Preliminary Study to Determine the Key Limiting Indicator of Cropland Soil Quality on the Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Chemical Analysis
2.3. Data Sources
2.4. Methods for the Analyses
2.4.1. Soil Quality Evaluation and Its Limiting Indicators
2.4.2. Random Forest Analysis and Correlation Analysis
2.4.3. Structural Equation Model
2.4.4. Data Analysis
3. Results
3.1. Descriptive Statistics of Cropland Soil Properties
3.2. Soil Quality Evaluation and Its Spatial Distribution Patterns
3.3. Identification of the Primary Limiting Indicator for Soil Quality
3.4. Analysis of Factors Influencing the Primary Limiting Indicator of Soil Quality
3.4.1. Influence of Soil Properties on the SOM
3.4.2. Influence of Environmental Factors on the SOM
3.4.3. Combined Effects of Soil Properties and Environmental Factors on the SOM
4. Discussion
4.1. Agricultural Soil Quality Evaluation and Indicator Selection
4.2. Key Limiting Indicators in Soil Quality
4.3. Factors Influencing SOM and Improvement Recommendations
4.4. Implications and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BD | Bulk density |
SM | Soil moisture |
SOM | Soil organic matter |
TN | Total nitrogen |
TP | Total phosphorus |
TK | Total potassium |
AN | Alkali-hydrolysable nitrogen |
AP | Available phosphorus |
AK | Available potassium |
EC | Electrical conductivity |
TS | Total soluble salt content |
C/N | Carbon-to-nitrogen |
SQI | Soil quality index |
SSF | Standard scoring functions |
RF | Random forest |
VIF | Variance inflation factor |
SEM | Structural equation model |
MAT | Mean annual temperature |
MAP | Mean annual precipitation |
Alt | Altitude |
SG | Slope gradient |
SA | Slope aspect |
NDVI | Normalized difference vegetation index |
FA | Fertilizer amount |
DIC | Distance to irrigation canal |
ANOVA | One-way analysis of variance |
LSD | Least significant difference |
PCA | Principal component analysis |
TP | Tibetan Plateau |
Appendix A
SSF Equation | Soil Indicator | a | b | a1 | b1 |
---|---|---|---|---|---|
M(x) | Clay | 0 | 15 | ||
Silt | 0 | 45 | |||
SOM | 20 | 40 | |||
TN | 1 | 2 | |||
TP | 0.6 | 1 | |||
TK | 15 | 25 | |||
AN | 90 | 150 | |||
AP | 10 | 40 | |||
AK | 100 | 200 | |||
L(x) | Sand | 55 | 85 | ||
EC | 0 | 0.37 | |||
TS | 0.1 | 0.3 | |||
BD | 1 | 1.4 | |||
Cr | 150 | 250 | |||
Ni | 60 | 190 | |||
Cu | 50 | 100 | |||
Zn | 200 | 300 | |||
Pb | 70 | 170 | |||
Cd | 0.3 | 0.6 | |||
As | 25 | 40 | |||
Hg | 1.3 | 3.4 | |||
O(x) | pH | 5 | 8 | 6.5 | 7.2 |
SM | 0.15 | 0.45 | 0.15 | 0.3 | |
C/N | 1 | 15 | 5 | 10 |
Soil Indicator | Common Factor Variance | Weight |
---|---|---|
Clay | 0.79 | 5.22% |
Silt | 0.88 | 5.47% |
Sand | 0.91 | 5.67% |
BD | 0.74 | 3.30% |
SM | 0.77 | 2.84% |
pH | 0.66 | 3.97% |
SOM | 0.84 | 5.48% |
TN | 0.87 | 5.53% |
TP | 0.71 | 3.06% |
TK | 0.68 | 4.18% |
AN | 0.86 | 5.02% |
AP | 0.60 | 4.05% |
AK | 0.37 | 1.95% |
C/N | 0.81 | 4.97% |
EC | 0.67 | 3.88% |
TS | 0.62 | 3.81% |
Cr | 0.58 | 4.35% |
Ni | 0.75 | 4.82% |
