The Effects of CO2-Enriched Water Irrigation on Agricultural Crop Growth
Abstract
1. Introduction
2. Materials and Methods
2.1. Germination Rate and Root/Stem Ratio Analysis
2.2. Microbiological Analysis
2.3. Soil Measurements
2.4. Spectrum Analysis
3. Results
3.1. Plants Germination and Development
3.2. Physical Analyses of Soil
3.3. Microbiological Soil Analyses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bevacqua, E.; Rakovec, O.; Schumacher, D.L.; Kumar, R.; Thober, S.; Samaniego, L.; Seneviratne, S.I.; Zscheischler, J. Direct and lagged climate change effects intensified the 2022 European drought. Nat. Geosci. 2024, 17, 1100–1107. [Google Scholar] [CrossRef]
- Alix, A.; Bellet, L.; Trommsdorff, C.; Audureau, I. Reducing the Greenhouse Gas Emissions of Water and Sanitation Services: Overview of Emissions and Their Potential Reduction Illustrated by Utility Know-How; IWA Publishing: London, UK, 2022. [Google Scholar]
- Tal, A. Addressing Desalination’s Carbon Footprint: The Israeli Experience. Water 2018, 10, 197. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Biogenic CO2 Use and Storage to Enhance the Circularity and Climate Benefits of Biogas; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024. [Google Scholar]
- Birner, H.; Lucanus, B. Wasserkulturversuche mit Hafer in der Agrikultur-chemischen Versuchsstation zu Regennald. Landwirtsch. Vers. 1866, 8, 128–177. [Google Scholar]
- Moll, J.W. Ueber den Ursprung des Kohlenstoffs der Pflanzen. In Landwirtschaftliches Jahrbuch; Deutsche Landwirtschafts-Gesellschaft: Berlin, Germany, 1877; Volume 6, pp. 327–362. [Google Scholar]
- Mitscherlich, E. Ein Beitrag zur Kohlensaiurediingen. In Landwirtschaftliches Jahrbuch; Deutsche Landwirtschafts-Gesellschaft: Berlin, Germany, 1910; Volume 39. [Google Scholar]
- Noyes, H.A. The effect on plant growth of saturating a soil with carbon dioxide. Science 1914, 40, 792–796. [Google Scholar] [CrossRef] [PubMed]
- Free, E.E. The effect of aeration on the growth of buckwheat in water cultures. Johns Hopkins Univ. Circ 1917, 198–199. [Google Scholar]
- Cannon, W.A.; Freeman, E.E. Physiological Features of Roots, with Especial Reference to the Relation of Roots to Aeration of the Soil: With a Chapter on Differences Between Nitrogen and Helium as Inert Gases in Anaerobic Experiments on Plants; Carnegie Institution of Washington: Washington, DC, USA, 1925; Volume 368. [Google Scholar]
- Livingston, B.E.; Beall, R. The soil as direct source of carbon dioxide for ordinary plants. Plant Physiol. 1934, 9, 237–259. [Google Scholar] [CrossRef]
- Keeley, J.E.; Osmond, C.B.; Raven, J.A. Stylites, a vascular land plant without stomata absorbs CO2 via its roots. Nature 1984, 310, 694–695. [Google Scholar] [CrossRef]
- Enoch, H.Z.; Olesen, J.M. Plant response to irrigation with water enriched with carbon dioxide. New Phytol. 1993, 125, 249–258. [Google Scholar] [CrossRef]
- He, W.; Yoo, G.; Moonis, M.; Kim, Y.; Chen, X. Impact assessment of high soil CO2 on plant growth and soil environment: A greenhouse study. PeerJ 2019, 7, e6311. [Google Scholar] [CrossRef]
- Tariq, M.; Liu, Y.; Rizwan, A.; Shoukat, A.; Aftab, Q.; Lu, J.; Zhang, Y. Impact of elevated CO2 on soil microbiota: A meta-analytical review of carbon and nitrogen metabolism. Sci. Total Environ. 2024, 950, 175354. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Bai, E.; Piao, S.; Chen, N.; Zhao, G.; Zhu, Y. The stimulatory effect of elevated CO2 on soil respiration is unaffected by N addition. Sci. Total Environ. 2022, 813, 151907. [Google Scholar] [CrossRef] [PubMed]
- Kelley, A.M.; Fay, P.A.; Polley, H.W.; Gill, R.A.; Jackson, R.B. Atmospheric CO2 and soil extracellular enzyme activity: A meta-analysis and CO2 gradient experiment. Ecosphere 2011, 2, 96. [Google Scholar] [CrossRef]
- Scopes, R.K. Measurement of protein by spectrophotometry at 205 nm. Anal. Biochem. 1974, 59, 277–282. [Google Scholar] [CrossRef]
- Corbineau, F.; Come, D. Control of seed germination and dormancy by the gaseous environment. In Seed Development and Germination; Kigel, J., Galili, G., Eds.; CRC Press: New York, NY, USA, 1995; p. 872. [Google Scholar]
