Effects of Lime, Magnesia and Silicon on Soil Acid-Neutralizing Capacity and Rice Yield in Acidic Paddy Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Sample Collection and Processing
2.4. Analytical Methods
2.5. Data Processing
3. Results
3.1. Effects of Different Fertilization Treatments on Nutrient Content in Paddy Soil
3.2. Effects of Different Fertilization Treatments on Soil Exchangeable Cations
3.3. Effects of Different Fertilization Treatments on Soil pH, Acid-Buffering Capacity (ABC), and Acid-Neutralizing Capacity (ANC)
3.4. Effects of Different Fertilization Treatments on Rice Yield
3.5. Relationships Between Soil Acid-Neutralizing Capacity, Acid-Buffering Capacity, and Rice Yield and Environmental Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Zhu, Q.; de Vries, W.; Ros, G.H.; Chen, X.; Muneer, M.A.; Zhang, F.; Wu, L. Effects of soil amendments on soil acidity and crop yields in acidic soils: A world-wide meta-analysis. J. Environ. Manag. 2023, 345, 118531. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, J.; Newman, K.; Mayhew, S. Population dynamics and climate change: What are the links? J. Public Health-UK 2010, 32, 150–156. [Google Scholar] [CrossRef]
- Abdelsalam, K.M.; Shaalan, A.M.; AbouEl-Soud, G.M.; El-Dalil, M.A.; Marei, A.M.; El-Moneim, D.A.; El-Banna, A.A.; Lamlom, S.F.; Abdelghany, A.M. Comprehensive quality profiling and multivariate analysis of rice (Oryza sativa L.) cultivars: Integrating physical, cooking, nutritional, and micronutrient characteristics for enhanced varietal selection. BMC Plant Biol. 2025, 25, 492. [Google Scholar] [CrossRef]
- Li, C.; Camac, J.; Robinson, A.; Kompas, T. Predicting changes in agricultural yields under climate change scenarios and their implications for global food security. Sci. Rep. 2025, 15, 2858. [Google Scholar] [CrossRef]
- Zhao, Q. Exploiting Resource Advantage and Innovating Research and Development Potential for Social and Economic Development in Red Soil Region of Southern China—In Celebration of the 30th Anniversary of the Establishment of Ecological Experiment Station of Red Soil, Chineses Academy of Sciences. Soils 2015, 47, 197–203. [Google Scholar] [CrossRef]
- Zhao, X.; Pan, X.; Ma, H.; Dong, X.; Che, J.; Wang, C.; Shi, Y.; Liu, K.; Shen, R. Scientific Issues and Strategies of Acid Soil Use in China. Acta Pedol. Sin. 2023, 60, 1248–1263. [Google Scholar] [CrossRef]
- Hu, Z.; Delgado-Baquerizo, M.; Fanin, N.; Chen, X.; Zhou, Y.; Du, G.; Hu, F.; Jiang, L.; Hu, S.; Liu, M. Nutrient-induced acidification modulates soil biodiversity-function relationships. Nat. Commun. 2024, 15, 2528. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yu, Z.; Li, Y.; Bao, W.; Zhang, C.; Liu, X. Research Progresses on Soil Acidification and its effects on Soil-Microrganism-Crop Systems in Agricultural Soil. Chin. J. Soil Sci. 2024, 55, 562–572. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, X.; Zhang, L.; Shen, R. Effects of Liming and Dicyandiamide (DCD) Application on Soil pH and Nitrification of Acidic Red Soil. Acta Pedol. Sin. 2021, 58, 169–179. [Google Scholar] [CrossRef]
- Ji, J.; Li, X.; Liu, X.; Hou, H.; Liu, Y.; Lv, Z.; Lan, X.; Chen, J. Effects of fertilizer of calcium silicon magnesium potassium on the dynamics of soil acidity and exchangeable base cation in paddy field of southern China. Chin. J. Appl. Ecol. 2019, 30, 583–592. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, B.; Xu, M.; Zhang, H.; He, X.; Zhang, L.; Gao, S. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China. J. Soils Sediments 2014, 15, 260–270. [Google Scholar] [CrossRef]
