Desertification and Agrifood Systems: Restoration of Degraded Agricultural Lands in the Arab Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Key Concepts
2.2. Study Area
2.3. Analysis of the Degradation in Agricultural Land
2.4. Computation of Yield Gaps
3. Results
3.1. Global and Regional Degradation of Agricultural Lands
3.2. Human-Induced Land Degradation in the Agricultural Land of the Arab Region
3.3. Suitable Areas and Yield Gaps for Cereals, Oil Crops, and Roots and Tubers in the Arab Region
4. Discussion
4.1. Drivers of Land Degradation in the Arab Region
4.2. Impacts of Land Degradation on Agrifood Systems
4.3. Restore and Prevent the Degradation of Agricultural Lands
5. Limitations and Uncertainties
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FAO | Food and Agriculture Organization of the United Nations |
LDN | Land Degradation Neutrality |
GAEZ | Global Agro-ecological Zoning |
UNCCD | United Nations Convention to Combat Desertification |
References
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture—Systems at Breaking Point; Main Report; Food and Agriculture Organization (FAO): Rome, Italy, 2022; p. 393. [Google Scholar] [CrossRef]
- Coppus, R. The Global Distribution of Human-Induced Land Degradation and Areas at Risk; SOLAW21 Technical Background Report; Food and Agriculture Organization (FAO): Rome, Italy, 2023; p. 60. [Google Scholar] [CrossRef]
- Smith, P.; Nkem, J.; Calvin, K.; Campbell, D.; Cherubini, F.; Grassi, G.; Korotkov, V.; Le Hoang, A.; Lwasa, S.; McElwee, P.; et al. Interlinkages Between Desertification, Land Degradation, Food Security and Greenhouse Gas Fluxes: Synergies, Trade-Offs and Integrated Response Options. In Climate Change and Land: IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Cambridge University Press: Cambridge, UK, 2019; Chapter 6; pp. 551–672. [Google Scholar] [CrossRef]
- Gerten, D.; Heck, V.; Jägermeyr, J.; Bodirsky, B.L.; Fetzer, I.; Jalava, M.; Kummu, M.; Lucht, W.; Rockström, J.; Schaphoff, S.; et al. Feeding Ten Billion People Is Possible Within Four Terrestrial Planetary Boundaries. Nat. Sustain. 2020, 3, 200–208. [Google Scholar] [CrossRef]
- Ahmed, F.; Shakeel, A.; Ahmad, S.; Kaur, N. Exploring the Linkages Between Land Degradation and Food Insecurity. Asia-Pac. J. Rural. Dev. 2025. Available online: https://journals.sagepub.com/doi/pdf/10.1177/10185291241307272 (accessed on 10 April 2025). [CrossRef]
- FAO. Healthy Soils Are the Basis for Healthy Food Production. 2015 International Year of Soils; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; p. 4. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/4fb89216-b131-4809-bbed-b91850738fa1/content (accessed on 28 May 2025).
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An Assessment of the Global Impact of 21st Century Land Use Change on Soil Erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, G.; Zhang, Y.; Guan, X.; Wei, Y.; Guo, R. Global Desertification Vulnerability to Climate Change and Human Activities. Land Degrad. Dev. 2020, 31, 1380–1391. [Google Scholar] [CrossRef]
- Nkonya, E.; Mirzabaev, A.; Von Braun, J. (Eds.) Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development; Springer Nature: Washington, DC, USA, 2016; p. 682. Available online: https://library.oapen.org/bitstream/id/f08b4a3f-6ab0-4b20-89f5-73aca59b2bf6/1001884.pdf (accessed on 28 May 2025).
- FAO. Temperature Change Statistics 1961–2024—Global, Regional and Country Trends; FAOSTAT Analytical Briefs, No. 101; FAO: Rome, Italy, 2025; p. 12. [Google Scholar] [CrossRef]
- FAO. FAOSTAT: Temperature Change on Land. Available online: https://www.fao.org/faostat/en/#data/ET (accessed on 28 May 2025).
