Comprehensive Evaluation of Agricultural Residues Corn Stover Silage
Abstract
1. Introduction
2. Materials and Methods
2.1. Forage Acquisition and Ensiling Protocol
2.2. Silage Fermentation Characteristics, Nutritional Components and Microbial Community Composition
2.3. Aerobic Stability
2.4. Toxin Contents Determination
2.5. Bacterial and Fungi Community Analyses
2.6. Statistical Analysis
3. Results
3.1. Properties of Raw Substrates
3.2. Silage Fermentation Characteristics, Nutritional Components and Microbial Community Composition
3.2.1. Fermentation Characteristics
3.2.2. Nutritional Components
3.2.3. Microbial Community Composition
3.3. Aerobic Stability Analysis
3.4. Toxin Contents
3.5. Microbial Community Succession from Fresh Forage to Ensiled Product
3.5.1. Analysis of Microbiota Biodiversity
3.5.2. Microbial Community Abundance
3.5.3. Genus Level Microbial Associations with Fermentation Dynamics
3.6. Bacterial of Functional Prediction on KEGG
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, Y.; Sun, Q.; Wang, W.; Lu, L.; Liu, M.; Li, J.; Yang, S.; Sun, Y.; Zhang, K.; Xu, J.; et al. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere 2018, 211, 235–253. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Zheng, T.; Wang, P.; Hao, L.; Wang, Y. Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water. Bioresour. Technol. 2016, 201, 41–49. [Google Scholar] [CrossRef]
- Lin, M.; Begho, T. Crop residue burning in South Asia: A review of the scale, effect, and solutions with a focus on reducing reactive nitrogen losses. J. Environ. Manag. 2022, 314, 115104. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zhang, T.; Niu, Y.; Mukherjee, S.; Abou-Elwafa, S.F.; Nguyen, N.S.H.; Al Aboud, N.M.; Wang, Y.; Pu, M.; Zhang, Y.; et al. A comprehensive review on agricultural waste utilization through sustainable conversion techniques, with a focus on the additives effect on the fate of phosphorus and toxic elements during composting process. Sci. Total Environ. 2024, 942, 173567. [Google Scholar] [CrossRef]
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural waste management strategies for environmental sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef]
- Ren, J.; Yu, P.; Xu, X. Straw utilization in China-status and recommendations. Sustainability 2019, 11, 1762. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, Z.; Li, J.; Chen, L.; Bai, Y.; Jia, Y.; Shao, T. Effects of lactic acid bacteria and molasses on fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro ruminal fermentation of rice straw silage. Asian Australas. J. Anim. Sci. 2019, 32, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Jiang, Z.; Xu, H.; Yan, K. Selective production of phenol-rich bio-oil from corn straw waste by direct microwave pyrolysis without extra catalyst. Front. Chem. 2021, 9, 700887. [Google Scholar] [CrossRef]
- Lian, T.; Zhang, W.; Cao, Q.; Wang, S.; Dong, H.; Yin, F. Improving production of lactic acid and volatile fatty acids from dairy cattle manure and corn straw silage: Effects of mixing ratios and temperature. Bioresour. Technol. 2022, 359, 127449. [Google Scholar] [CrossRef]
- Huang, K.; Chen, H.; Liu, Y.; Hong, Q.; Yang, B.; Wang, J. Lactic acid bacteria strains selected from fermented total mixed rations improve ensiling and in vitro rumen fermentation characteristics of corn stover silage. Anim. Biosci. 2022, 35, 1379–1389. [Google Scholar] [CrossRef]
- Guo, G.; Yuan, X.; Wen, A.; Liu, Q.; Zhang, S.; Shao, T. Silage fermentation characteristics of Napiergrass harvested at various times on a sunny day. Crop Sci. 2015, 55, 458–464. [Google Scholar] [CrossRef]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef]
- He, L.; Zhou, W.; Xing, Y.; Pian, R.; Chen, X.; Zhang, Q. Improving the quality of rice straw silage with Moringa oleifera leaves and propionic acid: Fermentation, nutrition, aerobic stability and microbial communities. Bioresour. Technol. 2022, 299, 122579. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Yin, X.; Zhang, J. Changes of the fermentation quality and microbial community during re-ensiling of sweet corn stalk silage. Ital. J. Anim. Sci. 2022, 21, 168–177. [Google Scholar] [CrossRef]
- Serrano-Jara, D.; Rivera-Gomis, J.; Tornel, J.A.; Jordán, M.J.; Martínez-Conesa, C.; Pablo, M.J.C. Oregano essential oil and purple garlic powder effects on intestinal health, microbiota indicators and antimicrobial resistance as feed additives in weaning piglets. Animals 2023, 14, 111. [Google Scholar] [CrossRef] [PubMed]