- Lu, L.; Lei, M.; Zhou, Y.; Cui, H.; Du, H. In vitro tungsten bioaccessibility in Chinese residential soils: Implications for human health risk assessments and soil screening level derivation. J. Hazard. Mater. 2024, 477, 135368. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Li, X.; Liu, X.; Hou, H.; Liu, Y.; Wang, Z.; Lv, Z.; Lan, X.; Chen, J.; Huang, X. Effect of Si-Ca-K-Mg Fertilizer Remedying Acid Paddy Soil in South China. Acta Pedol. Sin. 2019, 56, 895–906. [Google Scholar] [CrossRef]
- AShen, R.; Zhang, R.; Zhou, N.; Feng, T.; Zhou, L.; Ma, P.; AEr, L.; Liao, X.; Zhang, K. Effects of Silicon, Calcium, Potassium and Magnesium Fertilizer and Density on Rice Yield Formatio. J. Agric. Sci. Technol. 2024, 26, 155–163. [Google Scholar] [CrossRef]
- Meng, Y.; Li, T.; Shi, Z.; Cai, J.; Xu, Z.; Jiang, Y. Effects of fertilization and water addition on soil acid neutralizing capacity in an old-field grassland. Chin. J. Appl. Ecol. 2020, 31, 1579–1586. [Google Scholar] [CrossRef]
- Ming, R.; Wan, F.; Na, L.; Wu, H.; Wang, W.; Tan, W.; Wu, Y. Effect of Soil Acid Reduction and Fertilizer Cultivation Under Conditioner Application: Meta-analysis Based on Acid Soil Improvement Studies in China. Acta Pedol. Sin. 2025, 62, 400–410. [Google Scholar] [CrossRef]
- Liu, X.; Yin, Z.-r.; Sheng, H.; Xiao, H.; Zhang, L.; Zhou, P. Response of microbial community, enzyme activity, and physicochemical property in paddy soil to continuous organic fertilizer and lime amendments. J. Plant Nutr. Fertil. 2024, 30, 63–73. [Google Scholar] [CrossRef]
- Lu, L.; Sun, J.; Dai, Y.; Zhou, Y.; Cui, H.; Lei, M.; Du, H. Association of tungsten with aluminosilicate mineral colloids and silicotungstates in soil porewaters: Insights into the unexpectedly high tungsten mobility in soil. Geochim. Cosmochim. Acta 2025, 389, 1–13. [Google Scholar] [CrossRef]
- Liu, J.; Cui, J.; Liu, H.; Pan, Q.; He, X. Research progress of soil amelioration of acidified soil by soil amendments. J. Environ. Eng. Technol. 2022, 12, 173–184. [Google Scholar] [CrossRef]
- Han, T.; Li, D.; Liu, K.; Huang, J.; Zhang, L.; Liu, S.; Shah, A.; Liu, L.; Feng, G.; Zhang, H. Soil potassium regulation by initial K level and acidification degree when subjected to liming: A meta-analysis and long-term field experiment. Catena 2023, 232, 107408. [Google Scholar] [CrossRef]
- Xue, Q.; Ran, Y.; Tan, Y.; Peacock, C.L.; Du, H. Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: Implications for arsenic mobility and fate in natural environments. Chemosphere 2019, 224, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Chen, H.; Yang, X.; Wu, X.; Chen, J.; Wang, H. Effects of Different Soil Amendments on Soil Nutrient Transformation and Bioavailability of Arsenic and Lead in Contaminated Soil. J. Soil Water Conserv. 2022, 36, 332–339+345. [Google Scholar] [CrossRef]
- Lu, Y.; Liao, Y.; Nie, J.; Zhou, X.; Xie, J.; Yang, Z.; Wu, H. Effect of Long-term Fertilization and Lime Application on Soil Acidity of Reddish Paddy Soil. Acta Pedol. Sin. 2016, 53, 202–212. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Wadoux, A.M.C.; Akoeb, E.N.; Sabrina, T. Precocious 19th century soil carbon science. Geoderma Reg. 2020, 22, e00306. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. (Eds.) Methods of Soil Analysis, Part 3: Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- GB/T 3543.5-1995; Rules for Agricultural Seed Testing—Verification of Genuineness and Varietal Purity. China Standards Press: Beijing, China, 1995.