Cu | 0.69 | 3.34% |
Zn | 0.73 | 4.57% |
Pb | 0.62 | 3.83% |
Cd | 0.55 | 4.17% |
As | 0.46 | 3.73% |
Hg | 0.49 | 2.78% |
References
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The Concept and Future Prospects of Soil Health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Bindraban, P.S.; Stoorvogel, J.J.; Jansen, D.M.; Vlaming, J.; Groot, J.J.R. Land Quality Indicators for Sustainable Land Management: Proposed Method for Yield Gap and Soil Nutrient Balance. Agric. Ecosyst. Environ. 2000, 81, 103–112. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil Quality—A Critical Review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Cardoso, E.J.B.N.; Vasconcellos, R.L.F.; Bini, D.; Miyauchi, M.Y.H.; dos Santos, C.A.; Alves, P.R.L.; de Paula, A.M.; Nakatani, A.S.; Pereira, J.d.M.; Nogueira, M.A. Soil Health: Looking for Suitable Indicators. What Should Be Considered to Assess the Effects of Use and Management on Soil Health? Sci. Agric. 2013, 70, 274–289. [Google Scholar] [CrossRef]
- Chen, T.; Jiao, J.; Zhang, Z.; Lin, H.; Zhao, C.; Wang, H. Soil Quality Evaluation of the Alluvial Fan in the Lhasa River Basin, Qinghai-Tibet Plateau. Catena 2022, 209, 105829. [Google Scholar] [CrossRef]
- MacDonald, K.B.; Bruce, K.; Agriculture, C.; Branch, A.-F.C.R. Broad-Scale Assessment of Agricultural Soil Quality in Canada Using Existing Land Resource Databases and Gis; Research Branch Technical Bulletin: Ottawa, ON, Canada, 1998. [Google Scholar]
- Moebius-Clune, B.N. Comprehensive Assessment of Soil Health: The Cornell Framework Manual; Cornell University: Ithaca, NY, USA, 2016. [Google Scholar]
- Teng, Y.; Wu, J.; Lu, S.; Wang, Y.; Jiao, X.; Song, L. Soil and Soil Environmental Quality Monitoring in China: A Review. Environ. Int. 2014, 69, 177–199. [Google Scholar] [CrossRef]
- McKenzie, D.C. Rapid Assessment of Soil Compaction Damage I. The SOILpak Score, a Semi-Quantitative Measure of Soil Structural Form. Soil Res. 2001, 39, 117–125. [Google Scholar] [CrossRef]
- Ditzler, C.A.; Tugel, A.J. Soil Quality Field Tools. Agron. J. 2002, 94, 33–38. [Google Scholar] [CrossRef]
- Li, Y.; Ma, J.; Li, Y.; Jia, Q.; Shen, X.; Xia, X. Spatiotemporal Variations in the Soil Quality of Agricultural Land and Its Drivers in China from 1980 to 2018. Sci. Total Environ. 2023, 892, 164649. [Google Scholar] [CrossRef]
- Qi, Y.; Darilek, J.L.; Huang, B.; Zhao, Y.; Sun, W.; Gu, Z. Evaluating Soil Quality Indices in an Agricultural Region of Jiangsu Province, China. Geoderma 2009, 149, 325–334. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.E.; Tahoun, S. GIS Model-Builder Based on Comprehensive Geostatistical Approach to Assess Soil Quality. Remote Sens. Appl. Soc. Environ. 2019, 13, 204–214. [Google Scholar] [CrossRef]
- Kinoshita, R.; Moebius-Clune, B.N.; Es, H.M.; Hively, W.D.; Bilgilis, A.V. Strategies for Soil Quality Assessment Using Visible and Near-Infrared Reflectance Spectroscopy in a Western Kenya Chronosequence. Soil Sci. Soc. Am. J. 2012, 76, 1776–1788. [Google Scholar] [CrossRef]