- Xue, L.; Ma, J.J. Effect of CCS technology for CO2 leakage on seed germination of C4 crops. Bul. Soil Water Conserv. 2014, 34, 307–310. [Google Scholar]
- Lampreave, M.; Mateos, A.; Valls, J.; Nadal, M.; Sánchez-Ortiz, A. Carbonated Irrigation Assessment of Grapevine Growth, Nutrient Absorption, and Sugar Accumulation in a Tempranillo (Vitis vinifera L.) Vineyard. Agriculture 2022, 12, 792. [Google Scholar] [CrossRef]
- Rivetta, A.; Negrini, N.; Cocucci, M. Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ. 1997, 20, 600–608. [Google Scholar] [CrossRef]
- McCormac, A.C.; Keefe, P.D.; Draper, S.R. Automated vigor testing of field vegetables using image analysis. Seed Sci. Technol. 1990, 18, 103–112. [Google Scholar]
- Storlie, C.A.; Heckman, J.R. Soil, Plant, and Canopy Responses to Carbonated Irrigation Water. J. Histotechnol. 1996, 6, 111–114. [Google Scholar] [CrossRef]
- Pazzagli, P.T.; Weiner, J.; Liu, F. Effects of CO2 elevation and irrigation regimes on leaf gas exchange, plant water relations, and water use efficiency of two tomato cultivars. Agric. Water Manag. 2016, 169, 26–33. [Google Scholar] [CrossRef]
- Cong, W.; Yu, J.; Feng, K.; Deng, Y.; Zhang, Y. The Coexistence Relationship between Plants and Soil Bacteria Based on Interdomain Ecological Network Analysis. Front. Microbiol. 2021, 12, 745582. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Q.; Li, Y.; Xiong, S. Simultaneous detection of nitrate and nitrite based on UV absorption spectroscopy and machine learning. Spectrosc. Suppl. 2021, 36, 38–44. [Google Scholar]
- Xu, M.; He, Z.; Deng, Y.; Wu, L.; van Nostrand, D.J.; Hobbie, S.E.; Reich, P.B.; Zhou, J. Elevated CO2 influences microbial carbon and nitrogen cycling. BMC Microbiol. 2013, 13, 124. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.; Pathan, A.K.; Gothkar, P.; Joshi, A.; Chivasa, W.; Nyamudeza, P. On-Farm Seed Priming: Using Participatory Methods to Revive and Refine a Key Technology. Agric. Syst. 2001, 69, 151–164. [Google Scholar] [CrossRef]
- Arienzo, M.; Basile, G.; d’Andria, R.; Magliulo, V.; Maggio, A. Fertilization Via Carbonated Water and Mineral Concentrations in a Tomato Crop, Commun. Soil Sci. Plant Anal. 1993, 24, 2281–2291. [Google Scholar] [CrossRef]
- Oguz, M.C.; Aycan, M.; Oguz, E.; Poyraz, I.; Yildiz, M. Drought Stress Tolerance in Plants: Interplay of Molecular, Biochemical and Physiological Responses in Important Development Stages. Physiol. Plant. 2022, 2, 180–197. [Google Scholar] [CrossRef]
Roots/Stem Ratio | Plant Length (cm) | |||
---|---|---|---|---|
8 days | 23 days | 8 days | 23 days | |
H2O | 3.74 | 0.54 | 7.23 | 13.24 |
CO2 | 4.81 | 0.58 | 7.48 | 15.75 |
pH | Electrical Conductivity (μS/cm) | Humidity | ||||
---|---|---|---|---|---|---|
8 days | 23 days | 8 days | 23 days | 8 days | 23 days | |
H2O | 7.41 | 7.65 | 878 | 806 | 52.4 | 60.6 |
CO2 | 7.31 | 7.35 | 935 | 884 | 54.9 | 58.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feodorov, L.; Patrascu, A.M.; Banciu, A.-R.; Radulescu, D.; Stoica, C.; Sen, I.; Dimitrova, Y.; Fasano, M.; Nita-Lazar, M. The Effects of CO2-Enriched Water Irrigation on Agricultural Crop Growth. Agriculture 2025, 15, 1222. https://doi.org/10.3390/agriculture15111222
Feodorov L, Patrascu AM, Banciu A-R, Radulescu D, Stoica C, Sen I, Dimitrova Y, Fasano M, Nita-Lazar M. The Effects of CO2-Enriched Water Irrigation on Agricultural Crop Growth. Agriculture. 2025; 15(11):1222. https://doi.org/10.3390/agriculture15111222
Chicago/Turabian StyleFeodorov, Laura, Anca Maria Patrascu, Alina-Roxana Banciu, Dragos Radulescu, Catalina Stoica, Indraneel Sen, Yasmina Dimitrova, Matteo Fasano, and Mihai Nita-Lazar. 2025. "The Effects of CO2-Enriched Water Irrigation on Agricultural Crop Growth" Agriculture 15, no. 11: 1222. https://doi.org/10.3390/agriculture15111222
APA StyleFeodorov, L., Patrascu, A. M., Banciu, A.-R., Radulescu, D., Stoica, C., Sen, I., Dimitrova, Y., Fasano, M., & Nita-Lazar, M. (2025). The Effects of CO2-Enriched Water Irrigation on Agricultural Crop Growth. Agriculture, 15(11), 1222. https://doi.org/10.3390/agriculture15111222