Phenological Performance, Thermal Demand, and Qualitative Potential of Wine Grape Cultivars Under Double Pruning
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Climatic Data
2.3. Vineyard Establishment and Growing Conditions
2.4. Experimental Design and Treatments
2.5. Evaluated Variables
2.5.1. Duration of Phenological Stages
- Budburst (BB) (4): 50% of buds with visible young leaves;
- Flowering (FL) (23): 50% at full open flowering stage;
- Fruit Set (FS) (27): berries with a diameter greater than 2 mm;
- Verasion (V) (35): 50% of berries showing color change and softening;
- Harvest (H) (38): 100% of berries with appropriate color and physiological ripeness.
2.5.2. Thermal/Temperature Condition
2.5.3. Ripening (Maturation) Dynamics
2.5.4. Quantitative and Qualitative Parameters
2.5.5. Bioactive Compounds and Antioxidant Activity
Biochemical Characteristics of Berries
Total Phenolic Compounds
Total Flavonoids
Total Anthocyanin Content
Antioxidant Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Duration of Phenological Stages
3.1.1. Budburst
3.1.2. Full Flowering
3.1.3. Fruit Set
3.1.4. Verasion
3.1.5. Harvest
3.2. Thermal Demand of Grapevines
3.3. Yield Components and Physical Characteristics
3.4. Fertility
3.5. Yield and Productivity
3.6. Berry Ripening
3.6.1. Soluble Solids Content
3.6.2. pH
3.6.3. Titratable Acidity (TA)
3.6.4. Maturity Index (SS/TA)
3.7. Biochemical Composition and Antioxidant Potential of Grapes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khadatkar, A.; Sawant, C.P.; Thorat, D.; Gupta, A.; Jadhav, S.; Gawande, D.; Magar, A.P. A comprehensive review on grapes (Vitis spp.) cultivation and its crop management. Discov. Agric. 2025, 3, 9. [Google Scholar] [CrossRef]
- IBGE Sistema IBGE de Recuperação Automática—SIDRA. Produção Agrícola Municipal: Área Destinada à Colheita, Área Colhida, Quantidade Produzida, Rendimento Médio e Valor da Produção das Lavouras Permanentes; IBGE: Rio de Janeiro, Brazil, 2022. [Google Scholar]
- UVIBRA União Brasileira de Vitivinicultura. Estatísticas do Setor Vitivinícola do Estado do Rio Grande do Sul; UVIBRA União Brasileira de Vitivinicultura: Bento Gonçalves, Brazil, 2023. [Google Scholar]
- Regina, M.A.; Mota, R.V.; Souza, C.R.; Favero, A.C. Viticulture for fine wines in Brazilian Southeast. Acta Hortic. 2011, 910, 113–120. [Google Scholar] [CrossRef]
- Dias, F.A.N.; Mota, R.V.; Souza, C.R.; Pimentel, R.M.; Souza, L.C.; Souza, A.L.; Regina, M.D. Rootstock on vine performance and wine quality of ‘Syrah’ un- der double pruning management. Sci. Agric. 2017, 74, 134–141. [Google Scholar] [CrossRef]
- Brant, L.A.C.; Figueredo, G.M.; Mota, R.V. Vinhos de Inverno do Sudeste Brasileiro. Territ. Vin 2018, 9, 1–12. [Google Scholar] [CrossRef]
- Pereira, G.E.; Peccin, E.G.; Riste, U.S.; Deconti, G.S.; Oliveira, J.B.; Santos, F.C.; Santana, D.P.; Albuquerque Filho, M.R.; Figueiredo, A.B.A. Agronomical characterization of grapevines and enological of grapes and winter wines in Brazilian Cerrado. Bol. Pesqui. Desenvolv.—Embrapa Uva Vinho 2023, 36, 20240001781. [Google Scholar]
- Guerra, C.C.; Pereira, G.E. A qualidade e a tipicidade dos vinhos finos tranquilos e espumantes brasileiros. Territ. Vin 2018, 9, 1–32. [Google Scholar] [CrossRef]