- Dose, H.L.; Fortuna, A.-M.; Cihacek, L.J.; Norland, J.; DeSutter, T.M.; Clay, D.E.; Bell, J. Biological Indicators Provide Short Term Soil Health Assessment during Sodic Soil Reclamation. Ecol. Indic. 2015, 58, 244–253. [Google Scholar] [CrossRef]
- Guo, L.; Sun, Z.; Ouyang, Z.; Han, D.; Li, F. A Comparison of Soil Quality Evaluation Methods for Fluvisol along the Lower Yellow River. Catena 2017, 152, 135–143. [Google Scholar] [CrossRef]
- Daunoras, J.; Kačergius, A.; Gudiukaitė, R. Role of Soil Microbiota Enzymes in Soil Health and Activity Changes Depending on Climate Change and the Type of Soil Ecosystem. Biology 2024, 13, 85. [Google Scholar] [CrossRef]
- Zhai, J.; Zhou, H.; Wu, Y.; Wang, G.; Xue, S. Effect of Nitrogen and Phosphorus on Soil Enzyme Activities and Organic Carbon Stability in Qinghai–Tibet Plateau. Agronomy 2024, 14, 1376. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, M.-S.; Kim, J.-G.; Kim, S.-O. Use of Soil Enzymes as Indicators for Contaminated Soil Monitoring and Sustainable Management. Sustainability 2020, 12, 8209. [Google Scholar] [CrossRef]
- Bone, J.; Head, M.; Barraclough, D.; Archer, M.; Scheib, C.; Flight, D.; Voulvoulis, N. Soil Quality Assessment under Emerging Regulatory Requirements. Environ. Int. 2010, 36, 609–622. [Google Scholar] [CrossRef]
- El Behairy, R.A.; El Arwash, H.M.; El Baroudy, A.A.; Ibrahim, M.M.; Mohamed, E.S.; Kucher, D.E.; Shokr, M.S. How Can Soil Quality Be Accurately and Quickly Studied? A Review. Agronomy 2024, 14, 1682. [Google Scholar] [CrossRef]
- Wei, L.; Chen, S.; Cui, J.; Ping, H.; Yuan, C.; Chen, Q. A Meta-Analysis of Arable Soil Phosphorus Pools Response to Manure Application as Influenced by Manure Types, Soil Properties, and Climate. J. Environ. Manag. 2022, 313, 115006. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Z.; Chen, Q.; Zhang, X.; Chen, S.; Gou, Y.; Sun, Z.; Huang, Y.; Shi, Z. Soil Organic Carbon Storage, Distribution, and Influencing Factors at Different Depths in the Dryland Farming Regions of Northeast and North China. Catena 2022, 210, 105934. [Google Scholar] [CrossRef]
- Mayor, J.R.; Sanders, N.J.; Classen, A.T.; Bardgett, R.D.; Clement, J.-C.; Fajardo, A.; Lavorel, S.; Sundqvist, M.K.; Bahn, M.; Chisholm, C. Elevation Alters Ecosystem Properties across Temperate Treelines Globally. Nature 2017, 542, 91–95. [Google Scholar] [CrossRef]
- Yu, H.; Zha, T.; Zhang, X.; Nie, L.; Ma, L.; Pan, Y. Spatial Distribution of Soil Organic Carbon May Be Predominantly Regulated by Topography in a Small Revegetated Watershed. Catena 2020, 188, 104459. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, L.; Shao, M. Spatial Variations and Influencing Factors of Soil Organic Carbon under Different Land Use Types in the Alpine Region of Qinghai-Tibet Plateau. Catena 2023, 220, 106706. [Google Scholar] [CrossRef]
