Neem Leaf Extracts and Azadirachtin Trigger a Moderate Early Defense Response in Sunflowers Infected with Downy Mildew Caused by Plasmopara halstedii (Farl.) Berl. et de Toni
Abstract
:1. Introduction
- Evaluate the effectiveness of neem leaf extract and its active compound, azadirachtin, in laboratory experiments against two distinct isolates of P. halstedii in sunflowers.
- Assess the physiological responses of inoculated sunflower plants treated with neem-based products, focusing on alleviating disease symptoms and signs, such as sporulation on the cotyledons, damping-off, stunted growth, and leaf chlorosis.
- Explore the preliminary histopathological changes in sunflower tissues inoculated with downy mildew after treatment with neem derivative. This will provide insights into host-pathogen interactions and the potential mechanisms of disease suppression and host response.
2. Materials and Methods
2.1. Origin and Propagation of Plasmopara halstedii Inoculum
2.2. Preparation of Neem Leaf Extract (NLE) and Azadirachtin (AZA)
2.3. Preparation of Mefenoxam
2.4. Set-Up of Experiment
- 0 control: non-treated and non-inoculated with P. halstedii
- PH: non-treated and inoculated with P. halstedii
- MEF: treated with mefenoxam (3 mL/Kg) and non-inoculated with P. halstedii
- MEF + PH: treated with mefenoxam (3 mL/Kg) and inoculated with P. halstedii
- NLE 10%: treated with 10% neem leaf extract and non-inoculated with P. halstedii
- NLE 10% + PH: treated with 10% neem leaf extract and inoculated with P. halstedii
- NLE 20%: treated with 20% neem leaf extract and non-inoculated with P. halstedii
- NLE 20% + PH: treated with 20% neem leaf extract and inoculated with P. halstedii
- AZA 0.01%: treated with 0.01% azadirachtin (in 1% NeemAzal T/S) and non-inoculated with P. halstedii
- AZA 0.01% + PH: treated with 0.01% azadirachtin (in 1% NeemAzal T/S) and inoculated with P. halstedii
- AZA 0.1%: treated with 0.1% azadirachtin (in 10% NeemAzal T/S) and non-inoculated with P. halstedii
- AZA 0.1% + PH: treated with 0.1% azadirachtin (in 10% NeemAzal T/S) and inoculated with P. halstedii
2.5. Disease Assessment
2.6. Histopathological Studies
2.7. Statistical Analysis
3. Results
3.1. The Efficacy of Neem-Derived Pesticides on Symptoms and Signs Caused by Plasmopara halstedii
3.2. Histopathological Analysis of the Neem-Induced Resistance Through Some Host Responses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chengala, L.; Singh, N. Botanical pesticides—A major alternative to chemical pesticides: A review. Int. J. Life Sci. 2017, 5, 722–729. [Google Scholar]
- Herrera-Calderon, O.; Ejaz, K.; Wajid, M.; Shehzad, M.; Tinco-Jayo, J.A.; Enciso-Roca, E.; Franco-Quino, C.; Yuli-Posadas, R.A.; Chumpitaz-Cerrate, V. Azadirachta indica: Antibacterial Activity of Neem Against Different Strains of Bacteria and their Active Constituents as Preventive in Various Diseases. PJ 2019, 11, 1597–1604. [Google Scholar] [CrossRef]
- Wylie, M.R.; Merrell, D.S. The Antimicrobial Potential of the Neem Tree Azadirachta indica. Front. Pharmacol. 2022, 13, 891535. [Google Scholar] [CrossRef] [PubMed]
- Ngegba, P.M.; Cui, G.; Khalid, M.Z.; Zhong, G. Use of Botanical Pesticides in Agriculture as an Alternative to Synthetic Pesticides. Agriculture 2022, 12, 600. [Google Scholar] [CrossRef]