- Da Mota, R.V.; de Amorim, D.A.; Favero, A.C.; Purgatto, E.; Regina, M.d.A. Effect of trellising system on grape and wine composition of Syrah vines grown in the cerrado region of Minas Gerais. Food Sci. Technol. 2011, 31, 967–972. [Google Scholar] [CrossRef]
- Balanov, P.E.; Smotraeva, I.V.; Abdullaeva, M.S.; Volkova, D.A.; Ivanchenko, O.B. Study on Resveratrol Content in Grapes and Wine Products. In Proceedings of the International Conference on Efficient Production and Processing (ICEPP-2021), Kazan, Russia, 25–26 February 2021; Volume 247. [Google Scholar]
- Zhou, D.-D.; Li, J.; Xiong, R.-G.; Saimaiti, A.; Huang, S.-Y.; Wu, S.-X.; Yang, Z.-J.; Shang, A.; Zhao, C.-N.; Gan, R.-Y.; et al. Bioactive Compounds, Health Benefits and Food Applications of Grape. Foods 2022, 11, 2755. [Google Scholar] [CrossRef]
- Tonietto, J.; Pereira, G.E.; Peregrino, I.; Regina, M.D.A. Potencial Para Construção de Indicações Geográficas de Vinhos de Inverno do Sudeste brasileiro. Inf. Agropecu. 2020, 41, 91–98. [Google Scholar]
- Costa, R.S. Zonas de Vigor Vegetativo Para Colheita Seletiva em Viticultura Irrigada com Base em Sensoriamento Proximal. Ph.D. Thesis, Universidade Estadual Paulista (Unesp), São Paulo, Brazil, 2021. [Google Scholar]
- Tecchio, M.A.; Hernandes, J.L.; Pires, E.J.; Terra, M.M.; Moura, M.F. Cultivo da Videira Para Mesa, Vinho e Suco. In Cultivo de Fruteiras Clima Temperado em Regiões Subtropicais e Tropicais, 2nd ed.; Pio, R., Ed.; Lavras: Editora UFLA: Lavras, Brazil, 2018; pp. 512–584. [Google Scholar]
- Mota, R.V.; Silva, C.P.; Favero, A.C.; Purgatto, E.; Shiga, T.M.; Regina, M.D. Composição físico-química de uvas para vinho fino em ciclos de verão e inverno. Rev. Bras. Frutic. 2010, 32, 1127–1137. [Google Scholar] [CrossRef]
- Regina, M.d.A.; Carmo, E.L.; Fonseca, A.R.; Purgatto, E.; Shiga, T.M.; Lajolo, F.M.; Ribeiro, A.P.; Mota, R.V. Influência da altitude na qualidade das uvas “Chardonnay” e “Pinot Noir” em Minas Gerais. Rev. Bras. Frutic. 2010, 32, 143–150. [Google Scholar] [CrossRef]
- Favero, A.C.; De Amorim, D.A.; da Mota, R.V.; Soares, A.M.; de Souza, C.R.; de Albuquerque Regina, M. Double-pruning of ‘Syrah’ grapevines: A management strategy to harvest wine grapes during the winter in the Brazilian Southeast. VITIS-J. Grapevine Res. 2011, 50, 151–158. [Google Scholar]
- Leão, P.C.S.; Ribeiro, T.P.; Nascimento, J.H.B. Tropical Viticulture: Vineyard Management for Wine and Juice Production in Brazil; Embrapa: Brasília, Brazil, 2020. [Google Scholar]
- Tecchio, M.A.; Teixeira, L.A.J.; Terra, M.M.; Paioli-Pires, E.J.; Hernandes, J.L. Uvas Finas para Mesa e Vinho (Vitis labrusca, Vitis vinífera, híbridos)—No Boletim 100: Recomendações de Adubação e Calagem Para o Estado de São Paulo, 2nd ed.; Cantarella, H., Quaggio, J.A., Mattos, D., Jr., Boaretto, R.M., Van Raij, B., Eds.; Instituto Agronômico: Campinas, Brazil, 2022; pp. 308–313. [Google Scholar]
- Eichhorn, K.W.; Lorenz, D.H. Phaenologische Entwicklungsstadien der Rebe. Nachr. Dtsch. Pflanzenschutzd. 1984, 14, 295–298. [Google Scholar]
- Winkler, A.J. Viticultura; Companhia Editorial Continental: Cidade do México, México, 1965. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Popova, M.; Bankova, V.; Butovska, D.; Petkov, V.; Nikolova-Damyanova, B.; Sabatini, A.G.; Bogdanov, S. Validated methods for the quantification of biologically active constituents of poplar-type propolis. Phytochem. Anal. An. Int. J. Plant Chem. Biochem. Tech. 2004, 15, 235–240. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Anthocyanins. Characterization and measurement with UV-visible spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, 1–13. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Ferreira, D.F. Sisvar: Um sistema computacional de análise estatística. Ciênc. Agrotecnol. 2011, 35, 1039–1042. [Google Scholar] [CrossRef]