- Kudureti, A.; Zhao, S.; Zhakyp, D.; Tian, C. Responses of Soil Fauna Community under Changing Environmental Conditions. J. Arid Land 2023, 15, 620–636. [Google Scholar] [CrossRef]
- Sapkota, A.; Haghverdi, A.; Avila, C.C.E.; Ying, S.C. Irrigation and Greenhouse Gas Emissions: A Review of Field-Based Studies. Soil Syst. 2020, 4, 20. [Google Scholar] [CrossRef]
- Zhao, Z.; Gao, S.; Lu, C.; Xiaoyu, L.I.; Li, F.; Wang, T. Effects of Different Tillage and Fertilization Management Practices on Soil Organic Carbon and Aggregates under the Rice–Wheat Rotation System. Soil Tillage Res. 2021, 212, 105071. [Google Scholar] [CrossRef]
- Yang, H.; Song, X.; Zhao, Y.; Wang, W.; Cheng, Z.; Zhang, Q.; Cheng, D. Temporal and Spatial Variations of Soil C, N Contents and C: N Stoichiometry in the Major Grain-Producing Region of the North China Plain. PLoS ONE 2021, 16, e0253160. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Pinedo-Hernández, J.; Díez, S. Assessment of Heavy Metal Pollution, Spatial Distribution and Origin in Agricultural Soils along the Sinú River Basin, Colombia. Environ. Res. 2017, 154, 380–388. [Google Scholar] [CrossRef]
- Zhu, Y.; Jia, X.; Qiao, J.; Binley, A.; Horton, R.; Hu, W.; Wang, Y.; Shao, M. Capacity and Distribution of Water Stored in the Vadose Zone of the Chinese Loess Plateau. Vadose Zone J. 2019, 18, 180203. [Google Scholar] [CrossRef]
- Huang, K.; Ma, Z.; Xia, P.; Lin, T.; Zhang, Z.; Jiang, X.; Wang, X.; Huang, X. Spatial Pattern and Controlling Factors of Soil Organic Carbon Density in a Typical Karst Province, China. Soil Tillage Res. 2024, 242, 106160. [Google Scholar] [CrossRef]
- Zeng, C.; Zhang, F.; Wang, Q.; Chen, Y.; Joswiak, D.R. Impact of Alpine Meadow Degradation on Soil Hydraulic Properties over the Qinghai-Tibetan Plateau. J. Hydrol. 2013, 478, 148–156. [Google Scholar] [CrossRef]
- Genxu, W.; Ju, Q.; Guodong, C.; Yuanmin, L. Soil Organic Carbon Pool of Grassland Soils on the Qinghai-Tibetan Plateau and Its Global Implication. Sci. Total Environ. 2002, 291, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhou, Z.; Zhang, B.; Du, S.; Liu, G. The Effects of Agricultural Management on Selected Soil Properties of the Arable Soils in Tibet, China. Catena 2012, 93, 1–8. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.-J.; Yang, C.; Zhan, L.-Q.; Wu, W.; Liu, H.-B. The Stratification of Soil Organic Carbon and Total Nitrogen Affected by Parent Material and Cropping System. Catena 2022, 210, 105898. [Google Scholar] [CrossRef]
- Zhu, X.; Huang, L.; Wang, J.; Shao, M. Soil Erodibility and Its Scale-Specific Controls along a Southeast-Northwest Transect on the Tibetan Plateau. Catena 2023, 232, 107431. [Google Scholar] [CrossRef]
- Du, H.; Wang, J.; Wang, Y.; Yao, Y.; Liu, X.; Zhou, Y. Contamination Characteristics, Source Analysis, and Spatial Prediction of Soil Heavy Metal Concentrations on the Qinghai-Tibet Plateau. J. Soils Sediments 2023, 23, 2202–2215. [Google Scholar] [CrossRef]