- Adusei, S.; Azupio, S. Neem: A Novel Biocide for Pest and Disease Control of Plants. J. Chem. 2022, 2022, 6778554. [Google Scholar] [CrossRef]
- Facknath, S. Combination of neem and physical disturbance for the control of four insect pests of stored products. Int. J. Trop. Insect Sci. 2006, 26, 16–27. [Google Scholar] [CrossRef]
- Navodit, G.; Kumari, A.; Paul, P.K. Anti-phytopathogenic and SAR inducing properties of Neem: A review. J. Chem. Pharm. Sci. 2016, 9, 2547–2555. [Google Scholar]
- Persaud, R.; Payman, G.; Khan, A.; Singh, N.; Persaud, D.A.; Subramanian, G. Effectiveness of new fungicides and neem plant aqueous extract against brown spot disease of rice. IJAPR 2022, 11, 1. [Google Scholar] [CrossRef]
- Chotangui, A.H.; Betigne, M.; Mandou, M.S.; Kamaleu, N.G.F.; Kouam, E.B. Effect of phyto-extracts of neem (Azadirachta indica) and garlic (Allium sativum) on leaf spot disease of groundnut (Arachis hypogaea L.). Open Agric. 2020, 5, 441–449. [Google Scholar] [CrossRef]
- Guleria, S.; Kumar, A. Azadirachta indica leaf extract induces resistance in sesame against Alternaria leaf spot disease. J. Cell Mol. Biol. 2006, 5, 81–86. [Google Scholar]
- Sri, H.; Dono, D.; Meliansyah, R.; Hidayat, M. Agung Effect of Neem Oil Formulation on the Population of Soil Fungi and Disease Intencity of Cercospora Leaf Spot (Cercospora capsici) on Chilli Plants (Capsicum annuum). J. Crop. 2018, 1, 53–60. [Google Scholar]
- Nahak, G.; Sahu, R.K. Bioefficacy of Leaf Extract of Neem (Azadirachta indica A. Juss) on Growth Parameters, Wilt and Leafspot Diseases of Brinjal. Res. J. Med. Plant 2014, 8, 269–276. [Google Scholar] [CrossRef]
- Nwogbaga, A.C.; Iwuagwu, C.C. Effect of fungicide and neem leaf extract sprays on the management of Alternaria solani leaf spot disease of eggplant (Solanum melongena L). J. Glob. Biosci. 2015, 4, 2441–2445. [Google Scholar]
- Paul, P.K.; Sharma, P.D. Azadirachta indica leaf extract induces resistance in barley against leaf stripe disease. Physiol. Mol. Plant Pathol. 2002, 61, 3–13. [Google Scholar] [CrossRef]
- Hassanein, N.M.; ZEID, M.A.; Youssef, K.A.; Mahmoud, D.A. Control of tomato early blight and wilt using aqueous extract of neem leaves. Phytopathol. Mediterr. 2010, 49, 143–151. [Google Scholar]
- Farag Hanaa, R.M.; Abdou, Z.A.; Salama, D.A.; Ibrahim, M.A.R.; Sror, H.A.M. Effect of neem and willow aqueous extracts on fusarium wilt disease in tomato seedlings: Induction of antioxidant defensive enzymes. Ann. Agric. Sci. 2011, 56, 1–7. [Google Scholar] [CrossRef]
- Manea, M.A.; Ofi, B.; Fayyadh, M.A.; Jboory, I.J.; Azeem, H. Effect of Different Concentrations of Neem oil on Damping off ond Root Rot Disease of okra And Tomato Caused by Fusarium solani. Int. J. Aquat. Sci. 2022, 13, 603–610. [Google Scholar]
- Narasimha Murthy, K.; Fazilath, U.; Soumya, K.; Srinivas, C. Antibacterial Activity of Neem (Azadirachta indica) Plant Extracts against Bacterial Wilt of Tomato Caused by Ralstonia solanacearum. Int. J. Res. Agric. Sci. 2015, 2, 217–223. [Google Scholar]
- Singh, U.P.; Prithiviraj, B. Neemazal, a product of neem (Azadirachta indica), induces resistance in pea (Pisum sativum) against Erysiphe pisi. Physiol. Mol. Plant Pathol. 1997, 51, 181–194. [Google Scholar] [CrossRef]
