Design and Parameter Optimization of Fresh Chili Seed Extractor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Equipment
2.2. Test Materials
2.3. Test Factors
2.4. Test Indicators
2.5. Experimental Design and Methodology
3. Results and Discussion
3.1. Plackett–Burman Test
Determination of Parameter Significance
3.2. Analysis of the Results of the Steepest Climb Test with Combined Scores
3.3. Box–Behnken Test Analysis and Results for Combined Scores
3.4. Response Surface Analysis of Combined Scores and Significant Parameters
3.5. Parameter Optimization and Experimental Validation
3.5.1. Significant Parameter Optimization
3.5.2. Experimental Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, D.; Sun, X.; Battion, M.; Wei, X.; Shi, J.; Zhao, L.; Liu, S.; Xiao, J.; Shi, B.; Zou, X. A comparative overview on chili pepper (Capsicum genus) and sichuan pepper (Zanthoxylum genus): From pungent spices to pharma-foods. Trends Food Sci. Technol. 2021, 117, 148–162. [Google Scholar] [CrossRef]
- Song, Z.; Du, C.; Chen, Y.; Han, D.; Wang, X. Development and test of a spring-finger roller-type hot pepper picking header. J. Agric. Eng. 2024, 55. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Wang, X. Research development of grain damage during threshing. Trans. Chin. Soc. Agric. Eng. 2009, 25, 303–307. [Google Scholar]
- Wang, G.; Guan, Z.; Mu, S.; Tang, Q.; Wu, C. Optimization of operating parameter and structure for seed thresher device for rape combine harvester. Trans. Chin. Soc. Agric. Eng. 2017, 33, 52–57. [Google Scholar]
- Ma, Z.; Huang, Y.; Hu, B.; Li, J.; Yao, Q. Design and Analysis of Pepper’s Seed and Skin Separator Device. Res. Agric. Mech. 2017, 39, 89–92. [Google Scholar]
- Liu, J.; Jin, C.; Liang, S.; Ni, Y. The research of soybean harvested by machine. J. Agric. Mech. Res. 2017, 39, 15. [Google Scholar]
- Chen, W.; Zhang, M.; Han, Y.; Zhu, J. Investigation on the mechanical harvest loss of soybean: A case study of soybean in heilongjiang and inner Mongolia. Agric. Sci. Eng. China 2017, 29, 16–20. [Google Scholar]
- Xing, M.; Long, Y.; Wang, Q.; Tian, X.; Fan, S.; Zhang, C.; Huang, W. Physiological Alterations and Nondestructive Test Methods of Crop Seed Vigor: A Comprehensive Review. Agriculture 2023, 13, 527. [Google Scholar] [CrossRef]
- Cheema, M.J.M.; Nauman, M.; Ghafoor, A.; Farooque, A.A.; Haydar, Z.; Ashraf, M.U.; Awais, M. Direct Seeding of Basmati Rice through Improved Drills: Potential and Constraints in Pakistani Farm Settings. Appl. Eng. Agric. 2021, 37, 53–63. [Google Scholar] [CrossRef]
- Chayalakshmi, C.; Jigalur, B.; Kori, P.; Karav, P.; Patil, P. Automated chili seed extractor useful for Indian Farmers. Int. J. Instrum. Control. Syst. 2017, 7, 7–13. [Google Scholar]
- Mohi ud din, M.; Muzamil, M.; Dixit, J.; Faisal, S.; Khan, I. Engineering Properties of Chilli Fruit Relevant to the Design and Evaluation of Chilli Seed Extractor for Hilly Region of Kashmir Valley. J. Inst. Eng. India Ser. A 2022, 103, 433–443. [Google Scholar]
- Khobragade, U.H.; Bakane, P.H.; Sakkalkar, S.R.; Bisen, R.D. Development and Performance Evaluation of a Wet Red Chilli Seed Extractor. Ama-Agric. Mech. Asia Afr. Lat. Am. 2023, 53, 52–56. [Google Scholar]
- Chen, X.; Ding, J.; Ji, D.; He, S.; Ma, H. Optimization of ultrasonic-assisted extraction conditions for bioactive components from coffee leaves using the Taguchi design and response surface methodology. J. Food Sci. 2020, 85, 1742–1751. [Google Scholar] [CrossRef]
- Du, D.; Fei, G.; Wang, J.; Huang, J.; You, X. Development and experiment of self-propelled cabbage harvester. Trans. Chin. Soc. Agric. Eng. 2015, 31, 16–23. [Google Scholar]