- UNCCD. Global Drought Snapshot 2023: The Need for Proactive Action; United Nations Convention to Combat Desertification (UNCCD). 2023, p. 38. Available online: https://www.unccd.int/sites/default/files/2023-12/Global%20drought%20snapshot%202023.pdf (accessed on 28 May 2025).
- Nasrnia, F.; Ashktorab, N. Sustainable Livelihood Framework-Based Assessment of Drought Resilience Patterns of Rural Households of Bakhtegan Basin, Iran. Ecol. Indic. 2021, 128, 107817. [Google Scholar] [CrossRef]
- Alfani, F.; Pallante, G.; Palma, A.; Talhaoui, A. When the Rain Stops Falling. Effects of Droughts on the Tunisian Labor Market; Policy Research Working Paper 10766; World Bank—Poverty and Equity Global Practice: Washington, DC, USA, 2024; p. 33. Available online: https://documents1.worldbank.org/curated/en/099212205072411678/pdf/IDU17a7c9a48121f714d881aa161861bb79f46e4.pdf (accessed on 28 May 2025).
- Tian, H.; Bian, Z.; Shi, H.; Qin, X.; Pan, N.; Lu, C.; Pan, S.; Tubiello, F.N.; Chang, J.; Conchedda, G.; et al. History of Anthropogenic Nitrogen Inputs (HaNi) to the Terrestrial Biosphere: A 5-Arcmin Resolution Annual Dataset from 1860 to 2019. Earth Syst. Sci. Data Discuss. 2022, 2022, 1–32. [Google Scholar] [CrossRef]
- Maggi, F.; Tang, F.H.; Tubiello, F.N. Agricultural Pesticide Land Budget and River Discharge to Oceans. Nature 2023, 620, 1013–1017. [Google Scholar] [CrossRef]
- Tang, F.H.; Malik, A.; Li, M.; Lenzen, M.; Maggi, F. International Demand for Food and Services Drives Environmental Footprints of Pesticide Use. Commun. Earth Environ. 2022, 3, 272. [Google Scholar] [CrossRef]
- UNCCD. The Global Land Outlook, Second Edition; United Nations Convention to Combat Desertification (UNCCD): Bonn, Germany, 2022; p. 176. Available online: https://www.unccd.int/sites/default/files/2022-04/UNCCD_GLO2_low-res_2.pdf (accessed on 28 May 2025).
- UNCCD; WOCAT The Land Story. Country Experiences with Reporting on Land Degradation and Drought; United Nations Convention to Combat Desertification (UNCCD) and World Overview of Conservation Approaches and Technologies (WOCAT): Bonn, Germany; WOCAT and Centre for Development and Environment (CDE), University of Bern: Bern, Switzerland, 2024; p. 95. Available online: https://www.unccd.int/sites/default/files/2024-11/58214%20The%20Land%20Story_web.pdf (accessed on 28 May 2025).
- FAO. FAOSTAT: Land Use. Available online: https://www.fao.org/faostat/en/#data/RL (accessed on 28 May 2025).
- Crumpler, K.; Gagliardi, G.; Wong, T.; Monem, M.A.; Federici, S.; Dasgupta, S.; Meybeck, A.; Buto, O.; Toepper, J.; Salvatore, M.; et al. Regional Analysis of the Nationally Determined Contributions in the Near East and North Africa: Opportunities and Gaps in the Agriculture, Water and Land Use Sectors; Environment and Natural Resources Management WORKING Paper; Food and Agriculture Organization (FAO): Rome, Italy, 2022; p. 117. [Google Scholar] [CrossRef]
- FAO. Repurposing Agricultural Subsidies for Sustainable and Resilient Agrifood Systems in the Near East and North Africa Region—Key Issues and Future Agenda; Food and Agriculture Organization (FAO): Cairo, Egypt, 2024; p. 115. [Google Scholar] [CrossRef]
- FAO. Near East Forestry and Range Commission (NEFRC) Forest and Agriculture Linkages: Strengthening Forest and Rangeland Resilience Through Restoring Silvopastoral Systems for Better Drought and Economic Management—NEFRC/2023/4; Near East Forestry and Range Commission (NEFRC) 26th Session; Food and Agriculture Organization (FAO): Rome, Italy, 2023; p. 10. Available online: https://openknowledge.fao.org/handle/20.500.14283/cc7544en (accessed on 28 May 2025).