- Krzyzaniak, Y.; Trouvelot, S.; Negrel, J.; Cluzet, S.; Valls, J.; Richard, T.; Bougaud, A.; Jacquens, L.; Klinguer, A.; Chiltz, A.; et al. A Plant Extract Acts Both as a Resistance Inducer and an Oomycide Against Grapevine Downy Mildew. Front. Plant Sci. 2018, 9, 1085. [Google Scholar] [CrossRef]
- Doshi, P.; Nisha, N.; Yousif, A.I.A.; Körösi, K.; Bán, R.; Turóczi, G. Preliminary Investigation of Effect of Neem-Derived Pesticides on Plasmopara halstedii Pathotype 704 in Sunflower under In Vitro and In Vivo Conditions. Plants 2020, 9, 535. [Google Scholar] [CrossRef] [PubMed]
- Spring, O.; Gomez-Zeledon, J.; Hadziabdic, D.; Trigiano, R.N.; Thines, M.; Lebeda, A. Biological Characteristics and Assessment of Virulence Diversity in Pathosystems of Economically Important Biotrophic Oomycetes. Crit. Rev. Plant Sci. 2018, 37, 439–495. [Google Scholar] [CrossRef]
- Viranyi, F.; Spring, O. Advances in sunflower downy mildew research. Eur. J. Plant Pathol. 2011, 129, 207–220. [Google Scholar] [CrossRef]
- Bán, R.; Kiss, J.; Pálinkás, Z.; Körösi, K. Placing Management of Sunflower Downy Mildew (Plasmopara halstedii (Farl.) Berl. et de Toni) under an Integrated Pest Management (IPM) System Approach: Challenges and New Perspectives. Agronomy 2023, 13, 1029. [Google Scholar] [CrossRef]
- Gulya, T.J. Distribution of Plasmopara halstedii races from sunflower around the world. In Advances in Downy Mildew Research; Lebeda, A., Spencer-Phillips, P.T.N., Eds.; Proceedings 2nd International Downy Mildews Symposium; Palacký University in Olomouc and JOLA: Kostelec na Hané, Czech Republic, 2007; Volume 3, pp. 121–134. [Google Scholar]
- Spring, O. Spreading and global pathogenic diversity of sunflower downy mildew—Review. Plant Protect. Sci. 2019, 55, 149–158. [Google Scholar] [CrossRef]
- Bán, R.; Kovács, A.; Nisha, N.; Pálinkás, Z.; Zalai, M.; Yousif, A.I.A.; Körösi, K. New and High Virulent Pathotypes of Sunflower Downy Mildew (Plasmopara halstedii) in Seven Countries in Europe. JoF 2021, 7, 549. [Google Scholar] [CrossRef]
- Balint-Kurti, P. The plant hypersensitive response: Concepts, control and consequences. Mol. Plant Pathol. 2019, 20, 1163–1178. [Google Scholar] [CrossRef]
- Künstler, A.; Bacsó, R.; Gullner, G.; Hafez, Y.M.; Király, L. Staying alive—Is cell death dispensable for plant disease resistance during the hypersensitive response? Physiol. Mol. Plant Pathol. 2016, 93, 75–84. [Google Scholar] [CrossRef]
- Király, L.; Albert, R.; Zsemberi, O.; Schwarczinger, I.; Hafez, Y.M.; Künstler, A. Reactive Oxygen Species Contribute to Symptomless, Extreme Resistance to Potato virus X in Tobacco. Phytopathology® 2021, 111, 1870–1884. [Google Scholar] [CrossRef]
- Chengala, L.; Singh, N. Review of mode of action of some major botanical pesticides. Int. Res. J. Sci. Eng. 2018, 6, 129–132. [Google Scholar]
- Mouzeyar, S.; Tourvieille de Labrouhe, D.; Vear, F. Histopathological studies of resistance of sunflower (Helianthus annuus L.) to downy mildew (Plasmopara halstedii). J. Phytopathol. 1993, 139, 289–297. [Google Scholar] [CrossRef]
- Mouzeyar, S.; Tourvieille de Labrouhe, D.; Vear, F. Effect of host-race combination on resistance of sunflower (Helianthus annuus L.) to downy mildew (Plasmopara halstedii). J. Phytopathol. 1994, 141, 249–258. [Google Scholar] [CrossRef]