- Vladut, N.V.; Biris, S.S.; Cârdei, P.; Gageanu, I.; Cujbescu, D.; Ungureanu, N.; Popa, L.D.; Perisoara, L.; Matei, G.; Teliban, G.C. Contributions to the Mathematical Modeling of the Threshing and Separation Process in An Axial Flow Combine. Agriculture 2022, 12, 1520. [Google Scholar] [CrossRef]
- Xu, L.; Wei, C.; Liang, Z.; Chai, X.; Li, Y.; Liu, Q. Development of rapeseed cleaning loss monitoring system and experiments in a combine harvester. Biosyst. Eng. 2019, 178, 118–130. [Google Scholar] [CrossRef]
- Fakayode, O.A.; Akpan, D.E.; Ojoawo, O. Size characterization of moringa (Moringa oleifera) seeds and optimization of the dehulling process. J. Food Process Eng. 2019, 42, e13182. [Google Scholar] [CrossRef]
- Liao, Q.; Wang, Q.; Wan, X.; Du, Z.; Li, Y.; Cao, S. Design and Experiment of Self-propelled Rapeseed Stalks Harvester. Trans. Chin. Soc. Agric. Mach. 2023, 54, 126–138. [Google Scholar]
- Ren, J.; Lin, Y.; Luo, X.; Xie, M. Improvement of efficient nitrifying bacteria fermentation medium by sequential experimental design. J. South China Univ. Technol. (Nat. Sci. Ed.) 2008, 36, 91–96. [Google Scholar]
- Yuan, X.; Yang, S.; Jin, R.; Zhao, L.; Dao, E.; Zheng, N.; Fu, W. Design and experiment of double helix pair roller pepper harvesting device. Trans. Chin. Soc. Agric. Eng. 2021, 37, 1–9. [Google Scholar]
- Jin, C.; Guo, F.; Xu, J.; Li, Q.; Chen, M.; Li, J.; Yin, X. Optimization of working parameters of soybean combine harvester. Trans. Chin. Soc. Agric. Eng. 2019, 35, 10–22. [Google Scholar]
- Hou, Z.; Dai, N.; Chen, Z.; Qiu, Y.; Zhang, X. Measurement and calibration of physical property parameters for Agropyron seeds in a discrete element simulation. Trans. Chin. Soc. Agric. Eng. 2020, 36, 46–54. [Google Scholar]
- Seok, N.J.; Byun, J.-H.; Hyung, K.T.; Kim, M.H.; Dae-Cheol, K. Measurement of Mechanical and Physical Properties of Pepper for Particle Behavior Analysis. J. Biosyst. Eng. 2018, 43, 173–184. [Google Scholar]
- Ahmad, F.; Qiu, B.; Ding, Q.; Ding, W.; Khan, Z.M.; Shoaib, M.; Chandio, F.A.; Rehim, A.; Khaliq, A. Discrete element method simulation of disc type furrow openers in paddy soil. Int. J. Agric. Biol. Eng. 2020, 13, 103–110. [Google Scholar] [CrossRef]
- Du, C.; Han, D.; Song, Z.; Chen, Y.; Chen, X.; Wang, X. Calibration of contact parameters for complex shaped fruits based on discrete element method: The case of pod pepper (Capsicum annuum). Biosyst. Eng. 2023, 226, 43–54. [Google Scholar] [CrossRef]
- Shi, Q.; Wang, B.; Mao, H.; Liu, Y. Calibration and measurement of micrometre-scale pollen particles for discrete element method parameters based on the Johnson-Kendal-Roberts model. Biosyst. Eng. 2023, 237, 83–91. [Google Scholar] [CrossRef]
- Sun, W.; Na, M.; Feng, J.; Jiang, Y. Optimization of Centrifugal Separating-Rethreshing-Cleaning Apparatus for Stripper Combine Harvester. Trans. Chin. Soc. Agric. Mach. 2018, 49, 73–81. [Google Scholar]
- Hou, J.; Bai, J.; He, T.; Yang, Y.; Li, J.; Yao, E. Design and Experiment of Castor Dehulling and Cleaning Device with Double Curved Table. Trans. Chin. Soc. Agric. Mach. 2018, 49, 132–140. [Google Scholar]
- Boateng, I.D.; Soetanto, D.A.; Li, F.; Yang, X.; Li, Y. Separation and purification of polyprenols from Ginkgo biloba L. leaves by bulk ionic liquid membrane and optimizing parameters. Ind. Crops Prod. 2021, 170, 113828. [Google Scholar] [CrossRef]
- Tchabo, W.; Ma, Y.; Kwaw, E.; Xiao, L.; Wu, M.; Apaliya, M.T. Impact of extraction parameters and their optimization on the nutraceuticals and antioxidant properties of aqueous extract mulberry leaf. Int. J. Food Prop. 2018, 21, 717–732. [Google Scholar] [CrossRef]
- JB/T 11912–2014; Soybean Combine Harvester. China Machine Press: Beijing, China, 2014.