- Sánchez, C.A.P.C.; Tecchio, M.A.; Callili, D.; Souza, R.T.D.; Smarsi, R.C.; Leonel, S. Phenology, thermal requirement, and ripening of the ‘BRS Isis’ grape grafted on different rootstocks in a subtropical condition. Bragantia 2024, 83, e20230273. [Google Scholar] [CrossRef]
- Monteiro, H.S.A.; Tecchio, M.A.; Brito, S.d.N.S.; Neto, F.J.D.; Sánchez, C.A.P.C.; Alonso, J.C.; Feliciano, D.E.F.; Maniero, C.R.; Cunha, P.H.H.; Silva, M.d.S. Phenological Development, Thermal Requirement, and Quality of ‘BRS Núbia’ (Vitis vinifera L. × Vitis labrusca L.) Grapes on Different Rootstocks. Horticulturae 2025, 11, 466. [Google Scholar] [CrossRef]
- Koyama, R.; Borges, W.F.S.; Colombo, R.C.; Hussain, I.; Souza, R.T.D.; Roberto, S.R. Phenology and yield of the hybrid seedless grape ‘BRS Melodia’grown in an annual double cropping system in a subtropical area. Horticulturae 2020, 6, 3. [Google Scholar] [CrossRef]
- Mandelli, F.; Miele, A.; Tonietto, J. Uva em clima temperado. In Agrometeorologia dos Cultivos: O Fator Meteorológico na Produção agrícola; Monteiro, J.E.B.A., Ed.; Inmet: Brasília, Brazil, 2009; Volume 31, pp. 504–515. [Google Scholar]
- Rouxinol, M.I.; Martins, M.R.; Barroso, J.M.; Rato, A.E. Wine grapes ripening: A review on climate effect and analytical approach to increase wine quality. Appl. Biosci. 2023, 2, 347–372. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. In Crop Yield Prediction Under Water Deficit Conditions; FAO: Rome, Italy, 2009; Volume 33, pp. 285–292. [Google Scholar]
- Júnior, M.J.P.; Hernandes, J.L. Uva para vinho ‘Syrah’ cultivada durante a safra de inverno: Fenologia e evolução da maturação. Rev. Bras. Frutic. 2019, 37, 1–10. [Google Scholar]
- Rogiers, S.Y.; Greer, D.H.; Liu, Y.; Baby, T.; Xiao, Z. Impact of climate change on grape berry ripening: An assessment of adaptation strategies for the Australian vineyard. Front. Plant Sci. 2022, 13, 1094633. [Google Scholar] [CrossRef]
- Keller, M. The Science of Grapevines: Anatomy and Physiology; Academic Press: Burlington, ON, Canada, 2010. [Google Scholar]
- Borghezan, M.; Gavioli, O.; Pit, F.A.; Silva, A.L. Comportamento vegetativo e produtivo da videira e composição da uva em São Joaquim, Santa Catarina. Pesqui. Agropecu. Bras. 2011, 46, 398–405. [Google Scholar] [CrossRef]
- Radünz, A.L.; Schöffel, E.R.; Borges, C.T.; Malgarim, M.B.; Pötter, G.H. Necessidades térmicas de videiras na região da Campanha do Rio Grande do Sul- Brasil. Ciênc. Rural. 2015, 45, 626–632. [Google Scholar] [CrossRef]
- Silva, A.R.; Pereira, G.E.; Lima, L.C.O.; Souza, C.R. Influence of harvest time and climate on disease control and phenolic composition in grapes under tropical conditions. J. Appl. Vitic. 2023, 29, 145–154. [Google Scholar]
- Miranda, C.; Santesteban, L.G.; Royo, J.B. Evaluation and fitting of models for determining peach phenological stages at a regional scale. Agric. For. Meteorol. 2013, 178–179, 129–139. [Google Scholar] [CrossRef]