- Laugalis, J.; Jatkauskas, J.; Vrotniakiene, V.; Zelvyte, R.; Makauskas, S. Effect of inoculation on silage quality and rumen fermentation in dairy cows. Med. Weter. 2007, 63, 1057–1059. [Google Scholar]
- Filya, I.; Muck, R.E.; Contreras-Govea, F.E. Inoculant effects on alfalfa silage: Fermentation products and nutritive value. J. Dairy Sci. 2007, 90, 5108–5114. [Google Scholar] [CrossRef]
- Okoye, C.O.; Wu, Y.; Wang, Y.; Gao, L.; Li, X.; Jiang, J. Fermentation profile, aerobic stability, and microbial community dynamics of corn straw en-siled with Lactobacillus buchneri PC-C1 and Lactobacillus plantarum PC1-1. Microbiol. Res. 2023, 270, 127329. [Google Scholar] [CrossRef]
- Zhang, Q.; Zou, X.; Wu, S.; Wu, N.; Chen, X.; Zhou, W. Effects of pyroligneous acid on diversity and dynamics of antibiotic resistance genes in alfalfa silage. Microbiol. Spectr. 2022, 10, e0155422. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Z.; Bi, G.; Sun, Y.; Wang, Y.; Meng, D. Chemical constituents and biological activities of Artemisia argyi H. Lév. Vaniot. Nat. Prod. Res. 2023, 37, 1401–1405. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Tu, P.; Zeng, W. Sesquiterpene lactone from Artemisia argyi induces gastric carcinoma cell apoptosis via activating NADPH oxidase/ reactive oxygen species/mitochondrial pathway. Eur. J. Pharmacol. 2018, 837, 164–170. [Google Scholar] [CrossRef]
- Lin, L.; Wang, J.; Liao, M.; Hu, R.; Deng, Q.; Wang, Z.; Wang, X.; Tang, Y. Artemisia argyi water extract promotes selenium uptake of peach seedlings. Front. Plant Sci. 2022, 13, 1014454. [Google Scholar] [CrossRef]
- Zhao, F.; Shi, B.; Sun, D.; Chen, H.; Tong, M.; Zhang, P.; Guo, X.; Yan, S. Effects of dietary supplementation of Artemisia argyi aqueous extract on antioxidant indexes of small intestine in broilers. Anim. Nutr. 2016, 2, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Kim, C.E.; Park, S.Y.; Kim, K.O.; Hiep, N.T.; Lee, D.; Jang, H.J.; Lee, J.W.; Kang, K. Protective effect of Artemisia argyi and its flavonoid constituents against contrast-induced cytotoxicity by iodixanol in LLC-PK1 cells. Int. J. Mol. Sci. 2018, 19, 1387. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Liu, Z.; Guo, Y.; Lu, S.; Du, H.; Cao, Y. Antioxidant capacity of flavonoids from Folium Artemisiae argyi and the molecular mechanism in Caenorhabditis elegans. J. Ethnopharmacol. 2021, 279, 114398. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, F.; Peng, S.; Ou, Y.; He, B.; Li, Y.; Lin, Q. Effects of Artemisia argyi powder on egg quality, antioxidant capacity, and intestinal development of roman laying hens. Front. Physiol. 2022, 13, 902568. [Google Scholar] [CrossRef]
- Huang, Y.; Yao, Q.; OuYang, X.; Yao, L.; Yajie, L.; Chang, H.; Rui, H.; Xin, H.; Hao, W.; Rui, Z.; et al. The mechanism study of moxa combustion products on regulating vascular endothelial function in atherosclerotic mice. Evid. Based Complement. Altern. Med. 2022, 2022, 1303978. [Google Scholar]
- Wang, W.; Tan, Z.; Gu, L.; Ma, H.; Wang, Z.; Wang, L.; Wu, G.; Qin, G.; Wang, Y.; Pang, H. Variation of microbial community and fermentation quality in corn silage treated with lactic acid bacteria and Artemisia argyi during aerobic exposure. Toxins 2022, 14, 349. [Google Scholar] [CrossRef]
- Wang, Z.; Tan, Z.; Wu, G.; Wang, L.; Qin, G.; Wang, Y.; Pang, H. Microbial community and fermentation characteristic of whole-crop wheat silage treated by lactic acid bacteria and Artemisia argyi during ensiling and aerobic exposure. Front. Microbiol. 2022, 13, 1004495. [Google Scholar] [CrossRef]
- Wang, Z.; Tan, Z.; Wu, G.; Wang, L.; Qin, G.; Wang, Y.; Pang, H. Investigation on fermentation characteristics and microbial communities of wheat straw silage with different proportion Artemisia argyi. Toxins 2023, 15, 330. [Google Scholar] [CrossRef]
- Shin, J.M.; Son, Y.J.; Ha, I.J.; Erdenebileg, S.; Jung, D.S.; Song, D.G.; Kim, Y.S.; Kim, S.M.; Nho, C.W. Artemisia argyi extract alleviates inflammation in a DSS-induced colitis mouse model and enhances immunomodulatory effects in lymphoid tissues. BMC Complement. Med. Ther. 2022, 22, 64. [Google Scholar] [CrossRef] [PubMed]
- Broderick, G.A.; Kang, J. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, C.; Zhou, W.; Yang, Y.; Chen, X.; Zhang, Q. Effects of wilting and Lactobacillus plantarum addition on the fermentation quality and microbial community of Moringa oleifera leaf silage. Front. Microbiol. 2018, 9, 1817. [Google Scholar] [CrossRef]