- FAO. Land Degradation Assessment in Drylands (LADA). In Methodology and Results; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; p. 56. Available online: https://www.fao.org/4/i3241e/i3241e.pdf (accessed on 28 May 2025).
- Nachtergaele, F.; Petri, M.; Biancalani, R. Land Degradation. In World Soil Resources and Food Security; Lal, R., Stewart, B.A., Eds.; Advances in Soil Science; CRC Press: Boca Raton, FL, USA, 2011; Chapter 10; pp. 471–498. [Google Scholar]
- FAO. IIASA Share of Land Cover Class (Global ~ 1km)—GAEZ V5 2025. Available online: https://data.apps.fao.org/catalog/iso/f7bee2f1-3a48-4e86-a1d2-387023dec04619 (accessed on 28 May 2025).
- Fritz, S.; See, L.; Perger, C.; McCallum, I.; Schill, C.; Schepaschenko, D.; Duerauer, M.; Karner, M.; Dresel, C.; Laso-Bayas, J.-C.; et al. A Global Dataset of Crowdsourced Land Cover and Land Use Reference Data. Sci. Data 2017, 4, 1–8. [Google Scholar] [CrossRef]
- Potapov, P.; Hansen, M.C.; Pickens, A.; Hernandez-Serna, A.; Tyukavina, A.; Turubanova, S.; Zalles, V.; Li, X.; Khan, A.; Stolle, F.; et al. The Global 2000–2020 Land Cover and Land Use Change Dataset Derived from the Landsat Archive: First Results. Front. Remote Sens. 2022, 3, 856903. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Conchedda, G.; Casse, L.; Hao, P.; Zhongxin, C.; De Santis, G.; Fritz, S.; Muchoney, D. High Resolution Cropland Agreement Map (30 m) circa 2020. 2022. Available online: https://zenodo.org/records/7244124 (accessed on 28 May 2025).
- Tubiello, F.N.; Conchedda, G.; Casse, L.; Pengyu, H.; Zhongxin, C.; De Santis, G.; Fritz, S.; Muchoney, D. Measuring the World’s Cropland Area. Nat. Food 2023, 4, 30–32. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Siebert, S.; Kummu, M.; Deng, Q.; Ali, T.; Marston, L.; Xie, W.; Davis, K.F. Half of Twenty-First Century Global Irrigation Expansion Has Been in Water-Stressed Regions. Nat. Water 2024, 2, 254–261. [Google Scholar] [CrossRef]
- Oliveira, J.; Campbell, E.E.; Lamparelli, R.A.; Figueiredo, G.K.; Soares, J.R.; Jaiswal, D.; Monteiro, L.A.; Vianna, M.S.; Lynd, L.R.; Sheehan, J.J. Choosing Pasture Maps: An Assessment of Pasture Land Classification Definitions and a Case Study of Brazil. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102205. [Google Scholar] [CrossRef]
- Parente, L.; Sloat, L.; Mesquita, V.; Consoli, D.; Stanimirova, R.; Hengl, T.; Bonannella, C.; Teles, N.; Wheeler, I.; Hunter, M.; et al. Annual 30-m Maps of Global Grassland Class and Extent (2000–2022) Based on Spatiotemporal Machine Learning. Sci. Data 2024, 11, 1–22. [Google Scholar] [CrossRef] [PubMed]
- FAO. IIASA Global Agro-Ecological Zoning Version 5 (GAEZ v5) Model Documentation 2025. Available online: https://github.com/un-fao/gaezv5/wiki (accessed on 28 May 2025).
- Fischer, G.; Nachtergaele, F.; van Velthuizen, H.; Chiozza, F.; Franceschini, G.; Henry, M.; Muchoney, D.; Tramberend, S. Global Agro-Ecological Zones v4—Model Documentation; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2021; p. 288. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/6b7b9b4a-dbac-4af4-a2cb-26aff33a30e5/content (accessed on 28 May 2025).