Parameter | Value |
---|---|
Rated power (kW) | 3 |
Overall dimensions (mm × mm × mm) | 730 × 250 × 600 |
Working capacity (g/s) | 500 |
Length of drum (mm) | 310 |
Diameter of drum (mm) | 74 |
Length of concave screen (mm) | 320 |
Diameter of concave screen (mm) | 180 |
Motor speed (r/min) | 1400 |
Variety | Moisture Content | Length (mm) | Diameter (mm) | Weight of 100 Grains (g) | Thickness (mm) |
---|---|---|---|---|---|
Pod pepper | 77% | 60.4 ± 3.1 | 9.5 ± 1.1 | 237.7 ± 8.5 | - |
Pepper seed | 18% | 4.24 ± 1.07 | 3.15 ± 0.62 | - | 1.03 ± 0.93 |
Code | Rotational Speed of Drum (r/min) | Feeding Speed (g/s) | Screen Hole Diameter (mm) | Threshing Gap (mm) | Number of Spike Teeth | Inclination Angle (°) |
---|---|---|---|---|---|---|
−1 | 600 | 25 | 7 | 6 | 20 | 5 |
0 | 700 | 50 | 8 | 8 | 24 | 20 |
1 | 800 | 75 | 9 | 10 | 28 | 35 |
Code | Drum Speed (X1) | Feeding Speed (X2) | Sieve Diameter (X3) | Threshing Gap (X4) | Number of Spike Teeth (X5) | Inclination Angle of Frame (X6) | Loss Rate Y1 (%) | Broken Rate Y2 (%) | Impurity Rate Y3 (%) | Combined Score Y (%) |
---|---|---|---|---|---|---|---|---|---|---|
1 | −1 | −1 | 1 | −1 | 1 | 1 | 3.74 | 2.77 | 11.98 | 5.00 |
2 | −1 | 1 | 1 | −1 | 1 | 1 | 4.76 | 2.33 | 11.81 | 5.20 |
3 | −1 | 1 | −1 | 1 | 1 | −1 | 6.05 | 2.15 | 10.68 | 5.42 |
4 | 1 | −1 | 1 | 1 | −1 | 1 | 4.46 | 1.86 | 11.29 | 4.66 |
5 | 1 | 1 | −1 | 1 | 1 | 1 | 6.83 | 2.44 | 10.81 | 5.87 |
6 | 1 | 1 | −1 | −1 | −1 | 1 | 6.97 | 2.78 | 10.92 | 6.08 |
7 | 1 | 1 | 1 | −1 | −1 | −1 | 3.74 | 2.96 | 11.95 | 5.07 |
8 | −1 | 1 | 1 | 1 | −1 | −1 | 4.65 | 1.14 | 11.03 | 4.52 |
9 | −1 | −1 | −1 | 1 | −1 | 1 | 6.87 | 1.33 | 10.11 | 5.30 |
10 | 1 | −1 | 1 | 1 | 1 | −1 | 3.13 | 3.02 | 12.04 | 4.87 |
11 | 1 | −1 | −1 | −1 | 1 | −1 | 4.14 | 4.27 | 11.87 | 5.74 |
12 | −1 | −1 | −1 | −1 | −1 | −1 | 5.16 | 2.86 | 10.98 | 5.40 |
Parameter | Degrees of Freedom | Sum of Squares | F-Value | p-Value (α = 0.05) | η2 |
---|---|---|---|---|---|
X1 | 1 | 0.1752 | 24.44 | 0.0006 | 0.0714 |
X2 | 1 | 0.118 | 16.46 | 0.0023 | 0.0481 |
X3 | 1 | 1.68 | 234.37 | <0.0001 | 0.6848 |
X4 | 1 | 0.2852 | 39.79 | <0.0001 | 0.1163 |
X5 | 1 | 0.0954 | 13.31 | 0.0047 | 0.0389 |
X6 | 1 | 0.099 | 13.81 | 0.0041 | 0.0403 |
No. | Drum Speed (X1) | Sieve Diameter (X3) | Threshing Gap (X4) | Comprehensive Score Y (%) |
---|---|---|---|---|
1 | 600 | 7 | 8 | 5.33 |
2 | 650 | 7.5 | 8.5 | 5.07 |
3 | 700 | 8 | 9 | 4.68 |