- Pang, H.; Qin, G.; Tan, Z.; Li, Z.; Wang, Y.; Cai, Y. Natural populations of lactic acid bacteria associated with silage fermentation as determined by phenotype, 16S ribosomal RNA and recA gene analysis. Syst. Appl. Microbiol. 2011, 34, 235–241. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists: Official Methods of Analysis; AOAC: Rockville, ML, USA, 2006. [Google Scholar]
- Hu, W.; Schmidt, R.J.; McDonell, E.E.; Klingerman, C.M.; Kung, L., Jr. The effect of Lactobacillus buchneri 40788 or Lactobacillus plantarum MTD-1 on the fermentation and aerobic stability of corn silages ensiled at two dry matter contents. J. Dairy Sci. 2009, 92, 3907–3914. [Google Scholar] [CrossRef]
- Guyader, J.; Baron, V.; Beauchemin, K. Corn forage yield and quality for silage in short growing season areas of the canadian prairies. Agronomy 2018, 8, 164. [Google Scholar] [CrossRef]
- Charbonneau, E.; Chouinard, P.Y.; Allard, G.; Lapierre, H.; Pellerin, D. Milk from forage as affected by carbohydrate source and degradability with alfalfa silage-based diets. J. Dairy Sci. 2006, 89, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Haigh, P.M.; Parker, J.W.G. Effect of silage additives and wilting on silage fermentation, digestibility and intake, and on liveweight change of young cattle. Grass Forage Sci. 2010, 40, 429–436. [Google Scholar] [CrossRef]
- Muck, R. Inoculation of Silage and Its Effects on Silage Quality; US Dairy Forage Res Center: Madison, WI, USA, 1996.
- GB 13078-2017; Hygienical standard for feeds. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (AQSIQ), Standardization Administration of China (SAC), Ministry of Agriculture and Rural Affairs: Beijing, China, 2017.
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Tao, Y.; Zhong, J. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef]
- Shonka, B.N.; Tao, S.; Dahl, G.E.; Spurlock, D.M. Genetic regulation of prepartum dry matter intake in Holstein cows. J. Dairy Sci. 2015, 98, 8195–8200. [Google Scholar] [CrossRef]
- Pereira, S.C.; Cunha, C.S.; Fernandes, J.O. Prevalent mycotoxins in animal feed: Occurrence and analytical methods. Toxins 2019, 11, 290. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.H.; Swanepoel, N.; Heguy, J.M.; Price, T.; Meyer, D.M. Shrink losses in commercially sized corn silage piles: Quantifying total losses and where they occur. Sci. Total Environ. 2016, 542 PtA, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Zhou, P.; Yue, Z.; Wang, Z.; Qin, G.; Wang, Y.; Tan, Z.; Cai, Y. Fermentation characteristics, chemical composition, and aerobic stability in whole crop corn silage treated with lactic acid bacteria or Artemisia argyi. Agriculture 2024, 14, 1015. [Google Scholar] [CrossRef]
- Wang, W.; Tan, Z.; Gu, L.; Ma, H.; Wang, Z.; Wang, L.; Wu, G.; Qin, G.; Wang, Y.; Pang, H. Dynamics changes of microorganisms community and fermentation quality in soybean meal prepared with lactic acid bacteria and Artemisia argyi through fermentation and aerobic exposure processes. Foods 2022, 11, 795. [Google Scholar] [CrossRef]
- Rehman, S.U.; Choe, K.; Yoo, H.H. Review on a traditional herbal medicine, eurycoma longifolia jack (Tongkat Ali): Its traditional uses, chemistry, evidence-based pharmacology and toxicology. Molecules 2016, 21, 331. [Google Scholar] [CrossRef]
- Wang, E.; Wang, J.; Lv, J.; Sun, X.; Kong, F.; Wang, S.; Wang, Y.; Yang, H.; Cao, Z.; Li, S. Comparison of ruminal degradability, indigestible neutral detergent fiber, and total-tract digestibility of three main crop straws with Alfalfa hay and corn silage. Animals 2021, 11, 3218. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Fang, X.; Feng, G.; Li, Y.; Zhang, Y. Silage fermentation, bacterial community, and aerobic stability of total mixed ration containing wet corn gluten feed and corn stover prepared with different additives. Animals 2022, 10, 1775. [Google Scholar] [CrossRef] [PubMed]
- Drouin, P.; Tremblay, J.; Renaud, J.; Apper, E. Microbiota succession during aerobic stability of maize silage inoculated with Lentilactobacillus buchneri NCIMB 40788 and Lentilactobacillus hilgardii CNCM-I-4785. Microbiol. Open 2021, 10, e1153. [Google Scholar] [CrossRef]
- Chen, L.; Qu, H.; Bai, S.; Yan, L.; You, M.; Gou, W.; Li, P.; Gao, F. Effect of wet sea buckthorn pomace utilized as an additive on silage fermentation profile and bacterial community composition of alfalfa. Bioresour. Technol. 2020, 314, 123773. [Google Scholar] [CrossRef]
- Whitlow, L.W.; Hagler, W.M. Mycotoxins in Dairy Cattle: Occurrence, Toxicity, Prevention and Treatment. 2005. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=747bd5debc896a5cc6c7f9db722f507f&site=xueshu_se&hitarticle=1 (accessed on 26 March 2025).