- FAO. FAOSTAT: Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 28 May 2025).
- ESCWA. Her Land. Her Rights. Equal Land Rights: A Pathway to Combating Desertification in the Arab Region 2023. 12p. Available online: https://www.unescwa.org/sites/default/files/pubs/pdf/factsheet-her-land-her-right-english.pdf (accessed on 28 May 2025).
- FAO. AQUASTAT Core Database. Available online: https://data.apps.fao.org/aquastat/?lang=en (accessed on 28 May 2025).
- FAO. FAOSTAT: Emissions Totals. Available online: https://www.fao.org/faostat/en/#data/GT (accessed on 28 May 2025).
- FAO. FAOSTAT: Pesticides Use. Available online: https://www.fao.org/faostat/en/#data/RP (accessed on 28 May 2025).
- FAO. FAOSTAT: Fertilizers by Nutrients. Available online: https://www.fao.org/faostat/en/#data/RFN (accessed on 28 May 2025).
- Nguyen, T.H.; Tang, F.H.; Conchedda, G.; Casse, L.; Obli-Laryea, G.; Tubiello, F.N.; Maggi, F. NPKGRIDS: A Global Georeferenced Dataset of N, P2O5, and K2O Fertilizer Application Rates for 173 Crops. Sci. Data 2024, 11, 1179. [Google Scholar] [CrossRef]
- FAO. FAOSTAT: Cropland Nutrient Balance. Available online: https://www.fao.org/faostat/en/#data/ESB (accessed on 28 May 2025).
- Ludemann, C.I.; Wanner, N.; Chivenge, P.; Dobermann, A.; Einarsson, R.; Grassini, P.; Gruere, A.; Jackson, K.; Lassaletta, L.; Maggi, F.; et al. A Global FAOSTAT Reference Database of Cropland Nutrient Budgets and Nutrient Use Efficiency (1961–2020): Nitrogen, Phosphorus and Potassium. Earth Syst. Sci. Data 2024, 16, 525–541. [Google Scholar] [CrossRef]
- Abay, K.A.; Abdelfattah, L.; El-Enbaby, H.; Mahmoud, M.; Breisinger, C. Plot Size and Sustainable Input Intensification in Smallholder Irrigated Agriculture: Evidence from Egypt. Agric. Econ. 2022, 53, 792–810. [Google Scholar] [CrossRef]
- FAO. Sand and Dust Storms (SDS): A Transboundary Issue of Growing Concern; Food and Agriculture Organization (FAO): Rome, Italy, 2022; p. 4. Available online: https://openknowledge.fao.org/handle/20.500.14283/cc0109en (accessed on 28 May 2025).
- FAO. Sand and Dust Storms A Guide to Mitigation, Adaptation, Policy and Risk Management Measures in Agriculture; Food and Agriculture Organization (FAO): Rome, Italy, 2023; p. 150. [Google Scholar] [CrossRef]
- Zdruli, P.; Zucca, C. Restoring Land and Soil Health to Ensure Sustainable and Resilient Agriculture in the Near East and North Africa Region—State of Land and Water Resources for Food and Agriculture Thematic Paper; FAO: Cairo, Egypt, 2023; p. 80. [Google Scholar] [CrossRef]
- FAO. FAOSTAT: Annual population. Available online: https://www.fao.org/faostat/en/#data/OA (accessed on 28 May 2025).
- Nguyen, H. Sustainable Food Systems: Concept and Framework; FAO: Cairo, Egypt, 2018; p. 8. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/b620989c-407b-4caf-a152-f790f55fec71/content (accessed on 28 May 2025).
