Enhanced Spring Wheat Soil Plant Analysis Development (SPAD) Estimation in Hetao Irrigation District: Integrating Leaf Area Index (LAI) Under Variable Irrigation Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Data Collection
2.2.1. UAV Multispectral Data Acquisition
2.2.2. Field Biophysical Parameter Measurements
2.3. Data Processing and Analysis
2.3.1. Spectral Data Processing
2.3.2. Calculate Vegetation Indices
2.3.3. SPAD Estimation Models
2.4. Model Evaluation
2.5. Statistical Analysis and Visualization
3. Results
3.1. Temporal Dynamics of LAI and SPAD in Spring Wheat Under Two Irrigation Modes
3.2. Spectral Reflectance Characteristics Under Different Irrigation Modes
3.3. Correlation Analysis Between SPAD, LAI and Vegetation Indices
3.4. SPAD Estimation Model Performance Analysis
3.5. Feature Importance Analysis of RF Model Combined with LAI
3.6. LAI Contribution to SPAD Estimation Under Contrasting Irrigation Modes
3.7. Nitrogen Treatment Effects and Experimental Design Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EVI | Enhanced Vegetation Index |
GNDVI | Green Normalized Difference Vegetation Index |
LAI | Leaf Area Index |
LCI | Leaf Chlorophyll Index |
MCARI | Modified Chlorophyll Absorption Reflectance Index |
MLP | Multi-Layer Perceptron |
MSAVI1 | Modified Soil Adjusted Vegetation Index 1 |
MTVI2 | Modified Triangular Vegetation Index 2 |
NDRE | Normalized Difference Red Edge Index |
NDVI | Normalized Difference Vegetation Index |
OSAVI | Optimized Soil Adjusted Vegetation Index |
RF | Random Forest |
RMSE | Root Mean Square Error |
SIPI | Structure-Insensitive Pigment Index |
SPAD | Soil Plant Analysis Development |
SVR | Support Vector Regression |
UAV | Unmanned Aerial Vehicle |
References
- Jay, S.; Gorretta, N.; Morel, J.; Maupas, F.; Bendoula, R.; Rabatel, G.; Dutartre, D.; Comar, A.; Baret, F. Estimating leaf chlorophyll content in sugar beet canopies using millimeter-to centimeter-scale reflectance imagery. Remote Sens. Environ. 2017, 198, 173–186. [Google Scholar] [CrossRef]
- Ma, W.; Han, W.; Zhang, H.; Cui, X.; Zhai, X.; Zhang, L.; Shao, G.; Niu, Y.; Huang, S. UAV multispectral remote sensing for the estimation of SPAD values at various growth stages of maize under different irrigation levels. Comput. Electron. Agric. 2024, 227, 109566. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Y.; Xu, B.; Yang, G.; Feng, H.; Yang, X.; Yang, H.; Liu, C.; Cheng, Z.; Feng, Z. Study on the estimation of leaf area index in rice based on UAV RGB and multispectral data. Remote Sens. 2024, 16, 3049. [Google Scholar] [CrossRef]
- Liu, S.; Jin, X.; Nie, C.; Wang, S.; Yu, X.; Cheng, M.; Shao, Z.; Wang, Z.; Tuohuti, N.; Bai, Y.; et al. Estimating leaf area index using unmanned aerial vehicle data: Shallow vs. deep machine learning algorithms. Plant Physiol. 2021, 187, 1551–1576. [Google Scholar] [CrossRef]
- Deng, S.Q.; Zhao, Y.; Bai, X.Y.; Li, X.; Sun, Z.D.; Liang, J.; Sun, Z.H.; Cheng, S. Inversion of chlorophyll and leaf area index for winter wheat based on UAV image segmentation. Trans. Chin. Soc. Agric. Eng. 2022, 38, 136–145. [Google Scholar]
- Yang, X.; Zhou, H.; Li, Q.; Fu, X.; Li, H. Estimating canopy chlorophyll content of potato using machine learning and remote sensing. Agriculture 2025, 15, 375. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Q.; Shang, J.; Liu, C.; Zhuang, T.; Ding, J.; Xian, Y.; Zhao, L.; Wang, W.; Zhou, G.; et al. UAV-and machine learning-based retrieval of wheat SPAD values at the overwintering stage for variety screening. Remote Sens. 2021, 13, 5166. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, G.; Lang, K.; Su, B.; Chen, X.; Xi, X.; Zhang, H. Integrated satellite, unmanned aerial vehicle (UAV) and ground inversion of the SPAD of winter wheat in the reviving stage. Sensors 2019, 19, 1485. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, S.; Li, X.; Cunha, M.; Jayavelu, S.; Cammarano, D.; Fu, Y. Machine learning-based approaches for predicting SPAD values of maize using multi-spectral images. Remote Sens. 2022, 14, 1337. [Google Scholar] [CrossRef]