- Radwan, O.; Mouzeyar, S.; Venisse, J.S.; Nicolas, P.; Bouzidi, M.F. Resistance of sunflower to the biotrophic oomycete Plasmopara halstedii is associated with a delayed hypersensitive response within the hypocotyls. J. Exp. Bot. 2005, 56, 2683–2693. [Google Scholar] [CrossRef] [PubMed]
- Radwan, O.; Bouzidi, M.F.; Mouzeyar, S. Molecular Characterization of Two Types of Resistance in Sunflower to Plasmopara halstedii, the Causal Agent of Downy Mildew. Phytopathology® 2011, 101, 970–979. [Google Scholar] [CrossRef]
- Gascuel, Q.; Martinez, Y.; Boniface, M.-C.; Vear, F.; Pichon, M.; Godiard, L. The sunflower downy mildew pathogen Plasmopara halstedii: Plasmopara halstedii, sunflower downy mildew. Mol. Plant Pathol. 2015, 16, 109–122. [Google Scholar] [CrossRef]
- Bán, R.; Virányi, F.; Komjáti, H. Benzothiadiazole-induced resistance to Plasmopara halstedii (Farl.) Berl. et de Toni in sunflower. In Advances in Downy Mildew Research 2; Kluwer Academic Publishers: Dordrecht, Netherlands, 2004; pp. 265–273. [Google Scholar]
- Bán, R.; Baglyas, G.; Virányi, F.; Barna, B.; Posta, K.; Kiss, J.; Körösi, K. The chemical inducer, BTH (benzothiadiazole) and root colonization by mycorrhizal fungi (Glomus spp.) trigger resistance against white rot (Sclerotinia sclerotiorum) in sunflower. Acta Biol. Hung. 2017, 68, 50–59. [Google Scholar] [CrossRef]
- Berisha, A.; Körösi, K.; Bán, R. Efficacy of BTH and NeemAzal against an aggressive isolate of sunflower downy mildew caused by Plasmopara halstedii. Rev. Agric. Rural. Dev. 2024, 13, 48–55. [Google Scholar] [CrossRef]
- Trojanová, Z.; Sedlářová, M.; Gulya, T.J.; Lebeda, A. Methodology of virulence screening and race characterization of Plasmopara halstedii, and resistance evaluation in sunflower—A review. Plant Pathol. 2017, 66, 171–185. [Google Scholar] [CrossRef]
- Cohen, Y.; Sackston, W.E. Factors affecting infection of sunflowers by Plasmopara halstedii. Can. J. Bot. 1973, 51, 15–22. [Google Scholar] [CrossRef]
- Doshi, P.; Mészárosné Póss, A.; Tóth, F.; Szalai, M.; Turóczi, G. Effect of neem-derived plant protection products on the isopod species Porcellionides pruinosus (Brandt, 1833). ZooKeys 2018, 801, 415–425. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- European Union. Mission Implementing Regulation (EU) 2020/617 of 5 May 2020 Renewing the Approval of the Active Substance Metalaxyl-M, and Restricting the Use of Seeds Treated with Plant Protection Products Containing it, in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, and Amending the Annex to Commission Implementing Regulation (EU) No 540/2011; European Union: Brussels, Belgium, 2020; Volume 143, pp. 6–10. [Google Scholar]
- Oros, G.; Ujváry, I. Botanical fungicides: Natural and semi-synthetic ceveratrum alkaloids. Pestic. Sci. 1999, 55, 253–264. [Google Scholar] [CrossRef]
- Oros, G. Differential responses of Plasmopara halstedii developmental forms to various steroid alkaloids. Int. J. Life Sci. 2010, 4, 1–15. [Google Scholar] [CrossRef]
- Virányi, F.; Oros, G. Changes in the development and metabolism of sunflowers infected by Plasmopara halstedii. Acta Phytopathol. Acad. Sci. Hung. 1981, 16, 273–279. [Google Scholar]
- Nisha, N.; Vinogradov, S.; Körösi, K.; Berisha, A.; Bán, R. Assessing the Sensitivity of Plasmopara halstedii Isolates to Mefenoxam through Host Responses. Microorganisms 2023, 11, 821. [Google Scholar] [CrossRef]