- Tian, Y.; Zha, X.; Gao, X.; Yu, C. Geochemical Characteristics and Source Apportionment of Toxic Elements in the Tethys–Himalaya Tectonic Domain, Tibet, China. Sci. Total Environ. 2022, 831, 154863. [Google Scholar] [CrossRef]
- Zhao, W.; Huang, L.-M. Deciphering Spatial Variability and Dominant Controls of Soil Quality under Four Types of Grassland along a Southeast-Northwest Transect in Tibet, Southwestern China. Catena 2024, 243, 108221. [Google Scholar] [CrossRef]
- Namgyal. China’s West Development Strategy and Rural Empowerment: Is There A Link? A Case Study of the Tibetan Plateau Region. In China’s West Region Development; World Scientific: Singapore, 2004; pp. 409–438. ISBN 978-981-238-800-1. [Google Scholar]
- Zhang, L.; Xu, E. Effects of Agricultural Land Use on Soil Nutrients and Its Variation along Altitude Gradients in the Downstream of the Yarlung Zangbo River Basin, Tibetan Plateau. Sci. Total Environ. 2023, 905, 167583. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gong, D.; Zhang, Y. Investigating the Effects of Greenhouse Vegetable Cultivation on Soil Fertility in Lhasa, Tibetan Plateau. Chin. Geogr. Sci. 2020, 30, 456–465. [Google Scholar] [CrossRef]
- Sang, Y.; Xin, L. Factors Determining Concurrent Reclamation and Abandonment of Cultivated Land on the Qinghai-Tibet Plateau. Land 2023, 12, 1081. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Map, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Shamrikova, E.V.; Vanchikova, E.V.; Kondratenok, B.M.; Lapteva, E.M.; Kostrova, S.N. Problems and Limitations of the Dichromatometric Method for Measuring Soil Organic Matter Content: A Review. Eurasian Soil Sci. 2022, 55, 861–867. [Google Scholar] [CrossRef]
- Liu, J.; Gou, X.; Liu, J.; Yin, D.; Zhang, D. Comparative Analysis of the Drivers of Soil Organic Carbon, Total Nitrogen, and Phosphorus Stocks in Different Coniferous Plantations on the Eastern Tibetan Plateau. J. Soil Sci. Plant Nutr. 2024, 24, 331–342. [Google Scholar] [CrossRef]
- Wan, H.-S.; Zhang, W.-C.; Wu, W.; Liu, H.-B. Environmental Factors Affecting Soil Organic Carbon, Total Nitrogen, Total Phosphorus under Two Cropping Systems in the Three Gorges Reservoir Area. J. Soils Sediments 2023, 23, 831–844. [Google Scholar] [CrossRef]
- Liu, X.; Ma, J.; Ma, Z.-W.; Li, L.-H. Soil Nutrient Contents and Stoichiometry as Affected by Land-Use in an Agro-Pastoral Region of Northwest China. Catena 2017, 150, 146–153. [Google Scholar] [CrossRef]
- Xiao, F.; Cui, X.; Zhao, Y.; Fu, J.; Yu, T.; Bu, D.; Zhang, Q. Concentration, Spatial Distribution, and Source Apportionment of Heavy Metals in Agricultural Soils from the Yarlung Zangbo River Basin, Tibetan Plateau. Environ. Earth Sci. 2023, 82, 577. [Google Scholar] [CrossRef]
- Andrews, S.; Mitchell, J.; Roberto, M.; Karlen, D.; Hartz, T.; Horwath, W.; Pettygrove, S.; Scow, K.; Munk, D. On-Farm Assessment of Soil Quality in California’s Central Valley. Agron. J. 2002, 94, 12. [Google Scholar] [CrossRef]