- Magan, N.; Aldred, D. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int. J. Food Microbiol. 2007, 119, 131–139. [Google Scholar] [CrossRef]
- Gxasheka, M.; Wang, J.; Tyasi, T.L.; Gao, J. Scientific understanding and effects on ear rot diseases in maize production: A review. Int. J. Soil Crop Sci. 2015, 3, 77–84. [Google Scholar]
- Ogunade, I.M.; Martinez-Tuppia, C.; Queiroz, O.C.M.; Jiang, Y.; Drouin, P.; Wu, F.; Vyas, D.; Adesogan, A.T. Silage review: Mycotoxins in silage: Occurrence, effects, prevention, and mitigation. J. Dairy Sci. 2018, 101, 4034–4059. [Google Scholar] [CrossRef] [PubMed]
- Reverberi, M.; Ricelli, A.; Zjalic, S.; Fabbri, A.A.; Fanelli, C. Natural functions of mycotoxins and control of their biosynthesis in fungi. Appl. Microbiol. Biotechnol. 2010, 87, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Qu, C.; Dong, X.; Shen, M.R.; Ni, J. Preparation regularity of Chinese patent medicine in Chinese Pharmacopoeia. Zhongguo Zhong Yao Za Zhi 2022, 47, 4529–4535. [Google Scholar] [PubMed]
- Kim, I.S.; Jin, S.K.; Kang, S. Effects of feeding mugwort powder on meat composition and sensory characteristics in gilt. Hangug Chugsan Sigpum Haghoeji = Korean J. Food Sci. Anim. Resour. 2009, 29, 68–74. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Chen, S.; Shao, T.; Tao, X.; Yuan, X. Effect of lactic acid bacteria on the fermentation quality and mycotoxins concentrations of corn silage infested with mycotoxigenic fungi. Toxins 2021, 13, 699. [Google Scholar] [CrossRef]
- Polley, H.W.; Wilsey, B.J.; Derner, J.D. Dominant species constrain effects of species diversity on temporal variability in biomass production of tallgrass prairie. Oikos 2007, 116, 2044–2052. [Google Scholar] [CrossRef]
- Rizzatti, G.; Lopetuso, L.R.; Gibiino, G.; Binda, C.; Gasbarrini, A. Proteobacteria: A common factor in human diseases. BioMed Res. Int. 2017, 2017, 9351507. [Google Scholar] [CrossRef]
- Taylor, J.A.; Sichel, S.R.; Salama, N.R. Bent bacteria: A comparison of cell shape mechanisms in proteobacteria. Annu. Rev. Microbiol. 2019, 73, 457–480. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, S.; Nie, Q.; He, H.; Tan, H.; Geng, F.; Ji, H.; Hu, J.; Nie, S. Gut firmicutes: Relationship with dietary fiber and role in host homeostasis. Crit. Rev. Food Sci. Nutr. 2023, 63, 12073–12088. [Google Scholar] [CrossRef]
- Xia, G.; Huang, Y.; Wu, C.; Zhang, M.; Yin, H.; Yang, F.; Chen, C.; Hao, J. Characterization of mycotoxins and microbial community in whole-plant corn ensiled in different silo types during aerobic exposure. Front. Microbiol. 2023, 14, 1136022. [Google Scholar] [CrossRef]
- Liu, B.; Huan, H.; Gu, H.; Xu, N.; Shen, Q.; Ding, C. Dynamics of a microbial community during ensiling and upon aerobic exposure in lactic acid bacteria inoculation-treated and untreated barley silages. Bioresour. Technol. 2019, 273, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhou, X.; Gu, Q.; Liang, M.; Mu, S.; Zhou, B.; Huang, F.; Lin, B.; Zou, C. Analysis of the correlation between bacteria and fungi in sugarcane tops silage prior to and after aerobic exposure. Bioresour. Technol. 2019, 291, 121835. [Google Scholar] [CrossRef] [PubMed]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Oude Elferink, S.J.W.H.; Spoelstra, S.F. Microbiology of ensiling. Silage Sci. Technol. 2003, 42, 31–93. [Google Scholar]
