Nature-Based Solutions Contribute to Improve the Adaptive Capacity of Coffee Farmers: Evidence from Mexico
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Description
2.2.1. Rapid Systematic Review
2.2.2. Indicator Information and Adaptive Capacity Index
2.2.3. Statistical Analysis
3. Results
3.1. Rapid Systematic Review and Indicator Selection
3.2. Indicator Information in the Field
3.3. Adaptive Capacity Index
3.4. Strengthening Adaptive Capacity
Strategies for Strengthening AC by Management Type | ||||||
---|---|---|---|---|---|---|
Dimension | Existing NbS in the Organization | Subdimension | Diversified Polyculture | Simple Polyculture | Single Shadow | Full-Sun Cultivation |
Natural | Use of multi-purpose trees and shrubs for shade in the coffee plantation | Agro-biodiversity | Maintain the current tree and shrub diversity in the NbS at a density of approximately 350 to 500/plant/ha. | Increase tree and shrub diversity by using multiple-use species at a density of around 350 to 500 plants/ha [39,40]. The use of species such as frijolillo (Cojoba arborea L. Britton and Rose), jonote (Heliocarpus tomentosus Turcz), chinene (Persea schiedeana Nees), aguacatillo (Persea sp.), jinicuil, chalahuíte, or vainillo (Inga sp.), pink cedar (Acrocarpus fraxinifolius Wight et Arn), wormwood (Lippia myriocephala Schltdl. and Cham), zempalehua (Ulmus mexicana), lemon (Citrus latifolia Tan.), guava (Psidium guajava L.), or orange (Citrus sinensis L. Osbeck) *. | Establish proposed tree and shrub species in SS *. | |
Use of tree and shrub species that do not compete with coffee cultivation for water resources | Quality and availability of water sources | Continue to use tree and shrub species that do not compete with the coffee crop for water resources. | Do not use tree and shrub species that compete for water resources with the coffee crop (e.g., Eriobotrya japonica, Trema micrantha) [46] *. | Do not use tree and shrub species that compete for water resources with the coffee crop (e.g., Eriobotrya japonica, Trema micrantha) [46] *. | ||
Avoid excessive use of nitrogen fertilizers to reduce potential nitrate leaching to groundwater [43]. | ||||||
Soil quality | Continuing organic soil management in the NbS | Increase soil organic matter [44] *. | Organic soil management. Maintain soil organic matter [44] *. Use of cover crops such as cacahuatillo (Arachis pintoi) [47] *. | |||
Social | Organization | Staying organized | Consider joining an organization [48]. | |||
Collective action | Foster a horizontal mechanism of information transfer and exchange between producers to solve problems related to extreme hydrometeorological events affecting coffee cultivation (e.g., producer-to-producer seminars) [41] *. | |||||
Access to climate information | Sharing local climate information in real time through groups created in instant messaging applications on mobile phones (WhatsApp, Facebook, etc.) [49] *. | |||||
Human | Use of barriers and live fences | Capacity building | Maintain sustainable practices that increase the climate resilience of the NbS *. | Disseminate and exchange information among farmers on successful sustainable practices that increase the resilience of coffee agroforestry systems to extreme weather events (e.g., short courses, visits to demonstration plots, workshops, others) [41] *. | ||
Economic | Sources of income | Consider the sale of fruits, firewood, and timber they currently obtain in the NbS they use. | Increase income diversity within the coffee agroforestry system through the use of multiple-use species (consider the species proposed in the natural dimension) [50]. | Establish multi-purpose tree and shrub species (consider the species proposed in the natural dimension) for the sale of products other than coffee cultivation [50]. | ||
Access to credit and/or insurance | Increased dissemination on access to credit and insurance (talks, brochures, posters) [51]. | |||||
Savings | Encourage the creation of a money-saving association in the organization or community [42] *. | |||||
Physics | Access to strategic infrastructure for production | Implement individual crescent terraces at the base of each coffee plant at a depth of 5 cm [43,44]. | ||||
Use of barriers and live fences | Maintain the sediment retention works in the NbS. | Maintain and increase the sediment retention works in the NbS. | Encourage the use of sediment retention works on steep slope plots (living barriers) [47] *. | |||
Access to strategic infrastructure for protection | Negotiate with community authorities for the maintenance of unpaved roads through the application of gravel [52]. | |||||