- Dong, Y.; Wei, B.; Wang, L.; Zhang, Y.; Zhang, H.; Zhang, Y. Performance of winter-seeded spring wheat in Inner Mongolia. Agronomy 2019, 9, 507. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, N.; Hao, Y.; Li, X.; Fan, M.; Shi, X.; Jia, L. Optimizing nutrient inputs by balancing spring wheat yield and environmental effects in the Hetao Irrigation District of China. Sci. Rep. 2022, 12, 22524. [Google Scholar] [CrossRef]
- Zhou, L. Influences of deficit irrigation on soil water content distribution and spring wheat growth in Hetao Irrigation District, Inner Mongolia of China. Water Supply 2020, 20, 3722–3729. [Google Scholar] [CrossRef]
- Cao, Z.; Zhu, T.; Cai, X. Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia. Agric. Water Manag. 2023, 277, 108095. [Google Scholar] [CrossRef]
- Jia, L.; Shi, X.; Suyala, Q.; Qin, Y.; Yu, J.; Chen, Y.; Fan, M. Potential analysis of organic fertilizer substitution for chemical fertilizer in spring wheat regions of China. Sci. Agric. Sin. 2020, 53, 4855–4865. [Google Scholar]
- Zhang, Y.P.; Xie, M.; Jing, T.; Zhang, Y.Q. Study on the irrigation schedule for high-yield and water-saving production of spring wheat in Hetao Irrigation District of Inner Mongolia. J. Triticeae Crops 2013, 33, 96–102. [Google Scholar]
- Shi, H.; Yang, S.; Li, R.; Li, X.; Li, W.; Yan, J.; Miao, Q.; Li, Z. Water-saving irrigation and utilization efficiency of water and fertilizer in hetao irrigation district of Inner Mongolia: Prospect for future research. J. Irrig. Drain. 2020, 39, 1–12. [Google Scholar]
- Cui, B.; Zhao, Q.; Huang, W.; Song, X.; Ye, H.; Zhou, X. A new integrated vegetation index for the estimation of winter wheat leaf chlorophyll content. Remote Sens. 2019, 11, 974. [Google Scholar] [CrossRef]
- Yin, Q.; Zhang, Y.; Li, W.; Wang, J.; Wang, W.; Ahmad, I.; Zhou, G.; Huo, Z. Estimation of winter wheat SPAD values based on UAV multispectral remote sensing. Remote Sens. 2023, 15, 3595. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Kootstra, G.; Khan, H.A. The impact of variable illumination on vegetation indices and evaluation of illumination correction methods on chlorophyll content estimation using UAV imagery. Plant Methods 2023, 19, 51. [Google Scholar] [CrossRef]
- Chen, B.; Huang, G.; Lu, X.; Gu, S.; Wen, W.; Wang, G.; Chang, W.; Guo, X.; Zhao, C. Prediction of vertical distribution of SPAD values within maize canopy based on unmanned aerial vehicles multispectral imagery. Front. Plant Sci. 2023, 14, 1253536. [Google Scholar] [CrossRef]
- Yang, X.; Yang, R.; Ye, Y.; Yuan, Z.; Wang, D.; Hua, K. Winter wheat SPAD estimation from UAV hyperspectral data using cluster-regression methods. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102618. [Google Scholar] [CrossRef]
- Li, W.; Sun, Z.; Lu, S.; Omasa, K. Estimation of the leaf chlorophyll content using multiangular spectral reflectance factor. Plant Cell Environ. 2019, 42, 3152–3165. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sens. Environ. 2008, 112, 2592–2604. [Google Scholar] [CrossRef]
- Wang, W.; Sun, N.; Bai, B.; Wu, H.; Cheng, Y.; Geng, H.; Song, J.; Zhou, J.; Pang, Z.; Qian, S.; et al. Prediction of wheat SPAD using integrated multispectral and support vector machines. Front. Plant Sci. 2024, 15, 1405068. [Google Scholar] [CrossRef]
- Zou, M.; Liu, Y.; Fu, M.; Li, C.; Zhou, Z.; Meng, H.; Xing, E.; Ren, Y. Combining spectral and texture feature of UAV image with plant height to improve LAI estimation of winter wheat at jointing stage. Front. Plant Sci. 2024, 14, 1272049. [Google Scholar] [CrossRef]