- Bi, K.; Chen, T.; Wang, S.; Zhang, F.; Wang, Y.; Zeng, L.; Dai, T.; Liu, H.; Qiu, D. The Botrytis cinerea Crh1 Transglycosylase Functions in Fungal Cell Wall Biosynthesis and Acts as a Cytoplasmic Elicitor of Plant Cell Death. Int. J. Mol. Sci. 2021, 22, 11502. [Google Scholar] [CrossRef]
- Li, W.; Li, P.; Deng, Y.; Situ, J.; He, Z.; Zhou, W.; Li, M.; Xi, P.; Liang, X.; Kong, G.; et al. A plant cell death-inducing protein from litchi interacts with Peronophythora litchii pectate lyase and enhances plant resistance. Nat. Commun. 2024, 15, 22. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, H.; Zhang, C.; Huang, C.; Jiang, C.; Yu, Y.; Liang, Y.; Feng, J.; Xie, J.; Li, Y. A Conserved Fungal Effector Disturbs Calcium Homeostasis to Induce Plant Cell Death. Int. J. Mol. Sci. 2025, 26, 512. [Google Scholar] [CrossRef]
Treatment | Damping-Off (% of Total Plants) | Damping-Off (% of Diseased Plants) | ||
---|---|---|---|---|
Isolate 1 | Isolate 2 | Isolate 1 | Isolate 2 | |
PH | 59 ± 9.5 a | 64 ± 11.3 a | >50 | >50 |
MEF + PH | 26 ± 4.8 b | 12 ± 8.4 b | >50 | >50 |
NLE 10% + PH | 0 b | 14 ± 8.2 b | 0 | >50 |
NLE 20% + PH | 28 ± 9.6 b | 4 ± 4.2 b | >50 | 50> |
AZA 0.01% + PH | 16 ± 7.8 b | 22.5 ± 12.4 b | >50 | >50 |
AZA 0.1% + PH | 22 ± 7.3 b | 15 ± 8.8 b | >50 | >50 |
Variables/Treatments (n = 100) | Isolate 1 | Isolate 2 | ||
---|---|---|---|---|
H-pith | Nec-cort | H-pith | Nec-cort | |
PH/H-cort | 1.000 | 0 | 0.543 | 0.183 |
PH/H-pith | - | 0 | - | −0.076 |
MEF + PH/H-cort | 0.994 | −0.249 | 0 | 0 |
MEF + PH/H-pith | - | −0.247 | - | 0 |
NLE 10% + PH/H-cort | 0 | 0 | 1.000 | 0 |
NLE 10% + PH/H-pith | - | 0 | - | 0 |
NLE 20% + PH/H-cort | 0 | 0 | 0 | 0 |
NLE 20% + PH/H-pith | - | 0 | - | 0 |
AZA 0.01% + PH/H-cort | 0 | −0.032 | 0 | −0.196 |
AZA 0.01% + PH/H-pith | - | 0 | - | 0 |
AZA 0.1% + PH/H-cort | 0.264 | −0.263 | 0 | 0 |
AZA 0.1% + PH/H-pith | - | −0.111 | - | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bán, R.; Doshi, P.; Berisha, A.; Körösi, K.; Kiss, J.; Turóczi, G.; Šerá, B.; Skornyik, A.; Nisha, N. Neem Leaf Extracts and Azadirachtin Trigger a Moderate Early Defense Response in Sunflowers Infected with Downy Mildew Caused by Plasmopara halstedii (Farl.) Berl. et de Toni. Agriculture 2025, 15, 1248. https://doi.org/10.3390/agriculture15121248
Bán R, Doshi P, Berisha A, Körösi K, Kiss J, Turóczi G, Šerá B, Skornyik A, Nisha N. Neem Leaf Extracts and Azadirachtin Trigger a Moderate Early Defense Response in Sunflowers Infected with Downy Mildew Caused by Plasmopara halstedii (Farl.) Berl. et de Toni. Agriculture. 2025; 15(12):1248. https://doi.org/10.3390/agriculture15121248
Chicago/Turabian StyleBán, Rita, Pratik Doshi, Arbnora Berisha, Katalin Körösi, József Kiss, György Turóczi, Božena Šerá, András Skornyik, and Nisha Nisha. 2025. "Neem Leaf Extracts and Azadirachtin Trigger a Moderate Early Defense Response in Sunflowers Infected with Downy Mildew Caused by Plasmopara halstedii (Farl.) Berl. et de Toni" Agriculture 15, no. 12: 1248. https://doi.org/10.3390/agriculture15121248
APA StyleBán, R., Doshi, P., Berisha, A., Körösi, K., Kiss, J., Turóczi, G., Šerá, B., Skornyik, A., & Nisha, N. (2025). Neem Leaf Extracts and Azadirachtin Trigger a Moderate Early Defense Response in Sunflowers Infected with Downy Mildew Caused by Plasmopara halstedii (Farl.) Berl. et de Toni. Agriculture, 15(12), 1248. https://doi.org/10.3390/agriculture15121248