Innovation, technology, and good management and production practices | Promote integrated management and monitoring of the main pests and diseases affecting coffee: Nematodes (Meloidogyne incognita and Fusarium oxysporum): prophylaxis in nurseries. In the field, biological control with Paecilomyces sp. Strain and use of earthworms. Rust: Keep trees in shade to avoid wind dispersal of spores. Keep relative humidity high in the months with less rainfall. CBB: Trapping with attractants based on essential oils and alcohols (methanol-ethanol 3:1). Army ants (Atta mexicana and Acromyrmex octospinosus): Biological control using mycoparasitic fungi (Escovopsis weberi) and entomopathogens such as Metarhizium anisopliae and Beauveria bassiana [53] *. | |||||
Maintain the soil conservation practices carried out in the NbS. | Maintain and increase soil conservation practices in the NbS. | Increase soil conservation practices: Zero tillage, application of biofertilizers (e.g., humic acids), leaving pruning residues on the ground, machete cutting of weeds, avoiding cutting at ground level. Avoid leaving the soil bare [47]. | ||||
Increase technical advice on responsible organic fertilizer management [43]. | Promote responsible organic fertilizer management by raising producer awareness on what fertilizer to use, when to use it, how much to use and how to apply it [43]. | |||||
Increased technical advice to farmers on how to produce their own biofertilizers [54]. | ||||||
Politics | Participatory planning tools | Incorporate participatory monitoring and evaluation mechanisms that allow producers to assess the progress and adjustment of adaptation strategies implemented in the field [45]. | ||||
Promote collective decision making, through participatory mechanisms that enable producers to influence decisions that affect them [55] *. | ||||||
Adaptive governance | Implement training programs that address the specific needs of producers, taking into account their prior knowledge and local realities [45] *. |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NbS | Nature-based solutions |
AC | Adaptive capacity |
DP | Diverse polyculture |
SP | Simple polyculture |
SS | Simplified shade |
CS | Full-sun cultivation |
References
- Ferreira, F.C.S.; Alves, F.; Loureiro, J.J. Sustainable futures: From causes of environmental degradation to solutions. Discov. Sustain. 2024, 5, 63. [Google Scholar] [CrossRef]
- Harvey, C.A.; Saborio-Rodríguez, M.; Martinez-Rodríguez, M.R.; Viguera, B.; Chain-Guadarrama, A.; Vignola, R.; Alpizar, F. Climate change impacts and adaptation among smallholder farmers in Central America. Agric. Food Secur. 2018, 7, 57. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability, 1st ed.; Pörtner, H.O., Roberts, D.C., Poloczanska, E.S., Mintenbeck, K., Eds.; Cambridge University Press: Cambridge, UK, 2022; pp. 67–83. [Google Scholar]
- Almazroui, M.; Islam, M.N.; Saeed, F. Projected Changes in Temperature and Precipitation Over the United States, Central America, and the Caribbean in CMIP6 GCMs. Earth Syst. Environ. 2021, 5, 1–24. [Google Scholar] [CrossRef]
- Naz, B.S.; Kao, S.C.; Ashfaq, M.; Gao, H.; Rastogi, D.; Gangrade, S. Effects of climate change on streamflow extremes and implications for reservoir inflow in the United States. J. Hydrol. 2018, 556, 359–370. [Google Scholar] [CrossRef]
- Pagan, B.R.; Ashfaq, M.; Rastogi, D.; Kendall, D.R.; Kao, S.C.; Naz, B.; Pal, J. Extreme hydrological events drive reduction in water supply in the southwestern United Sates. Environ. Res. Lett. 2016, 11, 094026. [Google Scholar] [CrossRef]
- Batibeniz, F.; Ashfaq, M.; Diffenbaugh, N.S.; Key, K.; Evans, K.J.; Turuncoglu, U.U.; Önol, B. Doubling of U.S. population exposure to climate extremes by 2050. Earth’s Future 2020, 8, e2019EF001421. [Google Scholar] [CrossRef]
- Parada-Molina, P.C.; Cerdán, C.R.; Ceballos, G.O.; Cervantes-Pérez, J. Hemileia vastatrix: Una prospección ante el cambio climático. Ecosistemas Recur. Agropecu. 2020, 7. [Google Scholar] [CrossRef]
- Libert, A.A.; Ituarte-Lima, C.; Elmqvist, T. Learning from social-ecological crisis for legal resilience building: Multi-scale dynamics in the coffee rust epidemic. Sustain. Sci. 2020, 15, 485–501. [Google Scholar] [CrossRef]
- Granados-Ramírez, R.; Medina-Barrios, M.D.; Peña-Manjarrez, V. Variación y cambio climático en la vertiente del Golfo de México. Impactos en la cafeticultura. Rev. Mex. Cienc. Agríc. 2018, 5, 473–485. [Google Scholar] [CrossRef]
- Anderson, R.; Bayer, P.E.; Edwards, D. Climate change and the need for agricultural adaptation. Curr. Opin. Plant Biol. 2020, 56, 197–202. [Google Scholar] [CrossRef]
- Shahzad, A.; Ullah, S.; Dar, A.A.; Sardar, M.F.; Mehmood, T.; Tufail, M.A.; Shakoor, A.; Haris, M. Nexus on climate change: Agriculture and possible solution to tackle future climate change. Environ. Sci. Pollut. Res. 2021, 28, 14211–14232. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Available online: https://www.unep.org/news-and-stories/press-release/un-environment-assembly-concludes-14-resolutions-curb-pollution (accessed on 12 February 2025).