- Zu, J.; Yang, H.; Wang, J.; Cai, W.; Yang, Y. Inversion of winter wheat leaf area index from UAV multispectral images: Classical vs. deep learning approaches. Front. Plant Sci. 2024, 15, 1367828. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Poley, L.G.; McDermid, G.J. A systematic review of the factors influencing the estimation of vegetation aboveground biomass using unmanned aerial systems. Remote Sens. 2020, 12, 1052. [Google Scholar] [CrossRef]
- Han, X.; Wei, Z.; Chen, H.; Zhang, B.; Li, Y.; Du, T. Inversion of winter wheat growth parameters and yield under different water treatments based on UAV multispectral remote sensing. Front. Plant Sci. 2021, 12, 609876. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Y.P.; Dong, Y.X.; Gao, F.Y.; Xie, M. Effects of nitrogen application rate and irrigation mode on wheat yield, quality and nitrogen fertilizer utilization. J. Triticeae Crops 2020, 40, 334–342. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Datt, B. A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using Eucalyptus leaves. J. Plant Physiol. 1999, 154, 30–36. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey, J.E., III. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Eitel, J.U.H.; Vierling, L.A.; Litvak, M.E.; Long, D.S.; Schulthess, U.; Ager, A.A.; Krofcheck, D.J.; Stoscheck, L. Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland. Remote Sens. Environ. 2011, 115, 3640–3646. [Google Scholar] [CrossRef]
- Shah, S.H.; Angel, Y.; Houborg, R.; Ali, S.; McCabe, M.F. A random forest machine learning approach for the retrieval of leaf chlorophyll content in wheat. Remote Sens. 2019, 11, 920. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Jahan, E.; Sharwood, R.E.; Tissue, D.T. Effects of leaf age during drought and recovery on photosynthesis, mesophyll conductance and leaf anatomy in wheat leaves. Front. Plant Sci. 2023, 14, 1091418. [Google Scholar] [CrossRef]
- Yang, Y.; Nan, R.; Mi, T.; Song, Y.; Shi, F.; Liu, X.; Wang, Y.; Sun, F.; Xi, Y.; Zhang, C. Rapid and nondestructive evaluation of wheat chlorophyll under drought stress using hyperspectral imaging. Int. J. Mol. Sci. 2023, 24, 5825. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. In Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 2009; pp. 153–188. [Google Scholar]
- Cornic, G.; Fresneau, C. Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Ann. Bot. 2002, 89, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.K.; Andersen, S.B.; Ottosen, C.O.; Rosenqvist, E. Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol. Plant. 2015, 153, 284–298. [Google Scholar] [CrossRef]
- Masclaux-Daubresse, C.; Daniel-Vedele, F.; Dechorgnat, J.; Chardon, F.; Gaufichon, L.; Suzuki, A. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Ann. Bot. 2010, 105, 1141–1157. [Google Scholar] [CrossRef]
- Webber, H.; Ewert, F.; Olesen, J.E.; Müller, C.; Fronzek, S.; Ruane, A.C.; Bourgault, M.; Martre, P.; Ababaei, B.; Bindi, M.; et al. Diverging importance of drought stress for maize and winter wheat in Europe. Nat. Commun. 2018, 9, 4249. [Google Scholar] [CrossRef]
- Luo, Q. Simulating the influences of soil water stress on leaf expansion and senescence of winter wheat. Agric. For. Meteorol. 2020, 291, 108089. [Google Scholar]
- Chandel, N.S.; Rajwade, Y.A.; Dubey, K.; Chandel, A.K.; Subeesh, A.; Tiwari, M.K. Canopy spectral reflectance for crop water stress assessment in wheat (Triticum aestivum, L.). Irrig. Drain. 2021, 70, 321–331. [Google Scholar] [CrossRef]
- Li, D.; Wang, C.; Liu, S.; Wang, L.; Chen, J.; Li, D.; Xu, B. Estimation of crop leaf area index based on UAV visible images with machine learning methods. Agronomy 2022, 12, 1177. [Google Scholar]
- Huang, Y.; Li, D.; Liu, X.; Ren, Z. Monitoring canopy SPAD based on UAV and multispectral imaging over fruit tree growth stages and species. Front. Plant Sci. 2024, 15, 1435613. [Google Scholar] [CrossRef] [PubMed]