- Liu, F.; Fang, C.; Yu, Z.; Gao, Y.; Zhang, J.; Lu, Y.; Liao, Y.; Cao, W.; Nie, J.; Tu, N. Effects of Green Manure, Rice Straw Return and Lime Combination on Soil Acidity and Rice Yield. Acta Pedol. Sin. 2024, 61, 1616–1627. [Google Scholar] [CrossRef]
- Meng, H.; Xu, M.; Lv, J.; Zhang, H.; Cai, Z. Evaluation of Acid-neutralizing Capacity of Topsoil in Croplands Using Quadratic Curve Fitting. J. Agro-Environ. Sci. 2013, 32, 29–35. [Google Scholar] [CrossRef]
- Xu, D.; Ros, G.H.; Zhu, Q.; Xu, M.; Wen, S.; Cai, Z.; Zhang, F.; de Vries, W. Major drivers of soil acidification over 30 years differ in paddy and upland soils in China. Sci. Total Environ. 2024, 916, 170189. [Google Scholar] [CrossRef]
- Peterson, A.R.; DeSutter, T.M.; Daigh, A.L.M.; Meehan, M.A.; Derby, N. Effects of calcium amendments on hydraulic conductivity and sodium content of brine-impacted soils. Agrosyst. Geosci. Environ. 2024, 7, e20556. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, X.; Yang, L.; Li, Y.; Miliang, Z.; Tian, F.; Zhang, M.; Tian, M. Effects of different amendments application on remediation of acidic soil. J. Soil Water Conserv. 2018, 32, 330–334. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Z.; Xie, G. Organic Carbon and Acidity and Alkalinity of Orchard Soils in Typical Geomorphic Areas of Zhejiang and Countermeasures for Improving Soil Quality. J. Agric. 2023, 13, 8–12. [Google Scholar] [CrossRef]
- Blake, D.; Boyce, M.C.; Stock, W.D.; Horwitz, P. Fire in Organic-Rich Wetland Sediments: Inorganic Responses in Porewater. Water Air Soil Pollut. 2021, 232, 101. [Google Scholar] [CrossRef]
- Ng, J.F.; Ahmed, O.H.; Jalloh, M.B.; Omar, L.; Kwan, Y.M.; Musah, A.A.; Poong, K.H. Soil Nutrient Retention and pH Buffering Capacity Are Enhanced by Calciprill and Sodium Silicate. Agronomy 2022, 12, 219. [Google Scholar] [CrossRef]
- Luo, W.T.; Nelson, P.N.; Li, M.H.; Cai, J.P.; Zhang, Y.Y.; Zhang, Y.G.; Yang, S.; Wang, R.Z.; Wang, Z.W.; Wu, Y.N.; et al. Contrasting pH buffering patterns in neutral-alkaline soils along a 3600 km transect in northern China. Biogeosciences 2015, 12, 7047–7056. [Google Scholar] [CrossRef]
- Lin, Y.N.; Li, Y.X.; Zheng, Y.; Deng, Y.H.; Liu, K.X.; Gan, Y.; Li, H.; Wang, J.; Peng, J.W.; Deng, R.Z.; et al. Developing Quorum Sensing-Based Collaborative Dynamic Control System in Halomonas TD01. Adv. Sci. 2025, 2408083. [Google Scholar] [CrossRef]
- Wang, K.; Guan, H.; Lu, J.; Xu, W. Effects of Biochar on Physicochemical Properties of Dry Land Acid Red Soil. Soils 2020, 52, 503–509. [Google Scholar] [CrossRef]
- Tang, J.; Li, Y.; Zhu, Y.; Xiang, B.; Tan, T. Effect of biochar and bentonite on physicochemical properties of sandy soil in northwestern Liaoning province. J. Arid Land Resour. Environ. 2022, 36, 143–150. [Google Scholar] [CrossRef]