- Leão, P.C.S.; Marques, A.T.B.; Silva, M.M.; Badji, C.A.; Barros, A.P.A.; Santos, J.P.O. Cultivares de Videira para Elaboração de Vinhos Finos no Agreste Pernambucano; Circular Técnica 136; EMBRAPA: Petrolina, PE, Brazil, 2024. [Google Scholar]
- EPAGRI. Sistema de Produção Para a Cultura da Videira em Santa Catarina; Sistemas de Produção, 2; EPAGRI: Florianópolis, Brazil, 2005. [Google Scholar]
- Hall, A.; Mathews, A.J.; Holzapfel, B.P. Potential effect of atmospheric warming on grapevine phenology and post-harvest heat accumulation across a range of climates. Int. J. Biometeorol. 2016, 60, 1405–1422. [Google Scholar] [CrossRef]
- Conde, C.; Silva, P.; Fontes, N.; Dias, A.C.P.; Tavares, R.M.; Sousa, M.J.; Agasse, A.; Delrot, S.; Gerós, H. Biochemical changes throughout grape berry development and fruit and wine quality. Food 2007, 1, 1–22. [Google Scholar]
- Tecchio, M.A.; Silva, M.J.R.D.; Sanchez, C.A.P.C.; Callili, D.; Vedoato, B.T.F.; Hernandes, J.L.; Moura, M.F. Yield performance and quality of wine grapes (Vitis vinifera) grafted onto different rootstocks under subtropical conditions. Bragantia 2022, 81, e1622. [Google Scholar] [CrossRef]
- Poni, S.; Gatti, M.; Tombesi, S.; Squeri, C.; Sabbatini, P.; Lavado Rodas, N.; Frioni, T. Double Cropping in Vitis vinifera L. Pinot Noir: Myth or Reality? Agronomy 2020, 10, 799. [Google Scholar] [CrossRef]
- Netzer, Y.; Suued, Y.; Harel, M.; Ferman-Mintz, D.; Drori, E.; Munitz, S.; Harari, G. Forever young? late shoot pruning affects phenological development, physiology, yield and wine quality of Vitis vinifera cv. Malbec. Agric. 2022, 12, 605. [Google Scholar] [CrossRef]
- Rizzon, L.A.; Miele, A. Avaliação da cv. Merlot para elaboração de vinho tinto. Food Sci. Technol. 2003, 23, 156–161. [Google Scholar] [CrossRef]
- Pedro Júnior, M.J.; Hernandes, J.L.; Blain, G.C.; Rolim, G.D. Microclima em vinhedos de ‘Niagara rosada’ em diferentes sistemas de condução durante safras de inverno e de verão. Rev. Bras. Frutic. 2013, 35, 151–158. [Google Scholar] [CrossRef]
- Hidalgo, L. Tratado de Viticultura General; Mundi-Prensa: Madrid, Spain, 1999; p. 1172. [Google Scholar]
- Barros, M.S. Irrigação, Fertirrigação, Tratos Culturais, Controle Fitossanitário e Pós-Colheita na Cultura da Uva na Fazenda Agrobras. Bachelor’s Thesis, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Brazil, 2019. [Google Scholar]
- Leão, P.C.S.; Maia, J.D.G. Aspectos Culturais em Viticultura Tropical: Uvas de Mesa. 37 Informe Agropecuário. Belo Horiz. 1998, 19. [Google Scholar]
- Falcão, J.V.; Lacerda, M.P.C.; Mendes, I.d.C.; Leão, T.P.; Carmo, F.F.D. Qualidade do solo cultivado com morangueiro sob manejo convencional e orgânico. Pesqui. Agropecu. Trop. 2013, 43, 450–459. [Google Scholar] [CrossRef]
- Guerra, C.C. Maturação da Uva e Condução da Vinificação para a Elaboração de Vinhos Finos. In Viticultura e Enologia: Atualizando Conceitos; Regina, M.A., Ed.; EPAMIG/FECD: Caldas, Brazil, 2002; pp. 179–192. [Google Scholar]
- Chitarra, M.I.F.; Chitarra, A.B. Ós-Colheita de Frutas e Hortaliças: Fisiologia e Manuseio, 2nd ed.; UFLA: Lavras, Brazil, 2005; p. 783. [Google Scholar]
- Dai, Z.W.; Ollat, N.; Gomès, E.; Decroocq, S.; Tandonnet, J.-P.; Bordenave, L.; Pieri, P.; Hilbert, G.; Kappel, C.; van Leeuwen, C.; et al. Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: A review. Am. J. Enol. Vitic. 2011, 62, 413–425. [Google Scholar] [CrossRef]