- Hunt, E.R., Jr.; Doraiswamy, P.C.; McMurtrey, J.E.; Daughtry, C.S.T.; Perry, E.M.; Akhmedov, B. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 103–112. [Google Scholar] [CrossRef]
- Zhou, G. Analysis of main characteristics and high-yielding cultivation techniques of wheat cultivar Yongliang 4. Inn. Mong. Agric. Sci. Technol. 2018, 46, 7–9. [Google Scholar]
- Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Prey, L.; Hu, Y.; Schmidhalter, U. Temporal dynamics and the contribution of plant organs in a phenotypically diverse population of high-yielding winter wheat: Evaluating concepts for disentangling yield formation and nitrogen use efficiency. Front. Plant Sci. 2019, 10, 1295. [Google Scholar] [CrossRef]
Year | Organic Matter (g/kg) | Alkaline-N (mg/kg) | Available-P (mg/kg) | Available-K (mg/kg) | pH |
---|---|---|---|---|---|
2020 | 14.31 | 59.45 | 21.32 | 137.71 | 7.62 |
2021 | 13.41 | 55.24 | 20.23 | 108.84 | 7.41 |
Vegetation Indices | Calculation Formula | References |
---|---|---|
Normalized Difference Vegetation Index | [31] | |
Enhanced Vegetation Index | [32] | |
Green Normalized Difference Vegetation | [33] | |
Modified Soil Adjusted Vegetation Index1 | [34] | |
Optimized Soil Adjusted Vegetation Index | [35] | |
Leaf Chlorophyll Index | [36] | |
Modified Chlorophyll Absorption Reflectance Index | [37] | |
Structure-Insensitive Pigment Index | [38] | |
Modified Triangular Vegetation Index 2 | [39] | |
Normalized Difference Red Edge Index | [40] |
Index | LAI | NDVI | OSAVI | MCARI | SIPI | NDRE | LCI | EVI | GNDVI | MSAVI1 | MTVI2 |
---|---|---|---|---|---|---|---|---|---|---|---|
SPAD | 0.74 | 0.75 | 0.75 | 0.73 | −0.71 | 0.80 | 0.81 | 0.75 | 0.83 | 0.74 | 0.73 |
LAI | 1.00 | 0.68 | 0.72 | 0.69 | −0.59 | 0.78 | 0.79 | 0.72 | 0.79 | 0.72 | 0.71 |
Irrigation Mode | R2 | RMSE | ||||
---|---|---|---|---|---|---|
Spectral | Combined LAI | Increase | Spectral | Combined LAI | Increase | |
2W | 0.694 | 0.817 | 17.6% | 4.967 | 3.847 | −22.6% |
4W | 0.733 | 0.813 | 11.0% | 4.506 | 3.768 | −16.4% |
Sources of Variation | SPAD | LAI | ||
---|---|---|---|---|
F Value | p Value | F Value | p Value | |
Irrigation (I) | 39.91 | <0.001 | 31.74 | <0.001 |
Nitrogen (N) | 80.84 | <0.001 | 17.54 | <0.001 |
I × N | 3.82 | 0.007 | 4.15 | 0.004 |
Treatment | SPAD | LAI |
---|---|---|
CK | 28.2 ± 0.64 | 1.5 ± 0.08 |
N1 | 38.5 ± 0.69 | 2.5 ± 0.14 |
N2 | 40.3 ± 0.68 | 2.7 ± 0.14 |
N3 | 43.2 ± 0.72 | 3.0 ± 0.16 |
N4 | 44.5 ± 0.77 | 3.2 ± 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Hou, D.; Xie, M.; Gao, Q.; Li, M.; Hao, S.; Cui, C.; Fan, K.; Zhang, Y.; Zhang, Y. Enhanced Spring Wheat Soil Plant Analysis Development (SPAD) Estimation in Hetao Irrigation District: Integrating Leaf Area Index (LAI) Under Variable Irrigation Conditions. Agriculture 2025, 15, 1372. https://doi.org/10.3390/agriculture15131372
Wu Q, Hou D, Xie M, Gao Q, Li M, Hao S, Cui C, Fan K, Zhang Y, Zhang Y. Enhanced Spring Wheat Soil Plant Analysis Development (SPAD) Estimation in Hetao Irrigation District: Integrating Leaf Area Index (LAI) Under Variable Irrigation Conditions. Agriculture. 2025; 15(13):1372. https://doi.org/10.3390/agriculture15131372
Chicago/Turabian StyleWu, Qiang, Dingyi Hou, Min Xie, Qi Gao, Mengyuan Li, Shuiyuan Hao, Chao Cui, Keke Fan, Yu Zhang, and Yongping Zhang. 2025. "Enhanced Spring Wheat Soil Plant Analysis Development (SPAD) Estimation in Hetao Irrigation District: Integrating Leaf Area Index (LAI) Under Variable Irrigation Conditions" Agriculture 15, no. 13: 1372. https://doi.org/10.3390/agriculture15131372
APA StyleWu, Q., Hou, D., Xie, M., Gao, Q., Li, M., Hao, S., Cui, C., Fan, K., Zhang, Y., & Zhang, Y. (2025). Enhanced Spring Wheat Soil Plant Analysis Development (SPAD) Estimation in Hetao Irrigation District: Integrating Leaf Area Index (LAI) Under Variable Irrigation Conditions. Agriculture, 15(13), 1372. https://doi.org/10.3390/agriculture15131372