- International Union for Conservation of Nature. Guidance for Using the IUCN Global Standard for Nature-Based Solutions. A User-Friendly Framework for the Verification, Design and Scaling up of Nature-Based Solutions, 1st ed.; IUCN: Gland, Switzerland, 2020; pp. 21–45. [Google Scholar]
- Villamayor-Tomas, S.; Bisaro, A.; Moull, K.; Moull, K.; Albizua, A.; Mank, I.; Hinkel, J.; Leppert, G.; Noltze, M. Developing countries can adapt to climate change effectively using nature-based solutions. Commun. Earth Environ. 2024, 5, 214. [Google Scholar] [CrossRef]
- Williams, C.; Fenton, A.; Huq, S. Knowledge and Adaptive Capacity. Nat. Clim. Change 2015, 5, 82–83. [Google Scholar] [CrossRef]
- Secretaría de Medio Ambiente y Recursos Naturales; Instituto Nacional de Ecología y Cambio Climático. Contribución Determinada a Nivel Nacional. Actualización 2022, 1st ed.; SEMARNAT-INECC: Ciudad de México, Mexico, 2022; p. 140. [Google Scholar]
- Telwala, Y.; Sharma, R. Unlocking the potential of agroforestry as a nature-based solution for localizing sustainable development goals: A case study from a drought-prone region in rural India. Nat.-Based Solut. 2023, 3, 100045. [Google Scholar] [CrossRef]
- Instituto Interamericano de Cooperación para la Agricultura (IICA); Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Soluciones Basadas en la Naturaleza: Experiencias y Oportunidades en los Paisajes Agrícolas de América Latina y el Caribe, 1st ed.; IICA-CATIE: San José, Costa Rica, 2019; pp. 2–4. [Google Scholar]
- Sillero-Medina, J.A.; Ruiz-Sinoga, J.D. Adaptación a la dinámica de cambio climático mediante soluciones basadas en la naturaleza (NBS). El caso del área SIPAM de la Axarquía (Málaga). In Proceedings of the XVIII Congreso de la Asociación Española de Geografía, Logroño, Spain, 14 September 2023. [Google Scholar]
- Muthee, K.; Duguma, L.; Nzyoka, J.; Minang, P. Ecosystem-Based Adaptation Practices as a Nature-Based Solution to Promote Water-Energy-Food Nexus Balance. Sustainability 2021, 13, 1142. [Google Scholar] [CrossRef]
- Ibrahim, A.; Marshall, K.; Carmen, E.; Blackstock, K.L.; Waylen, K.A. Raising standards for stakeholder engagement in Nature-based Solutions: Navigating the why, when, who and how. Environ. Sci. Policy 2025, 163, 1462–9011. [Google Scholar] [CrossRef]
- Malekpour, S.; Tawfik, S.; Chesterfield, C. Designing collaborative governance for nature-based solutions. Urban For. Urban Green. 2021, 62, 1618–8667. [Google Scholar] [CrossRef]
- Palomo, I.; Locatelli, B.; Otero, I.; Colloff, M.; Crouzat, E.; Cuni-Sanchez, A.; Gómez-Baggethun, E.; González-García, A.; Grêt-Regamey, A.; Jiménez-Aceituno, A.; et al. Assessing nature-based solutions for transformative change. One Earth 2021, 4, 730–741. [Google Scholar] [CrossRef]
- Chausson, A.; Turner, B.; Seddon, D.; Chabaneix, N.; Girardin, C.A.J.; Kapos, V.; Key, I.; Roe, D.; Smith, A.; Woroniecki, S.; et al. Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob. Change Biol. 2020, 26, 6134–6155. [Google Scholar] [CrossRef]
- Nelson, D.R.; Bledsoe, B.P.; Ferreira, S.; Nibbelink, N.P. Challenges to realizing the potential of nature-based solutions. ScienceDirect 2020, 45, 49–55. [Google Scholar] [CrossRef]
- Hoang, L.P.; Pot, M.; Tran, D.D.; Ho, L.H.; Park, E. Adaptive capacity of high- and low dyke farmers to hydrological changes in the Vietnamese Mekong delta. Environ. Res. 2023, 224, 115423. [Google Scholar] [CrossRef] [PubMed]