- Kuhn, N.; Guan, L.; Dai, Z.W.; Wu, B.H.; Lauvergeat, V.; Gomès, E.; Li, S.H.; Godoy, F.; Arce-Johnson, P.; Delrot, S. Berry Ripening: Recent. Heard Through grapevine. J. Exp. Bot. 2013, 65, 4543–4559. [Google Scholar] [CrossRef]
- Allamy, L.; van Leeuwen, C.; Pons, A. Impact of harvest date on aroma compound composition of Merlot and Cabernet-Sauvignon must and wine in a context of climate change: A focus on cooked fruit molecular markers. OENO One 2023, 57, 99–112. [Google Scholar] [CrossRef]
- Ministério da Agricultura, Pecuária e Abastecimento (MAPA). Instrução Normativa Nº 14, de 8 de Fevereiro de 2018: Aplica-se ao Vinho e Derivados da Uva e do Vinho Comercializados em Todo o Território Nacional, Produzidos no Brasil e Importados; Ministério da Agricultura, Pecuária e Abastecimento (MAPA): Brasília, Brazil, 2018. [Google Scholar]
- Jubileu, B.S.; Sato, A.J.; Roberto, S.R. Caracterização fenológica e produtiva das videiras ‘Cabernet Sauvignon’ e’ ‘Alicante’ (Vitis vinifera L.) produzidas fora de época no norte do Paraná. Rev. Bras. Frutic. 2010, 32, 451–462. [Google Scholar] [CrossRef]
- Pedro Júnior, M.J.; Hernandes, J.L.; Blain, G.C.; Bardin-Camparotto, L. Curva de maturação e estimativa do teor de sólidos solúveis e acidez total em função de graus-dia: Uva IAC 138-22 ‘Máximo’. Bragantia 2014, 73, 81–85. [Google Scholar] [CrossRef]
- Ojeda, H.; Andary, C.; Kraeva, E.; Carbonneau, A.; Deloire, A. Influence of pre-and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. Am. J. Enol. Vitic. 2002, 53, 261–267. [Google Scholar]
- Brighenti, A.F.; Silva, A.L.; Brighenti, E.; Porro, D.; Stefanini, M. Desempenho vitícola de variedades autóctones italianas em condição de elevada altitude no Sul do Brasil. Pesqui. Agropecu. Bras. 2014, 49, 465–474. [Google Scholar] [CrossRef]
- Ristic, R.; Downey, M.O.; Iland, P.G.; Bindon, K.; Francis, I.L.; Herderich, M.; Robinson, S.P. Exclusion of sunlight from Shiraz grapes alters wine colour, tannin and sensory properties. Aust. J. Grape Wine Res. 2007, 13, 53–65. [Google Scholar] [CrossRef]
- Watson, B. Evaluation of winegrape maturity. In Oregon Viticulture; Hellman, E.W., Ed.; Oregon State University Press: Corvallis, OR, USA, 2003; pp. 235–245. [Google Scholar]
- Yamamoto, L.Y.; Assis, A.M.; Roberto, S.R.; Bovolenta, Y.R.; Nixford, S.L.; Garcia-Romero, E.; Gomez-Alonso, S.; Hermanoin-Gutierrez, I. Application of abscisic acid (S-ABA to cv. Isabel grapes (Vitis vinifera × Vitis labrusca) for color improvement: Effects on color, phenolic composition and antioxidant capacity of their grape juice. Food Res. Int. 2015, 77, 572–583. [Google Scholar] [CrossRef]
- Boulton, R. The general relationship between potassium, sodium and pH in grape juices and wines. Am. J. Enol. Vitic. 1980, 31, 182–186. [Google Scholar] [CrossRef]
- Rojas-Lara, B.A.; Morrison, J.C. Differential effects of shading fruit or foliage on the development and composition of grape berries. VITIS-J. Grapevine Res. 1989, 28, 199–208. [Google Scholar]
- Esteban, M.A.; Villanueva, M.J.; Lissarrague, J.R. Effect of irrigation on changes in the anthocyanin composition of the skin of Tempranillo (Vitis vinifera L.) grape berries during ripening. J. Sci. Food Agric. 2001, 81, 409–420. [Google Scholar] [CrossRef]