4 | 750 | 8.5 | 9.5 | 4.96 |
5 | 800 | 9 | 10 | 5.25 |
No. | Drum Speed (X1) | Sieve Diameter (X3) | Threshing Gap (X4) | Comprehensive Score Y (%) |
---|---|---|---|---|
1 | 0 | 0 | 0 | 4.64 |
2 | −1 | 1 | 0 | 4.61 |
3 | 0 | −1 | −1 | 5.25 |
4 | 0 | 0 | 0 | 4.71 |
5 | 0 | 0 | 0 | 4.55 |
6 | 0 | 1 | 1 | 4.41 |
7 | 0 | −1 | 1 | 5.01 |
8 | −1 | 0 | 1 | 4.39 |
9 | 1 | 0 | 1 | 5.57 |
10 | −1 | −1 | 0 | 5.02 |
11 | −1 | 0 | −1 | 4.88 |
12 | 1 | 0 | −1 | 5.04 |
13 | 0 | 0 | 0 | 4.51 |
14 | 1 | −1 | 0 | 5.34 |
15 | 0 | 1 | −1 | 4.45 |
16 | 0 | 0 | 0 | 4.75 |
17 | 1 | 1 | 0 | 4.59 |
Source of Variance | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 1.75 | 9 | 0.1946 | 6.92 | 0.0092 |
X1 | 0.3362 | 1 | 0.3362 | 11.95 | 0.0106 |
X3 | 0.8192 | 1 | 0.8192 | 29.13 | 0.001 |
X4 | 0.0072 | 1 | 0.0072 | 0.256 | 0.6284 |
X1 X3 | 0.0289 | 1 | 0.0289 | 1.03 | 0.3445 |
X1 X4 | 0.2601 | 1 | 0.2601 | 9.25 | 0.0188 |
X3 X4 | 0.01 | 1 | 0.01 | 0.3555 | 0.5698 |
X12 | 0.2113 | 1 | 0.2113 | 7.51 | 0.0289 |
X32 | 0.0049 | 1 | 0.0049 | 0.1731 | 0.6899 |
X42 | 0.0547 | 1 | 0.0547 | 1.95 | 0.2057 |
Residual | 0.1969 | 7 | 0.0281 | ||
Lack of fit | 0.1552 | 3 | 0.0517 | 4.96 | 0.0778 |
Pure error | 0.0417 | 4 | 0.0104 | ||
Sum | 1.95 | 16 |
No. | Wss (g) | Wsh (g) | Wzz (g) | Wpz (g) | Wpq (g) | Y1 (%) | Y2 (%) | Y3 (%) | Y (%) |
---|---|---|---|---|---|---|---|---|---|
1 | 2.38 | 73.07 | 82.98 | 75.45 | 73.44 | 3.15 | 2.66 | 11.50 | 4.624 |
2 | 2.74 | 66.00 | 75.40 | 68.74 | 67.40 | 3.98 | 1.95 | 10.61 | 4.366 |
3 | 3.56 | 78.00 | 91.18 | 81.56 | 80.40 | 4.36 | 1.42 | 11.82 | 4.676 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Chen, X.; Fang, W.; Fang, H.; Wang, X. Design and Parameter Optimization of Fresh Chili Seed Extractor. Agriculture 2025, 15, 1336. https://doi.org/10.3390/agriculture15131336
Bai J, Chen X, Fang W, Fang H, Wang X. Design and Parameter Optimization of Fresh Chili Seed Extractor. Agriculture. 2025; 15(13):1336. https://doi.org/10.3390/agriculture15131336
Chicago/Turabian StyleBai, Jing, Xingye Chen, Weiquan Fang, Huimin Fang, and Xinzhong Wang. 2025. "Design and Parameter Optimization of Fresh Chili Seed Extractor" Agriculture 15, no. 13: 1336. https://doi.org/10.3390/agriculture15131336
APA StyleBai, J., Chen, X., Fang, W., Fang, H., & Wang, X. (2025). Design and Parameter Optimization of Fresh Chili Seed Extractor. Agriculture, 15(13), 1336. https://doi.org/10.3390/agriculture15131336