- Doran, J.W.; Parkin, T.B. Defining and Assessing Soil Quality. In Defining Soil Quality for a Sustainable Environment; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1994; pp. 1–21. ISBN 978-0-89118-930-5. [Google Scholar]
- Xie, Y.; Shen, Z.; Wang, T.; Malanson, G.P.; Peñuelas, J.; Wang, X.; Chen, X.; Liang, E.; Liu, H.; Yang, M.; et al. Uppermost Global Tree Elevations Are Primarily Limited by Low Temperature or Insufficient Moisture. Glob. Change Biol. 2024, 30, e17260. [Google Scholar] [CrossRef]
- Jin, Z.; Ping, L.; Wong, M. Systematic Relationship between Soil Properties and Organic Carbon Mineralization Based on Structural Equation Modeling Analysis. J. Clean. Prod. 2020, 277, 123338. [Google Scholar] [CrossRef]
- Li, Q.; Cai, L.; Wang, R.; Xia, C.; Cui, G.; Li, C.; Zheng, X.; Cai, X. Development of Structural Equation Models to Unveil Source-Sink Switches of Mid-Latitude Soils for Semi-Volatile Banned Pesticides. Environ. Pollut. 2023, 318, 120888. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, X.; Ji, X.; Zhang, Z.; Zhang, H.; Zha, T.; Jiang, L. Elevation and Total Nitrogen Are the Critical Factors That Control the Spatial Distribution of Soil Organic Carbon Content in the Shrubland on the Bashang Plateau, China. Catena 2021, 204, 105415. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, Version 27.0; IBM: Armonk, NY, USA, 2020.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil Organic Carbon Storage as a Key Function of Soils—A Review of Drivers and Indicators at Various Scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Mu, C.; Zhang, T.; Zhang, X.; Cao, B.; Peng, X.; Cao, L.; Su, H. Pedogenesis and Physicochemical Parameters Influencing Soil Carbon and Nitrogen of Alpine Meadows in Permafrost Regions in the Northeastern Qinghai-Tibetan Plateau. Catena 2016, 141, 85–91. [Google Scholar] [CrossRef]
- Xie, X.; Pu, L.; Zhu, M.; Wu, T.; Xu, Y.; Wang, X. Effect of Long-Term Reclamation on Soil Quality in Agricultural Reclaimed Coastal Saline Soil, Eastern China. J. Soils Sediments 2020, 20, 3909–3920. [Google Scholar] [CrossRef]
- Ma, J.; Chen, Y.; Zhou, J.; Wang, K.; Wu, J. Soil Quality Should Be Accurate Evaluated at the Beginning of Lifecycle after Land Consolidation for Eco-Sustainable Development on the Loess Plateau. J. Clean. Prod. 2020, 267, 122244. [Google Scholar] [CrossRef]
- Jin, H.; Shi, D.; Lou, Y.B.; Zhang, J.; Ye, Q.; Jiang, N. Evaluation of the Quality of Cultivated-Layer Soil Based on Different Degrees of Erosion in Sloping Farmland with Purple Soil in China. Catena 2021, 198, 105048. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, X.; Lv, J. Size and Dynamics of Soil Organic Carbon Stock in Cropland of the Eastern Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2016, 222, 125–132. [Google Scholar] [CrossRef]
- Peng, S.; Huang, J.; Zhong, X.; Yang, J.; Wang, G.; Zou, Y.; Zhang, F.; Zhu, Q.; Buresh, R.; Witt, C. Challenge and Opportunity in Improving Fertilizer-Nitrogen Use Efficiency of Irrigated Rice in China. Agr. Sci. China 2002, 1, 776–785. [Google Scholar]