- González, A.N.; Flores, S.M.; González, F.M.C. Capacidad adaptativa en ejidos costeros del Pacífico mexicano: Una aproximación desde los medios de vida sustentables (MVS). Soc. Amb. 2022, 25, 1–29. [Google Scholar] [CrossRef]
- Escamilla-Prado, E.; Tinoco-Rueda, J.Á.; Pérez-Villatoro, H.A.; Aguilar-Calvo, J.Á.; Sánchez-Hernández, R.; Ayala-Montejo, D. Socio-ecological transformation in the coffee agroecosystem affected by rust in Chiapas, México. Rev. Fitotec. Mex. 2021, 44, 643–653. [Google Scholar]
- Martínez-López, A.; Cruz-León, A.; Sangerman-Jarquín, D.M.; Cárdenas, S.D.; Herrera, J.C.; Ramírez-Valverde, B. Prevalencia de los saberes tradicionales en las unidades de producción de café de la región Huatusco, Veracruz, México/Prevalência do conhecimento tradicional nas unidades de produção de café da região de Huatusco, Veracruz, México. Braz. J. Anim. Environ. Res. 2022, 5, 1172–1185. [Google Scholar] [CrossRef]
- Ruiz-García, P.; Conde-Álvarez, C.; Gómez-Díaz, J.D.; Monterroso-Rivas, A.I. Projections of local knowledge-based adaptation strategiexicanexican coffee farmers. Climate 2021, 9, 60. [Google Scholar] [CrossRef]
- Koutouleas, A.; Sarzynski, T.; Bordeaux, M.; Bosselmann, A.S.; Campa, C.; Etienne, H.; Turreira-García, N.; Rigal, C.; Vaast, P.; Ramalho, J.C.; et al. Shaded-Coffee: A Nature-Based Strategy for Coffee Production Under Climate Change? A Review. Front. Sustain. Food Syst. 2022, 6, 877476. [Google Scholar] [CrossRef]
- Douglass-Gallagher, E.; Stuart, D. Crop Growers’ Adaptive Capacity to Climate Change: A Situated Study of Agriculture in Arizona’s Verde Valley. Environ. Manag. 2019, 63, 94–109. [Google Scholar] [CrossRef]
- Creswell, J.W. Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research, 1st ed.; Pearson: Boston, MA, USA, 2012; pp. 35–45. [Google Scholar]
- Aguilar-Barojas, S. Fórmulas para el cálculo de la muestra en investigaciones de salud. Salud Tabasco 2005, 11, 333–338. [Google Scholar]
- Corbin, J.; Strauss, A. Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory, 3rd ed.; SAGE Publications: Thousand Oaks, CA, USA, 2012; 79p. [Google Scholar]
- Monterroso, A.; Conde, C.; Gay, C.; Gómez, D.; López, J. Two methods to assess vulnerability to climate change in the Mexican agricultural sector. Mitig. Adapt. Strat. Glob. Change 2014, 19, 445–461. [Google Scholar] [CrossRef]
- Negash, M.; Kanninen, M. Modeling biomass and soil carbon sequestration of indigenous agroforestry systems using CO2FIX approach. Agr. Ecosyst. Environ. 2015, 203, 147–155. [Google Scholar] [CrossRef]
- Ruiz-García, P.; Monterroso-Rivas, A.I.; Valdés-Velarde, E.; Escamilla-Prado, E.; Gómez-Díaz, J.D. Carbon stocks in coffee agroforestry systems in the face of climate change: Case México. Agron. Mesoam. 2022, 33, 48671. [Google Scholar] [CrossRef]
- Soto-Pinto, L.; Colmenares, S.E.; Kanter, M.B.; Cruz, A.L.; Lugo, E.E.; Hernández, B.H.; Jiménez-Soto, E. Contributions of Agroforestry Systems to Food Provisioning of Peasant Households: Conflicts and Synergies in Chiapas, Mexico. Front. Sustain. Food Syst. 2022, 5, 756611. [Google Scholar] [CrossRef]
- Eise, J.; Lambert, N.J.; Wiemer, E.C. Aprovechar las fortalezas de las redes comunitarias para apoyar el intercambio de información sobre adaptación al cambio climático: Un estudio con productores de café en Risaralda, Colombia. Clim. Change 2021, 168, 12. [Google Scholar] [CrossRef]
- Simelton, E.; Mulia, R.; Nguyen, T.T.; Duong, T.M.; Le, H.X.; Tran, L.H.; Halbherr, L. Women’s Involvement in Coffee Agroforestry Value-Chains: Financial Training, Village Savings and Loans Associations, and Decision Power in Northwest Vietnam, 1st ed.; CCAFS Working Paper no. 340; CGIAR: Wageningen, The Netherlands, 2021; pp. 3–40. [Google Scholar]
