.; Felitti, S.; Shields, K.; Spangenberg, G.; Johnson, R.D.; Bryan, G.T.; Saikia, S.; Scott, B. A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genet. Biol. 2006, 43, 679–693. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Choi, S.K.; Kloepper, J.W.; Ryu, C.M. Genome sequence of the plant endophyte Bacillus pumilus INR7, triggering induced systemic resistance in field crops. Genome Announc. 2014, 2, 01093-14. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.S.; Yang, J.W.; Ryu, C.M. ISR meets SAR outside: Additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. Front. Plant Sci. 2013, 4, 122. [Google Scholar] [CrossRef] [PubMed]
- Kloepper, J.W.; Ryu, C.M. Bacterial endophytes as elicitors of induced systemic resistance. In Microbial Root Endophytes; Schulz, B., Boyle, C., Sieber, T.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 33–52. [Google Scholar]
- Constantin, M.E.; de Lamo, F.J.; Vlieger, B.V.; Rep, M.; Takken, F.L.W. Endophyte-mediated resistance in tomato to Fusarium oxysporum is independent of ET, JA, and SA. Front. Plant Sci. 2019, 10, 979. [Google Scholar] [CrossRef]
- Xu, H.; Song, J.; Luo, H.; Zhang, Y.; Li, Q.; Zhu, Y.; Xu, J.; Li, Y.; Song, C.; Wang, B.; et al. Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza. Mol. Plant 2016, 9, 949–952. [Google Scholar] [CrossRef]
- Salwan, R.; Sharma, M.; Sharma, A.; Sharma, V. Insights into plant beneficial microorganism-triggered induced systemic resistance. Plant Stress. 2023, 7, 100140. [Google Scholar] [CrossRef]
- Compant, S.; Clement, C.; Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 2010, 42, 669–678. [Google Scholar] [CrossRef]
- Kusajima, M.; Shima, S.; Fujita, M.; Minamisawa, K.; Che, F.S.; Yamakawa, H.; Nakashita, H. Involvement of ethylene signaling in Azospirillum sp. B510-induced disease resistance in rice. Biosci. Biotechnol. Biochem. 2018, 82, 1522–1526. [Google Scholar] [CrossRef]
- Plett, J.M.; Martin, F.M. Know your enemy, embrace your friend: Using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms. Plant J. 2018, 93, 729–746. [Google Scholar] [CrossRef]
- Rashid, M.H.; Chung, Y.R. Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes. Front. Plant Sci. 2017, 8, 1816. [Google Scholar] [CrossRef]
- Campos, M.L.; Kang, J.H.; Howe, G.A. Jasmonate-triggered plant immunity. J. Chem. Ecol. 2014, 40, 657–675. [Google Scholar] [CrossRef]
- Mejía, L.C.; Herre, E.A.; Sparks, J.P.; Winter, K.; García, M.N.; Van Bael, S.A.; Stitt, J.; Shi, Z.; Zhang, Y.; Guiltinan, M.J.; et al. Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front. Microbiol. 2014, 5, 479. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.; de Vos, M.; Sun, J.Y.; Sønderby, I.E.; Halkier, B.A.; Wittstock, U.; Jander, G. Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores. J. Chem. Ecol. 2010, 36, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Sergaki, C.; Lagunas, B.; Lidbury, I.; Gifford, M.L.; Schäfer, P. Challenges and approaches in microbiome research: From fundamental to applied. Front. Plant Sci. 2018, 9, 1205. [Google Scholar] [CrossRef]
- van der Heijden, M.G.; Schlaeppi, K. Root surface as a frontier for plant microbiome research. Proc. Nat. Acad. Sci. USA 2015, 112, 2299. [Google Scholar] [CrossRef] [PubMed]
- Blaser, M.; Bork, P.; Fraser, C.; Knight, R.; Wang, J. The microbiome explored: Recent insights and future challenges. Nat. Rev. Microbiol. 2013, 11, 213–217. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; Ver Loren van Themaat, E.; Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef]
- Sturz, A.V.; Matheson, B.G.; Arsenault, W.; Kimpinski, J.; Christie, B.R. Weeds as a source of plant growth promoting rhizobacteria in agricultural soils. Can. J. Microbiol. 2001, 47, 1013–1024. [Google Scholar] [CrossRef]
- Bamisile, B.S.; Dash, C.K.; Akutse, K.S.; Keppanan, R.; Wang, L. Fungal endophytes: Beyond herbivore management. Front. Microbiol. 2018, 9, 544. [Google Scholar] [CrossRef]
- Pérez-Jaramillo, J.E.; Mendes, R.; Raaijmakers, J.M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol. Biol. 2016, 90, 635–644. [Google Scholar] [CrossRef]