- Li, F.; Guo, S.; Cheng, F.; Li, J.; Tong, M.; Ding, C. Effects of biological organic amendments on soil quality in tidal flat of Suaeda heteroptera wetland in Liaohe estuarine. Chin. J. Ecol. 2023, 42, 1548–1553. [Google Scholar] [CrossRef]
- Sarker, T.C.; Incerti, G.; Spaccini, R.; Piccolo, A.; Mazzoleni, S.; Bonanomi, G. Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy. Soil. Biol. Biochem. 2018, 117, 175–184. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, D.; Dai, Q.; Gui, J.; Chen, J.; Fu, Y. Effect of Returning Straw on Transfer and Accumulation of Cd in Soil-rice System: Research Progress. Chin. Agric. Sci. Bull. 2018, 34, 90–95. [Google Scholar] [CrossRef]
- Wang, Z.; Hassan, M.U.; Nadeem, F.; Wu, L.; Zhang, F.; Li, X. Magnesium Fertilization Improves Crop Yield in Most Production Systems: A Meta-Analysis. Front. Plant Sci. 2020, 10, 01727. [Google Scholar] [CrossRef]
- Huang, H.; Chen, F.; Xu, M.; Qing, D.; Gao, J.; Zhu, Y. Status of magnesium and the techniques of application of magnesium fertilizer in the red earth region. Soil Fertil. Sci. 2000, 5, 19–23. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, Z.; Wang, H.; Yu, Z.; Han, T.; Liu, K.; Liu, L.; Huang, J.; Wen, S.; Zhang, H. Distribution characteristics of effective medium and micronutrient element contents in paddy soils of China. Trans. Chin. Soc. Agric. Eng. 2020, 36, 62–70. [Google Scholar] [CrossRef]
- Lu, Z.; Ren, T.; Lu, J. Soil available magnesium status and effects of magnesium application on rapeseed yield in main producing area of China. J. Huazhong Agric. Univ. 2021, 40, 17–23. [Google Scholar] [CrossRef]
- Joris, P.J.; Plat, J.; Bakker, S.J.; Mensink, R.P. Effects of long-term magnesium supplementation on endothelial function and cardiometabolic risk markers: A randomized controlled trial in overweight/obese adults. Sci. Rep. 2017, 7, 106. [Google Scholar] [CrossRef] [PubMed]
- Fatima, G.; Dzupina, A.; Alhmadi, H.B.; Magomedova, A.; Siddiqui, Z.; Mehdi, A.; Hadi, N.; Mehdi, A. Magnesium matters: A comprehensive review of its vital role in health and diseases. Cureus 2024, 16, e71392. [Google Scholar] [CrossRef]
- Huang, Q.; Lin, B.; Rao, G.; Dai, W.; Li, P.; Wu, Y.; Huang, J.; Zeng, Z.; Song, H.; Tang, S.; et al. Effects of Straw Returning with Lime on SOC and Carbon Pool Management in Acidic Paddy Soil. Environ. Sci. 2023, 44, 5813–5822. [Google Scholar] [CrossRef]
- Li, G.D.; Conyers, M.K.; Helyar, K.R.; Lisle, C.J.; Poile, G.J.; Cullis, B.R. Long-term surface application of lime ameliorates subsurface soil acidity in the mixed farming zone of south-eastern Australia. Geoderma 2019, 338, 236–246. [Google Scholar] [CrossRef]