- Srivastav, A.L.; Patel, N.; Rani, L.; Kumar, P.; Dutt, I.; Maddodi, B.S.; Kumar, V.C. Sustainable options for fertilizer management in agriculture to prevent water contamination: A review. Environ. Dev. Sustain. 2024, 26, 8303–8327. [Google Scholar] [CrossRef]
- Rodríguez, M.J.; Pimienta, T.D.; Marroquín, A.F.J.; Fuentes, P.M.A. Estrategias de conservación—Restauración de suelos y captación de agua en cafetales del Soconusco, Chiapas. In Biodiversidad, Servicios Ecosistémicos y los Objetivos del Desarrollo Sostenible en México, 1st ed.; Ávila, A.V., González, M.T., Eds.; UAEMex: Toluca, Mexico, 2019; pp. 307–327. [Google Scholar]
- Cooper, S.J.; Wheeler, T. Adaptive governance: Livelihood innovation for climate resilience in Uganda. Geoforum 2015, 65, 96–107. [Google Scholar] [CrossRef]
- Muñoz-Villers, L.E.; Holwerda, F.; Alvarado-Barrientos, M.S.; Geris, J.; Dawson, T.E. Examining the complementarity in belowground water use between different varieties and ages of Arabica coffee plants and dominant shade tree species in an organic agroecosystem. Agric. Water Manag. 2025, 307, 109248. [Google Scholar] [CrossRef]
- Kobusinge, J.; Gabiri, G.; Kagezi, G.H.; Sseremba, G.; Nakitende, A.; Arinaitwe, G.; Twesigye, C.K. Potential of Moisture Conservation Practices to Improve Soil Properties and Nutrient Status of Robusta Coffee Plant. Agronomy 2023, 13, 1148. [Google Scholar] [CrossRef]
- Shapiro, E.; King, D.; Rivera, A.; Wang, S.; Finley, J. A participatory framework for feasibility assessments of climate change resilience strategies for smallholders: Lessons from coffee cooperatives in Latin America. Int. J. Agric. Sustain. 2020, 18, 21–34. [Google Scholar] [CrossRef]
- Ventocilla, M.C.; Grossi, A.; Hernández, A.N.; Dinku, T.; Recha, J. Brewing Resilience for Ethiopia’s Smallholder Coffee Farmers, 1st ed.; CGIAR: Wageningen, The Netherlands, 2020; pp. 2–6. [Google Scholar]
- Anderzén, J.; Guzman, L.A.; Luna, G.D.; Merrill, S.C.; Caswell, M.; Méndez, E.; Hernández, R.J.; Mier, M.; Giménez, C.T. Effects of on-farm diversification strategies on smallholder coffee farmer food security and income sufficiency in Chiapas, Mexico. J. Rural Stud. 2020, 77, 33–46. [Google Scholar] [CrossRef]
- Quiroga, S.; Suárez, C.; Solís, J.D. Exploring coffee farmers’ awareness about climate change and water needs: Smallholders’ perceptions of adaptive capacity. Environ. Sci. Policy 2015, 45, 53–66. [Google Scholar] [CrossRef]
- Ramos-Scharrón, C.E.; Figueroa-Sánchez, Y. Plot-, farm-, and watershed-scale effects of coffee cultivation in runoff and sediment production in western Puerto Rico. J. Environ. Manag. 2017, 202, 126–136. [Google Scholar] [CrossRef]
- Carrión, V.G.L.; Williams, T.; Vidal, L.G.M.; Valenzuela, J.E.; Villain, G.L. Implemento de un manejo integrado de plagas y enfermedades en cafetales de la Zona Centro del Estado de Veracruz. In Diagnóstico, Productividad y Ambiente en Cafetales: Estudios Regionales y de Caso, 1st ed.; López, M.R., Díaz, P.G., Eds.; INIFAP: Veracruz, Mexico, 2020; pp. 333–357. [Google Scholar]
- Silvera-Pablo, C.C.; Julca-Otiniano, A.; Rivera-Ashqui, T.A.; Silva-Paz, R.J. Impacto of humic acids and biofertilizers on yield and sensory quality of organic coffe varieties in peruviam plantations. Int. J. Agric. Biosci. 2024, 13, 402–409. [Google Scholar] [CrossRef]