- Van Wees, S.; Van der Ent, S.; Pieterse, C. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 2008, 11, 443–448. [Google Scholar] [CrossRef]
- Marasco, R.; Rolli, E.; Ettoumi, B.; Vigani, G.; Mapelli, F.; Borin, S.; Abou-hadid, A.F.; El-Behairy, U.A.; Sorlini, C.; Cherif, A.; et al. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS ONE 2012, 7, 48479. [Google Scholar] [CrossRef]
- Jones, D.L.; Nguyen, C.; Finlay, R.D. Carbon flow in the rhizosphere: Carbon trading at the soil-root interface. Plant Soil 2009, 321, 5–33. [Google Scholar] [CrossRef]
- Panke-Buisse, K.; Poole, A.; Goodrich, J.; Lay, R.E.; Kniffin, J.K. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J. 2015, 9, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.E.; Kent, A.D.; Brisson, V.L.; Gaudin, A.C.M. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome 2019, 7, 146. [Google Scholar] [CrossRef] [PubMed]
- Nelkner, J.; Henke, C.; Lin, T.W.; Pätzold, W.; Hassa, J.; Jaenicke, S.; Grosch, R.; Pühler, A.; Sczyrba, A.; Schlüter, A. Effect of long-term farming practices on agricultural soil microbiome members represented by metagenomically assembled genomes (MAGs) and their predicted plant-beneficial genes. Genes 2019, 10, 424. [Google Scholar] [CrossRef]
- Hendgen, M.; Hoppe, B.; Döring, J.; Friedel, M.; Kauer, R.; Frisch, M.; Dahl, A.; Kellner, H. Effects of different management regimes on microbial biodiversity in vineyard soils. Sci. Rep. 2018, 8, 9393. [Google Scholar] [CrossRef]
- Attwood, G.T.; Wakelin, S.A.; Leahy, S.C.; Rowe, S.; Clarke, S.; Chapman, D.F.; Muirhead, R.; Jacobs, J.M.E. Applications of the soil, plant and rumen microbiomes in pastoral agriculture. Front. Nutr. 2019, 6, 107. [Google Scholar] [CrossRef]
- Garrett, K.A.; Frank, E.E.; Dendy, S.P.; Leslie, J.F.; Saleh, A. Microbiome engineers: Grazers, browsers, and the phytobiome stampede. bioRxiv 2017, 087494. [Google Scholar] [CrossRef]
- Liu, H.; Carvalhais, L.C.; Crawford, M.; Singh, E.; Dennis, P.G.; Pieterse, C.M.J.; Schenk, P.M. inner plant values: Diversity, colonization and benefits from endophytic bacteria. Front. Microbiol. 2017, 8, 2552. [Google Scholar] [CrossRef]
- Santoyo, G.; Moreno-Hagelsieb, G.; Orozco-Mosqueda Mdel, C.; Glick, B.R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 2016, 183, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Quiza, L.; St-Arnaud, M.; Yergeau, E. Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front. Plant Sci. 2015, 6, 507. [Google Scholar] [CrossRef]
- Jochum, M.D.; McWilliams, K.L.; Pierson, E.A.; Jo, Y.K. Host-mediated microbiome engineering (HMME) of drought tolerance in the wheat rhizosphere. PLoS ONE 2019, 14, 0225933. [Google Scholar] [CrossRef]
- Jones, P.; Garcia, B.J.; Furches, A.; Tuskan, G.A.; Jacobson, D. Plant host-associated mechanisms for microbial selection. Front. Plant Sci. 2019, 10, 862. [Google Scholar] [CrossRef] [PubMed]
- Philippe, G. Lolitrem B and indole diterpene alkaloids produced by endophytic fungi of the genus Epichloë and their toxic effects in livestock. Toxins 2016, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.; Vázquez de Aldana, B.R.; San Emeterio, L.; Zabalgogeazcoa, I. A survey of culturable fungal endophytes from Festuca rubra subsp. pruinosa, a grass from marine cliffs, reveals a core microbiome. Front. Microbiol. 2019, 9, 3321. [Google Scholar]
- Compant, S.; Saikkonen, K.; Mitter, B.; Campisano, A.; Mercado-Blanco, J. Editorial special issue: Soil, plants and endophytes. Plant Soil 2016, 405, 1–11. [Google Scholar] [CrossRef]
- Rasmussen, S.; Parsons, A.J.; Newman, J.A. Metabolomics analysis of the Lolium perenne-Neotyphodium lolii symbiosis: More than just alkaloids? Phytochem. Rev. 2009, 8, 535–550. [Google Scholar] [CrossRef]
- Panaccione, D.G.; Johnson, R.D.; Wang, J.; Young, C.A.; Damrongkool, P.; Scott, B.; Schardl, C.L. Elimination of ergovaline from a grass-Neotyphodium endophyte symbiosis by genetic modification of the endophyte. Plant Biol. 2001, 98, 12820–12825. [Google Scholar] [CrossRef]