- Winter, E.; Welter, L.J. Perfil Químico e Atividade Antioxidante in Vitro de Mostos e Vinhos da Região Serrana Catarinense Elaborados com Vitis vinifera L. var—Sauvignon Blanc Cultivadas em Diferentes Altitudes; Universidade Federal de Santa Catarina (UFSC): Florianópolis, Brazil, 2018. [Google Scholar]
- Falcão, L.D.; Burin, V.M.; Chaves, E.S.; Vieira, H.J.; Brighenti, E.; Rosier, J.-P.; Bordignon-Luiz, M.T. Vineyard altitude and mesoclimate influences on the phenology and maturation of Cabernet-Sauvignon grapes from Santa Catarina State. OENO One 2010, 44, 135–150. [Google Scholar] [CrossRef]
- Brighenti, A.F.; Brighenti, E.; Bonin, V.; Rufato, L. Caracterização fenológica e exigência térmica de diferentes variedades de uvas viníferas em São Joaquim, Santa Catarina—Brasil. Ciênc. Rural. 2013, 43, 1162–1167. [Google Scholar] [CrossRef]
- Liu, H.; Wu, B.; Fan, P.; Li, S.; Li, L. Sugar and acid concentrations in 98 grape cultivars analyzed by principal component analysis. J. Sci. Food Agric. 2005, 1536, 1526–1536. [Google Scholar] [CrossRef]
- Lee, J.; Steenwerth, K.L. Cabernet Sauvignon grape anthocyanin increased by soil conservation practices. Sci. Hortic. 2013, 159, 128–133. [Google Scholar] [CrossRef]
- Neumann, P.A.; Matzarakis, A. Potential climate change impacts on winegrape must density and titratable acidity in southwest Germany. Clim. Res. 2014, 59, 161–172. [Google Scholar] [CrossRef]
- Rizzon, L.A.; Miele, A. Acidez na vinificação em tinto das uvas isabel, cabernet sauvignon e cabernet franc the acidity in the vinification of isabella, cabernet sauvignon, and cabernet franc red grapes. Ciênc. Rural. 2002, 32, 2002. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology, the Chemistry of Wine: Stabilization and Treatments, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 2, pp. 1–441. [Google Scholar]
- Cáceres-Mella, A.; Talaverano, M.I.; Villalobos-González, L.; Ribalta-Pizarro, C.; Pastenes, C. Controlled water deficit during ripening affects proanthocyanidin synthesis, concentration and composition in Cabernet Sauvignon grape skins. Plant Physiol. Biochem. 2017, 117, 34–41. [Google Scholar] [CrossRef]
- Bravo, L. Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef]
- Mcrae, J.M.; Teng, B.; Bindon, K. Factors Influencing Red Wine Color from the Grape to the Glass. In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 97–106. [Google Scholar]
- Rockenbach, I.I.; Rodrigues, E.; Gonzaga, L.V.; Caliari, V.; Genovese, M.I.; Gonçalves, A.E.S.S.; Fett, R. Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chem. 2011, 127, 174–179. [Google Scholar] [CrossRef]
Cultivar | Production Cycle | BB | FL | FS | V | HV | GDD |
---|---|---|---|---|---|---|---|
Sauvignon Blanc | I | 12.3 ± 0.71 Abb * | 44.3 ± 2.12 Ca | 47.1 ± 2.59 Ca | 87.9 ± 0.64 Ba | 130.9 ± 0.00 Ca | 1700.3 ± 5.89 Ca |
II | 13.4 ± 0.52 ABa | 31.6 ± 7.44 Ab | 34.8 ± 1.49 Bb | 85.8 ± 4.27 Ca | 121.0 ± 0.00 Cb | 1122.7 ± 14.3 Db | |
Merlot | I | 11.9 ± 0.83 Ba | 48.3 ± 4.50 Ba | 53.5 ± 3.25 Ba | 93.8 ± 3.33 Aa | 171.0 ± 0.00 Aa | 1758.9 ± 1.55 Ba |
II | 12.5 ± 0.76 BCa | 32.1 ± 0.83 Ab | 35.8 ± 2.12 ABb | 90.6 ± 2.07 Bb | 128.0 ± 0.00 Bb | 1218.0 ± 10.1 Bb | |
Tannat | I | 13.0 ± 0.53 Aa | 53.9 ± 6.20 Aa | 58.4 ± 5.53 Aa | 97.0 ± 3.33 Aa | 148.0 ± 0.00 Ba | 1785.5 ± 2.25 Aa |
II | 13.5 ± 0.53 ABa | 35.0 ± 1.51 Ab | 39.0 ± 0.76 Ab | 95.3 ± 1.04 Aa | 128.0 ± 0.00 Bb | 1204.7 ± 8.45 Cb | |