- Tian, L.; Zhao, L.; Wu, X.; Fang, H.; Zhao, Y.; Yue, G.; Liu, G.; Chen, H. Vertical Patterns and Controls of Soil Nutrients in Alpine Grassland: Implications for Nutrient Uptake. Sci. Total Environ. 2017, 607–608, 855–864. [Google Scholar] [CrossRef]
- Xin, Z.; Qin, Y.; Yu, X. Spatial Variability in Soil Organic Carbon and Its Influencing Factors in a Hilly Watershed of the Loess Plateau, China. Catena 2016, 137, 660–669. [Google Scholar] [CrossRef]
- Zhan, J.; Li, Y.; Cheng, L.; Yang, H.; Ning, Z.; Liang, R. Effect of N Addition and Litter Manipulation on Plant Community Productivity in the Semiarid Sandy Grassland. Ecol. Eng. 2024, 201, 107191. [Google Scholar] [CrossRef]
- Chen, H.; Ju, P.; Zhu, Q.; Xu, X.; Wu, N.; Gao, Y.; Feng, X.; Tian, J.; Niu, S.; Zhang, Y.; et al. Carbon and Nitrogen Cycling on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 3, 701–716. [Google Scholar] [CrossRef]
- Sridhar, B.; Lawrence, G.; Debenport, S.; Fahey, T.; Buckley, D.; Wilhelm, R.; Goodale, C. Watershed-scale Liming Reveals the Short- and Long-term Effects of pH on the Forest Soil Microbiome and Carbon Cycling. Environ. Microbiol. 2022, 24, 6184–6199. [Google Scholar] [CrossRef]
- Casucci, C.; Okeke, B.C.; Frankenberger, W.T. Effects of Mercury on Microbial Biomass and Enzyme Activities in Soil. Biol. Trace Elem. Res. 2003, 94, 179–191. [Google Scholar] [CrossRef]
- Fang, H.J.; Cheng, S.L.; Yu, G.R.; Yang, X.M.; Xu, M.J.; Wang, Y.S.; Li, L.S.; Dang, X.S.; Wang, L.; Li, Y.N. Nitrogen Deposition Impacts on the Amount and Stability of Soil Organic Matter in an Alpine Meadow Ecosystem Depend on the Form and Rate of Applied Nitrogen. Eur. J. Soil Sci. 2014, 65, 510–519. [Google Scholar] [CrossRef]
- Liu, Y.; He, N.; Wen, X.; Xu, L.; Sun, X.; Yu, G.; Liang, L.; Schipper, L.A. The Optimum Temperature of Soil Microbial Respiration: Patterns and Controls. Soil Biol. Biochem. 2018, 121, 35–42. [Google Scholar] [CrossRef]
- Li, F.; Yuan, C.; Lao, D.; Yao, B.; Hu, X.; You, Y.; Wang, L.; Sun, S.; Liang, X. Drip Irrigation with Organic Fertilizer Application Improved Soil Quality and Fruit Yield. Agron. J. 2020, 112, 608–623. [Google Scholar] [CrossRef]
Soil Indicator | Unit | 0~10 cm | 10~20 cm | 20~40 cm | 0~40 cm | |||
---|---|---|---|---|---|---|---|---|
Mean ± Std | Mean ± Std | Mean ± Std | Mean ± Std | Minimum | Maximum | CV (%) | ||
Clay | % | 5.33 ± 3.22 a | 5.28 ± 3.34 a | 5.45 ± 3.7 a | 5.35 ± 3.32 | 0.01 | 20.52 | 61.99 |
Silt | % | 37.39 ± 14.45 a | 37.94 ± 14.6 a | 37.43 ± 15.38 a | 37.58 ± 14.29 | 6.31 | 77.18 | 38.03 |
Sand | % | 57.27 ± 15.85 a | 56.78 ± 16.09 a | 57.13 ± 17.01 a | 57.06 ± 15.73 | 15.05 | 92.80 | 27.56 |
BD | g·cm−3 | 1.29 ± 0.18 b | 1.35 ± 0.17 a | 1.35 ± 0.18 a | 1.33 ± 0.15 | 0.89 | 1.89 | 11.24 |
SM | % | 24.93 ± 0.07 a | 23.81 ab ± 0.06 ab | 22.82 b ± 0.07 | 23.85 ± 5.91 | 0.10 | 0.40 | 24.79 |
pH | 7.50 ± 0.83 b | 7.61 ± 0.8 ab | 7.75 ± 0.78 a | 7.62 ± 0.77 | 4.80 | 8.90 | 10.09 | |