- Bai, J.; Xu, D.; Xie, D.; Wang, M.; Li, Z.; Guo, X. Effects of antibacterial peptide-producing Bacillus subtilis and Lactobacillus buchneri on fermentation, aerobic stability, and microbial community of alfalfa silage. Bioresour. Technol. 2020, 315, 123881. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zheng, M.; Zhou, Y.; Gao, L.; Zhou, W.; Wang, M.; Zhu, Y.; Xu, W. Improving the quality of Napier grass silage with pyroligneous acid: Fermentation, aerobic stability, and microbial communities. Front. Microbiol. 2022, 13, 1034198. [Google Scholar] [CrossRef]
- Agyirifo, D.S.; Wamalwa, M.; Otwe, E.P.; Galyuon, I.; Runo, S.; Takrama, J.; Ngeranwa, J. Metagenomics analysis of cocoa bean fermentation microbiome identifying species diversity and putative functional capabilities. Heliyon 2019, 5, e02170. [Google Scholar] [CrossRef]
- Li, N.; Zhang, B.; Zhao, S.; Niu, M.; Jia, C.; Huang, Q.; Liu, Y.; Lin, Q. Influence of Lactobacillus/Candida fermentation on the starch structure of rice and the related noodle features. Int. J. Biol. Macromol. 2019, 121, 882–888. [Google Scholar] [CrossRef]
- Adewara, O.A.; Ogunbanwo, S.T. Acid stress responses of Lactobacillus amylovorus and Candida kefyr isolated from fermented sorghum gruel and their application in food fermentation. Can. J. Microbiol. 2022, 68, 269–280. [Google Scholar] [CrossRef]
- Wang, C.; Song, X.; Li, C.; He, L.; Wang, X.; Zeng, X. Mixed fermentation with Lactobacillus plantarum, Bifidobacteriµm animalis subsp. lactis and Candida utilis improves the fermentation quality of Hong Suan Tang. Food Chem. 2023, 402, 134488. [Google Scholar]
- Buerth, C.; Tielker, D.; Ernst, J.F. Candida utilis and Cyberlindnera (Pichia) jadinii: Yeast relatives with expanding applications. Appl. Microbiol. Biotechnol. 2016, 100, 6981–6990. [Google Scholar] [CrossRef] [PubMed]
- Aßhauer, K.P.; Wemheuer, B.; Daniel, R.; Meinicke, P. Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 2015, 31, 2882–2884. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zhao, J.; Dong, Z.; Shao, T. Effect of storage time on the fermentation quality, bacterial community structure and metabolic profiles of Napiergrass (Pennisetum purpureum Schum.) silage. Arch. Microbiol. 2021, 204, 22. [Google Scholar] [CrossRef]
- Bai, J.; Ding, Z.; Ke, W.; Xu, D.; Wang, M.; Huang, W.; Zhang, Y.; Liu, F.; Guo, X. Different lactic acid bacteria and their combinations regulated the fermentation process of ensiled alfalfa: Ensiling characteristics, dynamics of bacterial community and their functional shifts. Microb. Biotechnol. 2021, 14, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Tang, N.; Liu, R.; Gong, M.; Wang, Z.; Guo, Y.; Wang, Y.; Zhang, Y.; Chang, M. The relationship between flavor formation, lipid metabolism, and microorganisms in fermented fish products. Food Funct. 2021, 12, 5685–5702. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, H.; Yin, X.; Dong, Z.; Wang, S.; Li, J.; Shao, T. Dynamics of phyllosphere microbiota and chemical parameters at various growth stages and their contribution to anaerobic fermentation of Pennisetum giganteum. Microbiol. Spectr. 2023, 11, e0228822. [Google Scholar] [CrossRef]