- Morales, L.V.; Robiglio, V.; Baca, M.; Bunn, C.; Reyes, M. Planning for adaptation: A system approach to understand the value chain’s role in supporting smallholder coffee farmers’ adaptative capacity in Peru. Front. Clim. 2022, 4, 788369. [Google Scholar] [CrossRef]
- Ruiz-Meza, L.E. Adaptive capacity of small-scale coffee farmers to climate change impacts in the Soconusco region of Chiapas, Mexico. Clim. Dev. 2015, 7, 100–109. [Google Scholar] [CrossRef]
- Quiroga, S.; Suárez, C.; Solís, J.D.; Martinez-Juarez, P. Framing vulnerability and coffee farmers’ behaviour in the context of climate change adaptation in Nicaragua. World Dev. 2020, 126, 104733. [Google Scholar] [CrossRef]
- Ferrás, Y.N.; Bustamante, G.C.A.; Pérez, S.V.; Sánchez, E.C.; Rivera, E.R. Vulnerabilidad y capacidad adaptativa al cambio climático en fincas cafetaleras de Jibacoa, Cuba. Rev. Fac. Agron. 2024, 44, 92–101. [Google Scholar]
- Agnoletti, M.; Santoro, A. Agricultural heritage systems and agrobiodiversity. Biodivers. Conserv. 2022, 31, 2231–2241. [Google Scholar] [CrossRef]
- Zimmerer, K.S. Understanding agrobiodiversity and the rise of resilience: Analytic category, conceptual boundary object or meta-level transition? Resilience 2015, 3, 183–198. [Google Scholar] [CrossRef]
- Carrasco-Espinosa, K.; Avitia, M.; Barrón-Sandoval, A.; Abbruzzini, T.F.; Cabrera, U.I.S.; Arroyo-Lambaer, D.; Uscanga, A.; Campo, J.; Benítez, M.; Wegier, A.; et al. Land-Use Change and Management Intensification Is Associated with Shifts in Composition of Soil Microbial Communities and Their Functional Diversity in Coffee Agroecosystems. Microorganisms 2022, 10, 1763. [Google Scholar] [CrossRef]
- Poncet, V.; Asten, P.v.; Millet, C.P.; Vaast, P.; Allinne, C. Which diversification trajectories make coffee farming more sustainable? Curr. Opin. Environ. Sustain. 2024, 68, 101432. [Google Scholar] [CrossRef]
- Núñez, A.P.; Gutiérrez-Montes, I.; Hernández-Núñez, H.E. Diverse farmer livelihoods increase resilience to climate variability in southern Colombia. Land Use Policy 2023, 131, 106731. [Google Scholar] [CrossRef]
- Lyon, S. Coping with Coffee Rust in Oaxaca, Mexico: Vulnerability and the Impact of Fair Trade on Smallholders’ Adaptive Capacity. Individual and Social Adaptations to Human Vulnerability. Econ. Anthropol. 2018, 38, 79–101. [Google Scholar] [CrossRef]
- Smit, B.; Burton, I.; Klein, R.J.; Wandel, J. An Anatomy of Adaptation to Climate Change and Variability. Clim. Change 2000, 45, 223–251. [Google Scholar] [CrossRef]
- Ruiz-García, P.; Gómez-Díaz, J.D.; Valdes-Velarde, E.; Tinoco-Rueda, J.A.; Flores-Ordoñez, M.; Monterroso-Rivas, A.I. Caracterización biofísica y de composición estructural en sistemas agroforestales de café orgánico de Veracruz. Trop. Subtrop. Agroecosyt. 2020, 23, 37. Available online: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/3102/1415 (accessed on 8 April 2025). [CrossRef]
- Jawo, T.O.; Kyereh, D.; Lojka, B. The impact of climate change on coffee production of small farmers and their adaptation strategies: A review. Clim. Dev. 2022, 15, 93–109. [Google Scholar] [CrossRef]
- Ramírez-León, A.; Avila-Foucat, V.S.; Ezzine-de-Blas, D. The historical trajectory of a coffee agri-food system: A case study in Oaxaca, Mexico. Ambio 2024, 53, 1847–1863. [Google Scholar] [CrossRef]
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Agrobiodiversidad. Available online: https://www.biodiversidad.gob.mx/diversidad/que-es/agrobiodiversidad (accessed on 25 January 2025).