- Hettiarachchige, I.K.; Elkins, A.C.; Reddy, P.; Mann, R.C.; Guthridge, K.M.; Sawbridge, T.I.; Forster, J.W.; Spangenberg, G.C. Genetic modification of asexual Epichloë endophytes with the perA gene for peramine biosynthesis. Mol. Genet. Genom. 2019, 294, 315–328. [Google Scholar] [CrossRef]
- Oyserman, B.O.; Medema, M.H.; Raaijmakers, J.M. Road MAPs to engineer host microbiomes. Curr. Opin. Microbiol. 2018, 43, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Vorholt, J.A.; Vogel, C.; Carlström, C.I.; Müller, D.B. Establishing causality: Opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 2017, 22, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Uroz, S.; Courty, P.E.; Oger, P. Plant symbionts are engineers of the plant-associates microbiome. Trends Plant Sci. 2019, 24, 905–916. [Google Scholar] [CrossRef] [PubMed]
- Hestrin, R.; Lee, M.R.; Whitaker, B.K.; Pett-Ridge, J. The switchgrass microbiome: A review of structure, function, and taxonomic distribution. Phytobiomes J. 2020, 5, 14–28. [Google Scholar] [CrossRef]
- Saikkonen, K.; Nissinen, R.; Helander, M. Toward Comprehensive Plant Microbiome Research. Front. Ecol. Evol. 2020, 8, 61. [Google Scholar] [CrossRef]
Plant Species | Season Type | Locations | Potential Causal Agent(s) | Types of Toxins | Refs. |
---|---|---|---|---|---|
Bermuda grass (Cynodon dactylon) | Warm | South Florida, Louisiana, and East Texas | Fusarium, Penicillium, Aspergillus, and Alternaria | Zearalenone, Fumonisin, deoxynivalenol, 15-acetyl deoxynivalenol, deoxynivalenol-3-glucoside, ZEA-4-sulfate, and beauvericin | [3,4,11] |
Star Grass (Cynodon nlemfuensis) | |||||
Ryegrass (Lolium perenne) | Cool | North Carolina to Florida; Mississippi, Alabama, and Georgia | Neotyphodium lolii, Gliocladium-like sp., and Epichloë spp. | Lolitrems, Permaine, Paxilline, Ergovaline, and Lolitrem B, Penitrem A, and Fumitremorgin B | [13] |
Bahia Grass (Paspalum notatum) | Warm | Southern and Southeastern USA | Fusarium, Balansia, and Myriogenospora | Zearalenone, ZEAR-4-sulfate Q1, beauvericin, emodine, ergoline, and 15-AcetylDON | [3,12] |
Centipede Grass (Eremochloa ophiuroides) | Warm | Southeast Carolina, Southern Coastal Plains to the Texas Gulf Coast, and Arkansas | Rhizoctonia sp. and Sclerotinia sp. | Ergosterol, Zearalenone, and Deoxynivalenol | [14] |
Kentucky Blue Grass (Poa pratensis) | Cool | North Dakota and Northeastern Oregon | Fusarium spp. and Aspergillus spp. | Deoxynivalenol, Zearalenone, fumonisins, and aflatoxins | [15] |
St. Augustine Grass (Stenotaphrum secundatum) | Warm | Southeastern USA, Texas, and California | Fusarium, Penicillium spp., Aspergillus spp., and Rhizoctonia sp. | aflatoxins, ochratoxins, patulin, fumonisins, zearalenones, and trichothecenes | [14] |
Limpo Grass (Hemarthria altissima) | Warm | South Florida, | Fusarium, Balansia, Aspergillus, and Bispora sp. | Zearalenone, ZEAR-4-sulfate Q1, beauvericin, emodine, ergoline, and 15-AcetylDON | [3] |
Switch Grass (Panicum virgatum L.) | Warm | All United States except California and Pacific Northwest | Bipolaris oryzae Alternaria spp. and Fusarium graminearum | Steroidal saponins | [16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, V.C.; Karapanos, I. Decoding Potential Co-Relation Between Endosphere Microbiome Community Composition and Mycotoxin Production in Forage Grasses. Agriculture 2025, 15, 1393. https://doi.org/10.3390/agriculture15131393
Verma VC, Karapanos I. Decoding Potential Co-Relation Between Endosphere Microbiome Community Composition and Mycotoxin Production in Forage Grasses. Agriculture. 2025; 15(13):1393. https://doi.org/10.3390/agriculture15131393
Chicago/Turabian StyleVerma, Vijay Chandra, and Ioannis Karapanos. 2025. "Decoding Potential Co-Relation Between Endosphere Microbiome Community Composition and Mycotoxin Production in Forage Grasses" Agriculture 15, no. 13: 1393. https://doi.org/10.3390/agriculture15131393
APA StyleVerma, V. C., & Karapanos, I. (2025). Decoding Potential Co-Relation Between Endosphere Microbiome Community Composition and Mycotoxin Production in Forage Grasses. Agriculture, 15(13), 1393. https://doi.org/10.3390/agriculture15131393