- Bai, J.; Franco, M.; Ding, Z.; Hao, L.; Ke, W.; Wang, M.; Xie, D.; Li, Z.; Zhang, Y.; Ai, L. Effect of Bacillus amyloliquefaciens and Bacillus subtilis on fermentation, dynamics of bacterial community and their functional shifts of whole-plant corn silage. J. Anim. Sci. Biotechnol. 2022, 13, 7. [Google Scholar] [CrossRef]
- Zhao, J.; Yin, X.; Wang, S.; Li, J.; Dong, Z.; Shao, T. Changes in the fermentation products, taxonomic and functional profiles of microbiota during high-moisture sweet sorghum silage fermentation. Front. Microbiol. 2022, 13, 967624. [Google Scholar] [CrossRef]
Treatment | Corn Stover | L. buchneri | Artemisia argyi |
---|---|---|---|
CS | 100% | - | - |
LB | 100% | 2% L. buchneri (1 × 106 cfu/mL) | - |
30%AA | 70% | - | 30% |
60%AA | 40% | - | 60% |
90%AA | 10% | - | 90% |
Item | Corn Stover | Artemisia argyi | |
---|---|---|---|
Microbial population (lg cfu/g FM) | Coliform bacteria | 7.84 ± 0.04 | 9.50 ± 0.11 |
Aerobic bacteria | 8.10 ± 0.03 | 9.44 ± 0.14 | |
Bacilli | 5.07 ± 0.22 | 5.71 ± 0.16 | |
Clostridia | 4.72 ± 0.26 | 7.15 ± 0.13 | |
Yeast | 7.36 ± 0.16 | 5.37 ± 0.27 | |
LAB | 5.42 ± 0.12 | 5.66 ± 0.33 | |
Fermentation quality | pH | 5.24 ± 0.09 | 5.50 ± 0.18 |
NH3-N, g/kg DM | ND | 0.41 ± 0.05 | |
Lactic acid, g/kg DM | ND | 20.21 ± 1.09 | |
Acetic acid, g/kg DM | ND | 6.38 ± 0.04 | |
Chemical composition | DM, % | 32.66 ± 0.74 | 43.62 ± 0.18 |
WSC, g/kg DM | 195.69 ± 1.80 | 125.60 ± 1.11 | |
NDF, g/kg DM | 600.59 ± 3.35 | 568.52 ± 4.15 | |
ADF, g/kg DM | 573.24 ± 5.71 | 488.34 ± 2.81 | |
CP, g/kg DM | 49.96 ± 2.89 | 119.32 ± 0.75 | |
Mycotoxins | AFB1, μg/kg | 0.83 ± 0.27 | 0.79 ± 0.01 |
ZEN, mg/kg | 4.36 ± 0.15 | 4.24 ± 0.10 | |
FB, mg/kg | 4.92 ± 0.35 | 4.85 ± 0.05 |
Item | Treatment | Days of Ensiling (day, d) | Days of Aerobic Exposure (day, d) | SEM | p Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
90 | 1 | 3 | 5 | 7 | T | D | T × D | |||
pH | CS | 3.76 Dc | 3.76 Cbc | 3.68 Dc | 3.81 Bb | 4.45 Aa | 0.02 | <0.01 | <0.01 | <0.01 |
LB | 3.72 Cb | 3.74 Dbc | 3.72 Dbc | 3.70 Cc | 4.13 Ba | |||||
30%AA | 3.80 Cbc | 3.82 Cb | 3.80 Cbc | 3.75 Cc | 3.88 Ea | |||||
60%AA | 3.87 Ba | 3.94 Bb | 3.87 Bb | 3.85 Bb | 3.97 Da | |||||
90%AA | 4.00 Aab | 4.02 Aab | 4.01 Aab | 3.98 Ab | 4.06 Ca | |||||
NH3-N (g/kg DM) | CS | 0.14 Ba | 0.18 Ca | 0.30 Ba | 0.40 Ca | 0.41 Ca | 0.11 | <0.01 | <0.01 | 0.231 |
LB | 0.07 Ba | 0.13 Ca | 0.16 Ba | 0.17 Ca | 0.19 Ca | |||||
30%AA | 0.31 Bb | 0.58 Bab | 0.60 ABab | 0.74 Ba | 0.77 Ba | |||||
60%AA | 0.68 Aa | 0.80 Ba | 0.89 Aa | 0.90 ABa | 0.94 ABa | |||||
90%AA | 0.87 Ab | 1.28 Aa | 0.87 Ab | 1.16 Aab | 1.17 Aab | |||||
Lactic acid | CS | 69.23 Ab | 124.60 Ac | 160.57 Aac | 104.70 Abc | 63.28 Bb | 15.07 | <0.01 | <0.01 | <0.01 |
LB | 58.45 Ab | 54.02 Bb | 139.52 ABa | 114.84 Aa | 92.66 Bb | |||||
30%AA | 74.47 Ab | 65.20 Bb | 123.39 ABa | 129.61 Aa | 140.91 Aa | |||||
60%AA | 73.43 Aa | 67.53 Ba | 98.86 Ba | 98.47 Aa | 102.49 ABa | |||||
90%AA | 63.00 Aa | 62.49 Ba | 67.92 Ba | 84.93 Ba | 70.69 Ba | |||||
Acetic acid | CS | 13.78 Ac | 19.90 Ab | 24.95 Aa | ND | ND | 1.42 | <0.01 | <0.01 | <0.01 |
LB | 14.34 Ab | 12.89 Bb | 22.19 Aa | 15.48 Ab | ND | |||||