SOM | g·kg−1 | 20.32 ± 10.08 a | 19.06 ± 8.88 a | 14.6 ± 7.33 b | 17.99 ± 8.27 | 2.04 | 47.94 | 45.97 |
TN | g·kg−1 | 1.40 ± 0.72 a | 1.31 ± 0.62 a | 1 ± 0.52 b | 1.24 ± 0.57 | 0.12 | 4.22 | 45.76 |
TP | g·kg−1 | 0.99 ± 0.43 a | 0.97 ± 0.46 a | 0.92 ± 0.44 a | 0.96 ± 0.38 | 0.32 | 2.10 | 39.66 |
TK | g·kg−1 | 20.34 ± 5.75 a | 20.19 ± 5.37 a | 20.56 ± 5.65 a | 20.36 ± 5.25 | 10.63 | 45.01 | 25.79 |
AN | mg·kg−1 | 109.40 ± 63.16 a | 101.02 ± 54.98 a | 79.02 ± 50.93 b | 96.48 ± 48.93 | 8.88 | 284.63 | 50.71 |
AP | mg·kg−1 | 20.58 ± 23.35 a | 17.34 ± 21.29 a | 11.64 b ± 14.63 b | 16.52 ± 18.90 | 2.96 | 171.26 | 114.40 |
AK | mg·kg−1 | 79.95 ± 55.56 a | 69.87 ± 50.24 ab | 60.46 ± 41.71 b | 70.10 ± 46.03 | 15.67 | 403.33 | 65.67 |
C/N | 8.78 ± 2.14 a | 8.77 ± 2.57 a | 8.74 ± 1.96 a | 8.76 ± 1.64 | 0.98 | 16.82 | 18.71 | |
EC | ms·cm−1 | 0.25 ± 0.23 a | 0.22 ± 0.18 ab | 0.18 ± 0.14 b | 0.21 ± 0.18 | 0.05 | 1.84 | 82.64 |
TS | % | 0.34 ± 0.24 a | 0.30 ± 0.22 ab | 0.27 ± 0.2 b | 0.30 ± 0.19 | 0.04 | 0.89 | 62.35 |
Cr | mg·kg−1 | 35.27 ± 18.65 a | 35.74 ± 18.59 a | 36.65 ± 18.05 a | 35.89 ± 17.48 | 11.20 | 148.67 | 48.70 |
Ni | mg·kg−1 | 24.22 ± 15.65 a | 24.32 ± 15.5 a | 24.64 ± 14.95 a | 24.40 ± 15.01 | 5.43 | 98.82 | 61.54 |
Cu | mg·kg−1 | 28.25 ± 12.05 a | 28.57 ± 12.49 a | 28.19 ± 12.21 a | 28.34 ± 10.33 | 11.49 | 69.00 | 36.46 |
Zn | mg·kg−1 | 71.87 ± 26.6 a | 69.81 ± 28.05 a | 68.14 ± 30.29 a | 69.94 ± 24.84 | 25.91 | 159.64 | 35.52 |
Pb | mg·kg−1 | 20.84 ± 6.98 a | 20.69 ± 6.99 a | 21.03 ± 7.29 a | 20.85 ± 6.33 | 10.62 | 67.07 | 30.34 |
Cd | mg·kg−1 | 0.14 ± 0.11 a | 0.15 ± 0.12 a | 0.15 ± 0.12 a | 0.15 ± 0.11 | 0.02 | 0.92 | 73.79 |
As | mg·kg−1 | 17.2 ± 10.30 a | 15.66 ± 7.74 a | 15.88 ± 7.52 a | 16.25 ± 7.63 | 2.98 | 52.96 | 46.94 |
Hg | mg·kg−1 | 0.07 ± 0.06 a | 0.07 ± 0.04 a | 0.07 ± 0.05 a | 0.07 ± 0.04 | 0.01 | 0.44 | 64.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, D.; Wang, Z.; Zhang, Y.; Wei, B.; Zhang, B.; Hu, X.; Deng, M.; Gu, C. Preliminary Study to Determine the Key Limiting Indicator of Cropland Soil Quality on the Tibetan Plateau. Agriculture 2025, 15, 1252. https://doi.org/10.3390/agriculture15121252
Gong D, Wang Z, Zhang Y, Wei B, Zhang B, Hu X, Deng M, Gu C. Preliminary Study to Determine the Key Limiting Indicator of Cropland Soil Quality on the Tibetan Plateau. Agriculture. 2025; 15(12):1252. https://doi.org/10.3390/agriculture15121252
Chicago/Turabian StyleGong, Dianqing, Zhaofeng Wang, Yili Zhang, Bo Wei, Binghua Zhang, Xiaoyang Hu, Min Deng, and Changjun Gu. 2025. "Preliminary Study to Determine the Key Limiting Indicator of Cropland Soil Quality on the Tibetan Plateau" Agriculture 15, no. 12: 1252. https://doi.org/10.3390/agriculture15121252
APA StyleGong, D., Wang, Z., Zhang, Y., Wei, B., Zhang, B., Hu, X., Deng, M., & Gu, C. (2025). Preliminary Study to Determine the Key Limiting Indicator of Cropland Soil Quality on the Tibetan Plateau. Agriculture, 15(12), 1252. https://doi.org/10.3390/agriculture15121252