- Sonneveld, B.; Keyzer, M.; Ndiaye, D. Quantifying the Impact of Land Degradation on Crop Production: The Case of Senegal. Solid Earth 2016, 7, 93–103. [Google Scholar] [CrossRef]
- Bindraban, P.S.; van der Velde, M.; Ye, L.; Van den Berg, M.; Materechera, S.; Kiba, D.I.; Tamene, L.; Ragnarsdóttir, K.V.; Jongschaap, R.; Hoogmoed, M.; et al. Assessing the Impact of Soil Degradation on Food Production. Curr. Opin. Environ. Sustain. 2012, 4, 478–488. [Google Scholar] [CrossRef]
- Smerald, A.; Fuchs, K.; Kraus, D.; Butterbach-Bahl, K.; Scheer, C. Significant Global Yield-Gap Closing Is Possible without Increasing the Intensity of Environmentally Harmful Nitrogen Losses. Front. Sustain. Food Syst. 2022, 6, 736394. [Google Scholar] [CrossRef]
- Liniger, H.P.; Mekdaschi Studer, R.; Hauert, C.; Gurtner, M. Sustainable Land Management in Practice—Guidelines and Best Practices for Sub-Saharan Africa Field Application; TerrAfrica, World Overview of Conservation Approaches and Technologies (WOCAT) and Food and Agriculture Organization of the United Nations (FAO): Cairo, Egypt, 2011; p. 243. Available online: https://www.fao.org/4/i1861e/i1861e.pdf (accessed on 28 May 2025).
- Sewell, A.; van der Esch, S.; Löwenhardt, H. Goals and Commitments for the Restoration Decade: A Global Overview of Countries’ Restoration Commitments under the Rio Conventions and Other Pledges; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2020; p. 37. Available online: https://www.pbl.nl/uploads/default/downloads/pbl-2020-goals-and-commitments-for-the-restoration-decade-3906.pdf (accessed on 28 May 2025).
- Haddad, F.F.; Herrera, P.M.; Besbes, B. Grazing with Trees: A Silvopastoral Approach to Managing and Restoring Drylands; FAO Forestry Paper; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2022; Volume 187, p. 180. ISBN 978-92-5-136956-2. [Google Scholar]
- van der Esch, S.; Sewell, A.; Bakkenes, M.; Doelman, J.; Stehfest, E.; Langhans, C.; Bouwman, A.; ten Brink, B.; Berkhout, E.; Fleskens, L. The Global Potential for Land Restoration: Scenarios for the Global Land Outlook 2; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2022; p. 190. Available online: https://www.pbl.nl/sites/default/files/downloads/pbl-2022-the-global-potential-for-land-restoration-glo2-4816.pdf (accessed on 28 May 2025).
- Haddad, F.F.; Ariza, C.; Malmer, A. Building Climate-Resilient Dryland Forests and Agrosilvopastoral Production Systems: An Approach for Context-Dependent Economic, Social and Environmentally Sustainable Transformations; Forestry Working Paper; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2021; Volume 22, p. 80. ISBN 978-92-5-134119-3. [Google Scholar]
- Ziadat, F.; Zdruli, P.; Christiansen, S.; Caon, L.; Abdel Monem, M.; Fetsi, T. An Overview of Land Degradation and Sustainable Land Management in the near East and North Africa. Sustain. Agric. Res. 2022, 11, 11–24. [Google Scholar] [CrossRef]
- Almalki, R.; Khaki, M.; Saco, P.M.; Rodriguez, J.F. Monitoring and Mapping Vegetation Cover Changes in Arid and Semi-Arid Areas Using Remote Sensing Technology: A Review. Remote Sens. 2022, 14, 5143. [Google Scholar] [CrossRef]
Region | Subregion and Number of Countries | Countries | Country Areas | Agricultural Land | |
---|---|---|---|---|---|
Cropland | Permanent Meadows and Pastures | ||||
Mha | |||||
Africa | Northern Africa (6) | Algeria, Egypt, Libya, Morocco, Sudan, Tunisia | 763 | 50 | 163 |
Eastern Africa (2) | Djibouti, Somalia | 66 | 1 | 45 | |