30%AA | 14.66 ABa | 12.00 Ba | 13.29 Ba | 14.61 Aa | 14.52 Aa | |||||
60%AA | 11.86 ABa | 11.90 Ba | 9.67 BCa | 10.17 Ba | 9.80 Aa | |||||
90%AA | 9.52 Ba | 9.41 Ba | 6.47 Ca | 8.15 Ba | 7.54 Ba |
Item | Treatment | Days of Ensiling (day, d) | Days of Aerobic Exposure (day, d) | SEM | p Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
90 | 1 | 3 | 5 | 7 | T | D | T × D | |||
DM (%) | CS | 30.95 BCb | 32.38 Bab | 38.10 Ca | 34.40 Cab | 35.13 Dab | 2.30 | <0.01 | <0.01 | 0.31 |
LB | 29.27 Ca | 32.47 Ba | 35.10 Ca | 34.05 Ca | 35.83 CDa | |||||
30%AA | 36.30 Ba | 37.97 Ba | 41.36 BCa | 41.69 Ba | 42.20 Ca | |||||
60%AA | 41.46 ABb | 44.81 Aab | 47.74 Aab | 47.16 ABab | 48.98 Ba | |||||
90%AA | 47.64 Ac | 48.08 Ab | 59.29 Aab | 52.65 Ab | 59.60 Aa | |||||
WSC (g/kg DM) | CS | 66.80 Ba | 66.48 Ba | 63.47 Ba | 61.52 Ba | 59.12 Ba | 2.03 | <0.01 | <0.01 | 0.56 |
LB | 66.87 Ba | 68.26 ABa | 68.13 ABa | 65.72 Ba | 65.39 Ba | |||||
30%AA | 69.55 ABa | 73.54 Aa | 69.25 ABa | 70.64 ABa | 70.80 ABa | |||||
60%AA | 74.58 Aa | 73.83 Aa | 71.40 Aa | 71.26 ABa | 72.98 Aa | |||||
90%AA | 74.76 Aa | 72.98 Aa | 72.55 Aa | 72.59 Aa | 72.35 Aa | |||||
NDF (g/kg DM) | CS | 590.24 Aa | 590.13 Aa | 572.79 Aa | 571.60 Aa | 571.05 Aa | 2.23 | <0.01 | <0.05 | 0.27 |
LB | 583.35 Aa | 583.08 Aa | 565.58 Aa | 563.60 Aa | 558.51 Aa | |||||
30%AA | 548.32 ABa | 544.62 Ba | 521.33 ABa | 517.67 ABa | 516.96 ABa | |||||
60%AA | 487.53 Ba | 484.36 Ba | 485.91 Ba | 480.38 Ba | 481.86 Ba | |||||
90%AA | 504.67 Ba | 502.66 Ba | 483.71 Ba | 474.18 Ba | 472.86 Ba | |||||
ADF (g/kg DM) | CS | 527.74 Aa | 526.45 Aa | 519.86 Aa | 501.54 Aa | 490.42 Aa | 5.23 | 0.62 | 0.57 | 1.00 |
LB | 522.44 Aa | 518.61 Aa | 505.08 Aa | 490.67 Aa | 485.70 Aa | |||||
30%AA | 502.96 Aa | 498.08 Aa | 482.95 Aa | 479.38 Aa | 481.10 Aa | |||||
60%AA | 500.80 Aa | 491.49 Aa | 482.51 Aa | 480.33 Aa | 474.65 Aa | |||||
90%AA | 515.64 Aa | 487.31 Aa | 470.41 Aa | 465.67 Aa | 475.02 Aa | |||||
CP (g/kg DM) | CS | 57.64 Da | 57.73 Da | 56.43 Da | 51.44 Da | 50.32 Da | 2.90 | <0.01 | <0.05 | 0.89 |
LB | 58.54 Da | 58.06 Da | 57.16 Da | 58.29 Da | 57.82 Da | |||||
30%AA | 81.96 Ca | 81.68 Ca | 81.03 Ca | 80.75 Ca | 80.35 Ca | |||||
60%AA | 101.26 Ba | 102.04 Ba | 101.77 Ba | 95.12 Ba | 94.59 Ba | |||||
90%AA | 114.37 Aa | 112.82 Aa | 111.72 Aa | 110.16 Aa | 109.24 Aa |
Item | Treatment | Days of Ensiling (day, d) | Days of Aerobic Exposure (day, d) | SEM | p Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
90 | 1 | 3 | 5 | 7 | T | D | T × D | |||
Coliform bacteria | CS | 5.96 Ac | 6.07 Ac | 8.08 Ab | 9.34 Aa | 9.39 Aa | 0.107 | <0.01 | <0.01 | <0.01 |
LB | 5.90 Ac | 5.84 ABc | 7.80 Ab | 7.58 Bb | 9.38 Aa | |||||
30%AA | 5.50 Bb | 5.48 Bb | 5.54 Bb | 5.52 Cb | 5.46 Ba | |||||
60%AA | 5.83 Aa | 5.76 ABa | 5.56 Ba | 5.73 Ca | 5.72 Ba | |||||
90%AA | 5.56 ABa | 5.61 Ba | 5.60 Ba | 5.61 Ca | 5.65 Ba | |||||
Aerobic bacteria | CS | 5.93 Ab | 5.98 Ab | 10.10 Aa | 10.08 Aa | 10.04 Aa | 0.105 | <0.01 | <0.01 | <0.01 |
LB | 5.71 ABb | 5.97 Ab | 10.02 ABa | 10.01 Aa | 9.93 Aa | |||||
30%AA | 5.52 Bb | 5.57 Bb | 6.76 Ba | 6.76 Ca | 6.73 Ca | |||||
60%AA | 5.80 ABb | 5.76 ABb | 7.56 Ca | 7.73 Ba | 7.57 Ba | |||||