Pinot Noir | I | 12.8 ± 1.04 Aba | 45.3 ± 3.45 BCa | 48.1 ± 3.68 Ca | 88.3 ± 0.71 Bb | 130.0 ± 0.00 Da | 1702.8 ± 4.39 Ca |
II | 13.5 ± 1.07 ABa | 32.9 ± 0.83 Ab | 37.0 ± 1.69 ABb | 90.8 ± 4.50 Ba | 121.0 ± 0.00 Cb | 1119.9 ± 18.4 Db | |
Malbec | I | 11.8 ± 0.89 Bb | 43.3 ± 1.83 Ca | 45.9 ± 1.64 Ca | 94.7 ± 1.39 Aa | 171.0 ± 0.00 Aa | 1769.8 ± 0.49 Ba |
II | 13.6 ± 0.52 Aa | 32.0 ± 0.76 Ab | 35.6 ± 1.77 ABb | 93.9 ± 2.03 Aba | 128.0 ± 0.00 Bb | 1202.7 ± 8.18 Cb | |
Cabernet Sauvignon | I | 12.6 ± 1.06 Aba | 43.9 ± 1.55 Ca | 46.6 ± 1.77 Ca | 94.0 ± 0.00 Aa | 129.0 ± 0.00 Eb | 1760.3 ± 0.96 Ba |
II | 12.3 ± 0.46 Ca | 32.0 ± 0.76 Ab | 35.8 ± 1.58 ABb | 92.8 ± 2.66 Aba | 142.0 ± 0.00 Aa | 1377.8 ± 5.46 Ab | |
CV(%) | I | 5.95 | 7.06 | 6.17 | 2.54 | 2.93 | 0.56 |
II | 6.11 | 6.47 | 5.84 | 2.82 | 2.01 | 0.62 | |
Mean | 12.7 | 39.5 | 43.1 | 92.1 | 137.3 | 1476.90 |
Cultivar | Production Cycle | FWC | CL | CW | CL/CW | FWB | BL | BW | BL/BW | NBC | FWR |
---|---|---|---|---|---|---|---|---|---|---|---|
Sauvignon Blanc | I | 87.9 ± 16.9 bcA * | 7.90 ± 1.07 Ba | 4.67 ± 0.37 BCb | 1.69 ± 0.16 Bca | 1.41 ± 0.10 Ba | 1.45 ± 0.05 ABa | 1.28 ± 0.03 Ba | 1.13 ± 0.02 ABa | 59.3 ± 12.3 Ba | 4.27 ± 0.78 Ca |
II | 84.5 ± 4.05 BCa | 8.29 ± 0.54 Ca | 6.75 ± 0.61 BCa | 1.24 ± 0.12 BCb | 1.36 ± 0.10 Ca | 1.42 ± 0.03 BCa | 1.27 ± 0.03 Ca | 1.11 ± 0.03 Aba | 58.8 ± 5.61 Ba | 5.00 ± 0.59 Ba | |
Merlot | I | 56.6 ± 8.47 Da | 8.25 ± 0.83 Bb | 5.25 ± 0.63 BCb | 1.58 ± 0.12 Ca | 1.09 ± 0.04 Cb | 1.14 ± 0.14 Cb | 1.10 ± 0.03 Db | 1.03 ± 0.14 Ba | 49.4 ± 8.29 Ba | 3.01 ± 0.48 Da |
II | 68.0 ± 10.9 CDa | 10.3 ± 0.82 Ba | 7.00 ± 0.85 Ba | 1.49 ± 0.08 Aba | 1.27 ± 0.05 CDa | 1.31 ± 0.19 Ca | 1.35 ± 0.03 Ba | 0.98 ± 0.15 Ba | 50.8 ± 7.08 ABa | 3.50 ± 0.69 Ca | |
Tannat | I | 125.4 ± 20.4 Ab | 10.3 ± 1.98 Ab | 14.1 ± 1.17 Ab | 0.72 ± 0.10 Da | 1.41 ± 0.12 Bb | 1.37 ± 0.04 Bb | 1.26 ± 0.03 BCb | 1.09 ± 0.02 ABa | 83.2 ± 8.75 Aa | 7.38 ± 0.54 Ab |
II | 143.0 ± 19.8 Aa | 15.3 ± 1.98 Aa | 18.1 ± 1.82 Aa | 0.84 ± 0.04 Da | 1.64 ± 0.15 Ba | 1.57± 0.06 Aba | 1.39 ± 0.08 Ba | 1.13 ± 0.04 Aa | 83.0 ± 8.61 Aa | 8.20 ± 0.36 Aa | |
Pinot Noir | I | 66.1 ± 10.7 CDa | 6.88 ± 0.74 Ba | 4.22 ± 0.74 Cb | 1.67 ± 0.27 BCa | 1.09 ± 0.14 Ca | 1.40 ± 0.20 ABa | 1.19 ± 0.03 Ca | 1.18 ± 0.19 Aa | 58.3 ± 8.88 Ba | 2.63 ± 0.80 Da |
II | 46.3 ± 8.16 Db | 6.18 ± 0.59 Da | 5.52 ± 0.33 CDa | 1.12 ± 0.11 Cb | 1.21 ± 0.14 CDa | 1.30 ± 0.03 Cb | 1.19 ± 0.04 Da | 1.09 ± 0.02 Aba | 26.9 ± 7.60 Db | 2.21 ± 0.60 Da | |
Malbec | I | 137.2 ± 28.6 Aa | 10.5 ± 1.21 Aa | 5.53 ± 0.52 Bb | 1.90 ± 0.21 Ba | 2.11 ± 0.18 Aa | 1.55 ± 0.06 Ab | 1.45 ± 0.05 Ab | 1.07 ± 0.03 ABa | 62.0 ± 11.4 Ba | 6.19 ± 1.54 Ba |
II | 97.0 ± 22.8 Bb | 11.3 ± 1.34 Ba | 7.65 ± 0.83 Ba | 1.48 ± 0.17 ABb | 2.13 ± 0.11 Aa | 1.67 ± 0.05 Aa | 1.50 ± 0.03 Aa | 1.12 ± 0.02 Aba | 43.6 ± 8.88 CDb | 3.75 ± 0.76 Cb | |
Cabernet Sauvignon | I | 99.9 ± 11.0 Ba | 10.2 ± 1.10 Aa | 4.14 ± 0.20 Ca | 2.48 ± 0.27 Aa | 1.26 ± 0.09 BCa | 1.32 ± 0.02 Ba | 1.22 ± 0.02 BCa | 1.07 ± 0.02 ABa | 75.7 ± 6.27 Aa | 4.60 ± 0.49 Ca |
II | 56.0 ± 11.3 Db | 7.61 ± 0.88 CDb | 4.70 ± 0.70 Da | 1.63 ± 0.05 Ab | 1.10 ± 0.03 Db | 1.30 ± 0.01 Ca | 1.19 ± 0.00 Da | 1.09 ± 0.00 ABa | 47.9 ± 8.13 BCDb | 2.97 ± 0.80 CDb | |
CV(%) | I | 21.5 | 17.1 | 14.6 | 13.1 | 9.38 | 8.92 | 3.75 | 2.53 | 16.6 | 16.7 |