Western Africa (1) | Mauritania | 103 | 0.5 | 39 | |
Asia | Western Asia (11) | Bahrain, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Syrian Arab Republic, United Arab Emirates, Yemen | 384 | 17 | 207 |
Total Arab region (20) | 1316 | 68.5 | 454 |
GAEZ v5 Land Cover Category | FAO Land Use Category | |
---|---|---|
1 | Built-up land (%), adapted to calibrated cropland | Other land |
2 | Cropland (%), adapted to calibrated cropland | Cropland |
3 | Grassland (%), adapted to calibrated cropland | Permanent meadows and pastures |
4 | Tree-covered (%), adapted to calibrated cropland | Forest |
5 | Shrub-covered (%), adapted to calibrated cropland | Permanent meadows and pastures |
6 | Shrub/Herbaceous, regularly flooded (%), adapted to calibrated cropland | Other land |
7 | Tree-covered, flooded, saline (%), adapted to calibrated cropland/forest land | Forest |
8 | Lichen and mosses (%), adapted to calibrated cropland | Other land |
9 | Bare or sparsely vegetated land (%), adapted to calibrated cropland | Other land |
10 | Permanent snow/Glacier (%), adapted to calibrated cropland | Other land |
11 | Water (%), adapted to calibrated cropland | Inland waters |
12 | Irrigated land (%), adapted to calibrated cropland | Part of cropland |
13 | Undefined land cover class (%) | Other land |
Land Cover | Land Use | GAEZ v5 Land Cover | FAO Land Use |
---|---|---|---|
Million ha | |||
Cropland | Cropland | 1560 | 1570 |
Grassland/shrub-covered areas | Permanent meadows and pastures | 4030 | 3210 |
Agricultural land | 5590 | 4780 | |
Tree-covered areas | Forest land | 4200 | 4060 |
Code CPC | Crop Name | Conversion Factor 1 | Crop Acronym GAEZ | |
---|---|---|---|---|
Cereals | 0115 | Barley | 0.87 | brl |
01192 | Buckwheat | 0.87 | bck | |
0112 | Maize (corn) | 0.86 | mze | |
0118 | Millet | 0.9 | mil | |
0117 | Oats | 0.87 | oat | |
0113 | Rice | 0.87 | ric | |
0116 | Rye | 0.87 | rye | |
0114 | Sorghum | 0.87 | srg | |
0111 | Wheat | 0.87 | whe | |
Oil crops | 01491.01 | Oil palm fruit | 0.25 | olp |
01450 | Olives | 0.22 | olv | |
01443 | Rape or colza seed | 0.9 | rsd | |
01445 | Sunflower seeds | 0.92 | sfl | |
0141 | Soya beans | 0.9 | soy | |
0142 | Groundnut, excluding shelled | 0.65 | grd | |
Roots and Tubers | 01520.01 | Cassava, fresh | 0.35 | csv |
01510 | Potatoes | 0.2 | wpo | |
01530 | Sweet potatoes | 0.25 | spo | |
01540 | Yams | 0.35 | yam |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziadat, F.; Conchedda, G.; Haddad, F.; Njeru, J.; Brès, A.; Dawelbait, M.; Li, L. Desertification and Agrifood Systems: Restoration of Degraded Agricultural Lands in the Arab Region. Agriculture 2025, 15, 1249. https://doi.org/10.3390/agriculture15121249
Ziadat F, Conchedda G, Haddad F, Njeru J, Brès A, Dawelbait M, Li L. Desertification and Agrifood Systems: Restoration of Degraded Agricultural Lands in the Arab Region. Agriculture. 2025; 15(12):1249. https://doi.org/10.3390/agriculture15121249
Chicago/Turabian StyleZiadat, Feras, Giulia Conchedda, Fidaa Haddad, Jeremiah Njeru, Aurélie Brès, Mona Dawelbait, and Lifeng Li. 2025. "Desertification and Agrifood Systems: Restoration of Degraded Agricultural Lands in the Arab Region" Agriculture 15, no. 12: 1249. https://doi.org/10.3390/agriculture15121249
APA StyleZiadat, F., Conchedda, G., Haddad, F., Njeru, J., Brès, A., Dawelbait, M., & Li, L. (2025). Desertification and Agrifood Systems: Restoration of Degraded Agricultural Lands in the Arab Region. Agriculture, 15(12), 1249. https://doi.org/10.3390/agriculture15121249