90%AA | 5.76 ABc | 5.64 Bc | 7.42 Cb | 7.75 Ba | 7.76 Ba | |||||
Bacilli | CS | 5.10 Bc | 5.78 Ab | 6.30 Ab | 6.95 Aa | 7.98 Aa | 0.181 | <0.01 | <0.01 | <0.01 |
LB | 5.20 Bc | 5.84 Ab | 6.63 Aa | 6.98 Aa | 7.07 Aa | |||||
30%AA | 5.52 ABb | 5.22 Bb | 6.34 Aa | 6.64 Aa | 5.13 Cb | |||||
60%AA | 5.81 Ab | 5.62 ABb | 6.38 Aa | 6.55 Aa | 5.38 Bb | |||||
90%AA | 5.76 Aba | 5.36 ABc | 6.17 Aa | 6.89 Aa | 5.70 Bb | |||||
Clostridia | CS | 5.89 Ab | 5.62 Aa | 5.59 Aa | 5.67 Aa | 6.62 Aa | 0.144 | <0.01 | <0.01 | <0.01 |
LB | 5.56 Ab | 5.53 ABa | 5.53 ABa | 5.74 Aa | 5.04 Ab | |||||
30%AA | 5.13 Aa | 5.12 Ba | 5.17 Ba | 5.22 Ba | 4.65 Bb | |||||
60%AA | 5.13 Aa | 5.07 Ba | 5.08 Ba | 5.07 Ba | 5.14 Aa | |||||
90%AA | 5.25 Aa | 5.06 Ba | 4.99 Ba | 5.05 Ba | 5.24 Aa | |||||
Yeast | CS | 5.05 Be | 5.30 Ad | 7.86 Ac | 9.64 Aac | 9.57 Aa | 0.211 | <0.01 | <0.01 | <0.01 |
LB | 5.94 Ac | 5.12 ABc | 7.52 Ab | 7.92 Ba | 10.08 Aa | |||||
30%AA | 5.17 Bc | 4.75 ABd | 5.67 Bc | 6.33 Cb | 5.22 Ba | |||||
60%AA | 4.29 Cc | 4.62 Bc | 5.35 Bb | 6.12 Ca | 5.65 Cab | |||||
90%AA | 4.13 Cb | 3.90 Cb | 4.29 Cb | 5.16 Da | 5.50 Ca | |||||
LAB | CS | 9.09 Aa | 8.10 Bb | 7.84 Bc | 7.40 Ac | 6.31 Bd | 0.17 | <0.01 | <0.01 | <0.01 |
LB | 9.83 Aa | 9.20 Ca | 7.50 Ab | 7.67 Bb | 6.90 Ac | |||||
30%AA | 9.85 Aa | 8.48 ABa | 8.06 Bb | 7.41 Cc | 7.77 Cbc | |||||
60%AA | 9.81 Aa | 8.33 ABa | 8.00 Cb | 7.49 Cbc | 7.30 Cc | |||||
90%AA | 9.35 Ba | 7.65 Bb | 7.68 Bb | 7.41 Cb | 7.47 Cb |
Item | Treatment | Days of Ensiling (day, d) | Days of Aerobic Exposure (day, d) | SEM | p Value | ||
---|---|---|---|---|---|---|---|
90 | 7 | T | D | T × D | |||
AFB1 (μg/kg DM) | CS | 2.18 Ab | 10.23 Aa | 1.69 | 0.11 | <0.01 | 0.18 |
LB | 2.48 Ab | 7.69 Aa | |||||
30%AA | 1.85 Aa | 3.68 Ba | |||||
60%AA | 2.01 Ab | 6.54 Aa | |||||
90%AA | 2.26 Ab | 6.71 Aa | |||||
ZEN (mg/kg DM) | CS | 0.21 Ab | 2.14 Aa | 0.66 | 0.39 | <0.01 | 0.51 |
LB | 0.16 Aa | 1.30 Aa | |||||
30%AA | 0.14 Aa | 0.44 Ba | |||||
60%AA | 0.18 Ab | 1.18 Aa | |||||
90%AA | 0.20 Ab | 1.70 Aa | |||||
FB (mg/kg DM) | CS | 2.46 Aa | 4.05 Aa | 0.87 | 0.18 | <0.01 | 0.81 |
LB | 2.87 Aa | 3.98 Aa | |||||
30%AA | 1.99 Aa | 2.67 Aa | |||||
60%AA | 2.09 Aa | 3.83 Aa | |||||
90%AA | 3.63 Aa | 4.12 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; Wu, G.; Luo, X.; Ma, Y.; Guan, K.; Pang, H.; Tan, Z.; Zhang, S.; Wang, L. Comprehensive Evaluation of Agricultural Residues Corn Stover Silage. Agriculture 2025, 15, 1362. https://doi.org/10.3390/agriculture15131362
Zhou P, Wu G, Luo X, Ma Y, Guan K, Pang H, Tan Z, Zhang S, Wang L. Comprehensive Evaluation of Agricultural Residues Corn Stover Silage. Agriculture. 2025; 15(13):1362. https://doi.org/10.3390/agriculture15131362
Chicago/Turabian StyleZhou, Pilong, Guofang Wu, Xuan Luo, Yuhong Ma, Kaiwen Guan, Huili Pang, Zhongfang Tan, Shiyan Zhang, and Lei Wang. 2025. "Comprehensive Evaluation of Agricultural Residues Corn Stover Silage" Agriculture 15, no. 13: 1362. https://doi.org/10.3390/agriculture15131362
APA StyleZhou, P., Wu, G., Luo, X., Ma, Y., Guan, K., Pang, H., Tan, Z., Zhang, S., & Wang, L. (2025). Comprehensive Evaluation of Agricultural Residues Corn Stover Silage. Agriculture, 15(13), 1362. https://doi.org/10.3390/agriculture15131362