- Key, I.B.; Smith, A.C.; Turner, B.; Chausson, A.; Girardin, C.A.J.; Macgillivray, M.; Seddon, N. Biodiversity outcomes of nature-based solutions for climate change adaptation: Characterising the evidence base. Front. Environ. Sci. 2022, 10, 905767. [Google Scholar] [CrossRef]
- Secretaría de Medio Ambiente y Recursos Naturales. Informe de la Situación del Medio Ambiente en México. Compendio de Estadísticas Ambientales. Indicadores Clave y de Desempeño Ambiental, 1st ed.; SEMARNAT: Ciudad de México, Mexico, 2016; p. 76. [Google Scholar]
- Kumari, G.; Sharma, Y.; Sajjad, H. Assessing livelihood vulnerability of rural communities in Dimapur district of Nagaland state, India: Policy implications. GeoJournal 2023, 88, 3143–3162. [Google Scholar] [CrossRef]
- Swami, D.; Parthasarathy, D. Dynamics of exposure, sensitivity, adaptive capacity and agricultural vulnerability at district scale for Maharashtra, India. Ecol. Indic. 2021, 121, 107206. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Hacia una Definición de la Salud del Suelo, 1st ed.; FAO: Roma, Italia, 2020; p. 10. [Google Scholar]
- Zanmassou, Y.C.; Al-Hassan, R.M.; Mensah-Bonsu, A.; Osei-Asare, Y.B.; Igue, C.B. Assessment of smallholder farmers’ adaptive capacity to climate change: Use of a mixed weighting scheme. J. Environ. Manag. 2020, 276, 111275. [Google Scholar] [CrossRef]
- Comisión Nacional Forestal. Estado que Guarda el Sector Forestal en México 2021, 1st ed.; CONAFOR: Zapopan, Mexico, 2022; p. 459. [Google Scholar]
- Monterroso, A.I.; Conde, C. Adaptive Capacity: Identifying the Challenges Faced by Municipalities Addressing Climate Change in Mexico. Clim. Dev. 2018, 10, 729–741. [Google Scholar] [CrossRef]
- Fatima, N.; Alamgir, A.; Khan, M.A.; Owais, M. Evaluating dual exposure by using climate-conflict vulnerability index on the coastal districts of Sindh, Pakistan. Environ. Monit. Assess. 2022, 194, 550. [Google Scholar] [CrossRef]
- Maldonado-Méndez, M.D.L.; Romo-Lozano, J.L.; Monterroso-Rivas, A.I. Determinant Indicators for Assessing the Adaptive Capacity of Agricultural Producers to Climate Change. Atmosphere 2022, 13, 1114. [Google Scholar] [CrossRef]
- Lutz, B. De la acción colectiva en el campo a la sociedad civil rural. Acta Sociol. 2017, 74, 39–56. [Google Scholar] [CrossRef]
- Programa de las Naciones Unidas para el Desarrollo. Desarrollo de Capacidades: Texto Básico del PNUD, 1st ed.; PNUD: New York, NY, USA, 2009; p. 56. [Google Scholar]
- Khan, N.A.; Gao, Q.; Abid, M.; Shah, A.A. Mapping farmers’ vulnerability to climate change and its induced hazards: Evidence from the rice-growing zones of Punjab, Pakistan. Environ. Sci. Contam. Res. Int. 2021, 28, 4229–4244. [Google Scholar] [CrossRef]
- Gupta, K.; Negi, M.; Nandy, S.; Alatalo, J.M.; Singh, V.; Pandey, R. Assessing the vulnerability of socio-environmental systems to climate change along an altitude gradient in the Indian Himalayas. Ecol. Indic. 2019, 106, 105512. [Google Scholar] [CrossRef]
- Ahmad, M.I.; Ma, H. Climate change and livelihood vulnerability in mixed crop-livestock areas: The case of Province Punjab, Pakistan. Sustainability 2020, 12, 586. [Google Scholar] [CrossRef]
- Laureta, R.P.; Regalado, R.R.H.; De La Cruz, E.B. Climate vulnerability scenario of the agricultural sector in the Bicol River Basin, Philippines. Clim. Change 2021, 168, 4–24. [Google Scholar] [CrossRef]
- Mekonen, A.A.; Berlie, A.B. Rural households’ livelihood vulnerability to climate variability and extremes: A livelihood zone-based approach in the Northeastern Highlands of Ethiopia. Ecol. Process. 2021, 10, 55. [Google Scholar] [CrossRef]
- Mahfoud, C.; Adjizian-Gerard, J. Local adaptive capacity to climate change in mountainous agricultural areas in the eastern Mediterranean (Lebanon). Clim. Risk Manag. 2021, 33, 100345. [Google Scholar] [CrossRef]