II | 16 | 8.86 | 9.15 | 10.2 | 7.2 | 2.53 | 2.50 | 2.48 | 12.9 | 19.1 | |
Média | 88.9 | 9.41 | 7.31 | 1.49 | 1.42 | 1.40 | 1.28 | 1.10 | 50.1 | 4.47 |
Cultivar | Production Cycle | Yield | Productivity | Number of Clusters per Vine |
---|---|---|---|---|
(kg Vine−1) | (t ha−1) | (un) | ||
Sauvignon Blanc | I | 2.13 ± 0.29 Ab * | 7.59 ± 1.02 Ab | 9.25 ± 5.09 Ab |
II | 2.75 ± 0.15 Bb | 9.82 ± 0.53 Ba | 11.6 ± 5.18 Aba | |
Tannat | I | 0.88 ± 0.24 Bb | 3.12 ± 0.85 Bb | 5.63 ± 1.41 BCb |
II | 1.09 ± 0.01 Ca | 3.89 ± 0.05 Ca | 7.38 ± 1.06 Ca | |
Pinot Noir | I | 0.70 ± 0.09 BCb | 2.50 ± 0.33 BCb | 4.88 ± 1.36 Cb |
II | 0.89 ± 0.01 CDa | 3.18 ± 0.04 CDa | 7.63 ± 1.19 Ca | |
Malbec | I | 0.50 ± 0.13 Cb | 1.79 ± 0.48 Cb | 6.37 ± 1.41 BCb |
II | 0.78 ± 0.03 Da | 2.77 ± 0.11 Da | 10.0 ± 1.20 Ba | |
Cabernet Sauvignon | I | 2.13 ± 0.28 Ab | 7.59 ± 0.99 Ab | 7.38 ± 1.06 Bb |
II | 3.03 ± 0.06 Aa | 10.8 ± 0.20 Aa | 11.8 ± 0.99 Aa | |
CV(%) | I | 11.6 | 11.6 | 39.5 |
II | 10.6 | 10.7 | 5.2 | |
Mean | 1.49 | 5.3 | 8.2 |
Cultivar | Bioactive Compounds and Antioxidant Activity | ||||
---|---|---|---|---|---|
Phenols | Flavonoids | Anthocyanins | DPPH | FRAP | |
(mg 100 g−1) | (µg Trolox g−1) | (mmol FeSO4 g−1) | |||
Sauvignon Blanc | 101.3 c * | 10.1 c | 18.7 cd | 12.2 a | 3.49 a |
Merlot | 234.9 a | 15.3 a | 76.1 a | 11.1 cd | 3.34 cd |
Tannat | 216.6 a | 14.7 a | 64.6 ba | 11.6 bc | 3.41 bc |
Pinot Noir | 151.2 b | 12.3 b | 33.8 bc | 11.7 ab | 3.42 ab |
Malbec | 209.9 a | 14.5 a | 77.7 a | 11.1 d | 3.33 d |
Cabernet Sauvignon | 206.3 a | 14.4 a | 14.4 d | 11.6 bcd | 3.41 bcd |
DMS | 1.22 | 2.07 | 111.5 | 0.55 | 1.91 |
CV (%) | 8.65 | 27.9 | 22.4 | 2.39 | 3.49 |
Mean | 186.69 | 13.5 | 47.5 | 11.6 | 3.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maniero, C.R.; Tecchio, M.A.; Monteiro, H.S.A.; Sánchez, C.A.P.C.; Pereira, G.E.; de Oliveira, J.B.; Brito, S.d.N.S.; Domingues Neto, F.J.; Leonel, S.; Silva, M.d.S.; et al. Phenological Performance, Thermal Demand, and Qualitative Potential of Wine Grape Cultivars Under Double Pruning. Agriculture 2025, 15, 1241. https://doi.org/10.3390/agriculture15121241
Maniero CR, Tecchio MA, Monteiro HSA, Sánchez CAPC, Pereira GE, de Oliveira JB, Brito SdNS, Domingues Neto FJ, Leonel S, Silva MdS, et al. Phenological Performance, Thermal Demand, and Qualitative Potential of Wine Grape Cultivars Under Double Pruning. Agriculture. 2025; 15(12):1241. https://doi.org/10.3390/agriculture15121241
Chicago/Turabian StyleManiero, Carolina Ragoni, Marco Antonio Tecchio, Harleson Sidney Almeida Monteiro, Camilo André Pereira Contreras Sánchez, Giuliano Elias Pereira, Juliane Barreto de Oliveira, Sinara de Nazaré Santana Brito, Francisco José Domingues Neto, Sarita Leonel, Marcelo de Souza Silva, and et al. 2025. "Phenological Performance, Thermal Demand, and Qualitative Potential of Wine Grape Cultivars Under Double Pruning" Agriculture 15, no. 12: 1241. https://doi.org/10.3390/agriculture15121241
APA StyleManiero, C. R., Tecchio, M. A., Monteiro, H. S. A., Sánchez, C. A. P. C., Pereira, G. E., de Oliveira, J. B., Brito, S. d. N. S., Domingues Neto, F. J., Leonel, S., Silva, M. d. S., Figueira, R., & dos Santos, P. V. (2025). Phenological Performance, Thermal Demand, and Qualitative Potential of Wine Grape Cultivars Under Double Pruning. Agriculture, 15(12), 1241. https://doi.org/10.3390/agriculture15121241