- Masud, M.M.; Akhtar, R.; Al Mamun, A.; Uddin, M.S.; Siyu, L.; Yang, Q. Modelling the sustainable agriculture management adaptation practices: Using adaptive capacity as a mediator. Front. Environ. Sci. 2022, 10, 963465. [Google Scholar] [CrossRef]
- Tessema, I.; Simane, B. Vulnerability analysis of smallholder farmers to climate variability and change: An agro-ecological system-based approach in the Fincha’a sub-basin of the upper Blue Nile Basin of Ethiopia. Ecol. Process. 2019, 8, 5. [Google Scholar] [CrossRef]
Extreme Weather Condition | Actions Taken |
---|---|
Collectives | |
Torrential rain Frosts Hailstorms | Protection of coffee cultivation through tree and shrub species for multiple uses (fruit trees, timber, firewood). * |
Prolonged droughts during the mid-summer heatwave season | Use tree species that do not compete with coffee for water resources (e.g., Trema micrantha). |
Shade management to maintain 40 to 60% shade cover. | |
Water from the coffee processing stage (washing and pulping) is recycled to irrigation coffee seedlings produced in the organization’s nursery. | |
Individuals | |
Strong winds (average speed between 41 and 70 K m/h) Thunderstorms | Live fences with multi-purpose tree species. * |
Torrential rains | Live barriers with multi-purpose shrub species. * |
Dimension | Subdimension | Types of Management | |||
---|---|---|---|---|---|
DP | SP | SS | CS | ||
Natural | Agrobiodiversity | 1.50 | 0.31 | −0.26 | −1.30 |
Quality and availability of water sources | 0.27 | 0.50 | −0.31 | −0.11 | |
Soil quality | 0.84 | 0.39 | 0.31 | −1.42 | |
Forest resource conservation | 0.90 | 0.95 | 1.05 | 0.7 | |
Arithmetic sum | 3.51 a | 2.15 a | 0.79 b | −2.14 c | |
Social | Organization | 1.00 | 1.00 | 1.00 | 0.00 |
Collective action | 0.35 | 0.30 | 0.15 | 0.30 | |
Access to climate information | 0.65 | 0.75 | 0.5 | 0.50 | |
Arithmetic sum | 2.00 a | 2.05 a | 1.65 b | 0.80 c | |
Human | Capacity development | 3.20 a | 2.23 b | 1.43 b | −0.36 c |
Economic | Sources of income | 0.04 | 0.18 | 0.20 | 0.67 |
Land tenure and ownership | −0.09 | 0.15 | 0.12 | 0.15 | |
Access to credit and/or insurance | 0.55 | 0.65 | 0.62 | 0.00 | |
Savings | 0.45 | 0.45 | 0.36 | 0.4 | |
Arithmetic sum | 0.95 a | 1.43 a | 1.30 a | 1.22 a | |
Physical | Access to strategic infrastructure for production | 0.56 | 0.26 | 0.23 | −0.72 |
Access to strategic infrastructure for protection | 1.91 | 1.83 | 1.93 | 1.01 | |
Innovation, technology, and good management and production practices | 0.85 | 0.20 | −0.04 | −0.94 | |
Arithmetic sum | 3.31 a | 2.30 a | 2.12 a | −0.66 b | |
Political | Regional planning instruments | 1.10 | 0.65 | 0.60 | 0.65 |
Adaptive governance | 1.00 | 0.80 | 0.70 | 0.00 | |
Arithmetic sum | 2.10 a | 1.45 b | 1.30 b | 0.65 c | |
Total arithmetic sum | 15.06 a | 11.61 a | 8.59 b | −0.49 c | |
Rated CA index | High | High | Medium | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-García, P.; Monterroso-Rivas, A.I.; Conde-Álvarez, A.C. Nature-Based Solutions Contribute to Improve the Adaptive Capacity of Coffee Farmers: Evidence from Mexico. Agriculture 2025, 15, 1390. https://doi.org/10.3390/agriculture15131390
Ruiz-García P, Monterroso-Rivas AI, Conde-Álvarez AC. Nature-Based Solutions Contribute to Improve the Adaptive Capacity of Coffee Farmers: Evidence from Mexico. Agriculture. 2025; 15(13):1390. https://doi.org/10.3390/agriculture15131390
Chicago/Turabian StyleRuiz-García, Patricia, Alejandro Ismael Monterroso-Rivas, and Ana Cecilia Conde-Álvarez. 2025. "Nature-Based Solutions Contribute to Improve the Adaptive Capacity of Coffee Farmers: Evidence from Mexico" Agriculture 15, no. 13: 1390. https://doi.org/10.3390/agriculture15131390
APA StyleRuiz-García, P., Monterroso-Rivas, A. I., & Conde-Álvarez, A. C. (2025). Nature-Based Solutions Contribute to Improve the Adaptive Capacity of Coffee Farmers: Evidence from Mexico. Agriculture, 15(13), 1390. https://doi.org/10.3390/agriculture15131390