- Ma, G.; Tu, N.; Fang, C.; Yi, Z.; Yang, J.; Tan, Z.; Li, P.; Dong, Y. Effects of combined application of organic and inorganic fertilizers with zinc fertilizer and lime on yield and soil nutrient characteristics of double croping rice. J. Soil Water Conserv. 2020, 34, 171–177. [Google Scholar] [CrossRef]
Parameter | Value | Method | Standard |
---|---|---|---|
Total Organic Carbon (TOC) | 23.4 g·kg−1 * | NY/T 1121.6-2006 | |
Total Nitrogen (TN) | 2.48 g·kg−1 | Elemental analyzer | NY/T 1121.24-2012 |
Total Phosphorus (TP) | 0.54 g·kg−1 | H2SO4-HClO4 digestion | LY/T 1232-2015 |
Total Potassium (TK) | 15.2 g·kg−1 | NaOH fusion-flame photometry | NY/T 87-1988 |
Alkaline Nitrogen (AN) | 250 mg·kg−1 | KCl extraction | NY/T 1121.6-2006 |
Available Phosphorus (AP) | 3.27 mg·kg−1 | NaHCO3 extraction (Olsen-P), Mo-Sb colorimetry | NY/T 1121.7-2014 |
Available Potassium (AK) | 122 mg·kg−1 | NH4OAc extraction-AAS | NY/T 889-2004 |
Cation-Exchange Capacity (CEC) | 14.5 cmol·kg−1 | Ammonium acetate method | NY/T 1615-2008 |
Available Cadmium (Av-Cd) | 0.687 mg·kg−1 | DTPA extraction-AAS | GB/T 23739-2009 |
Total Cadmium (Total Cd) | 0.999 mg·kg−1 | Aqua regia digestion-ICP-MS | GB/T 17141-1997 |
pH | 5.80 | pH meter (ST 2100, Ohaus Instruments, Parsippany, NJ, USA) | NY/T 1121.2-2006 |
Treatment | TN (g·kg−1) | TP (g·kg−1) | TK (g·kg−1) | AN (mg·kg−1) | AP (mg·kg−1) | AK (mg·kg−1) | SOM (g·kg−1) |
---|---|---|---|---|---|---|---|
CK | 1.96 ± 0.05 b | 0.55 ± 0.03 a | 10.6 ± 0.3 a | 125 ± 3 b | 3.00 ± 0.20 c | 84.3 ± 10.1 a | 35.8 ± 3.1 b |
L | 2.12 ± 0.12 a | 0.55 ± 0.03 a | 10.2 ± 0.7 a | 141 ± 9 a | 6.20 ± 0.10 b | 85.7 ± 5.7 a | 38.5 ± 4.3 ab |
LM | 2.15 ± 0.04 a | 0.60 ± 0.06 a | 9.6 ± 1.3 a | 151 ± 10 a | 9.95 ± 0.75 a | 85.3 ± 5.7 a | 39.5 ± 2.9 ab |
SS | 2.21 ± 0.03 a | 0.60 ± 0.04 a | 11.1 ± 1.3 a | 147 ± 8 a | 6.15 ± 2.15 b | 76.3 ± 8.6 a | 42.5 ± 1.0 a |
Treatment | Ex-H | Ex-Al | Ex-K | Ex-Na | Ex-Ca | Ex-Mg | SEB |
---|---|---|---|---|---|---|---|
(cmol·kg−1) | (%) | ||||||
CK | 0.13 ± 0.03 a | 0.03 ± 0.03 a | 0.15 ± 0.00 ab | 0.18 ± 0.01 b | 8.46 ± 0.34 b | 0.78 ± 0.05 c | 9.58 ± 0.40 c |
L | 0.03 ± 0.03 b | 0.00 ± 0.00 b | 0.15 ± 0.02 ab | 0.16 ± 0.01 b | 10.99 ± 1.39 a | 0.74 ± 0.12 c | 12.04 ± 1.29 b |
LM | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.17 ± 0.01 a | 0.17 ± 0.01 b | 6.09 ± 0.73 c | 8.73 ± 0.25 a | 15.16 ± 0.98 a |
SS | 0.17 ± 0.03 a | 0.05 ± 0.01 a | 0.14 ± 0.01 b | 0.51 ± 0.12 a | 7.26 ± 0.00 bc | 1.28 ± 0.07 b | 9.19 ± 0.06 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Sun, G.; Sun, M.; Du, H.; Luo, Z.; Feng, Q.; Zheng, Y.; Zhou, J.; Long, Z. Effects of Lime, Magnesia and Silicon on Soil Acid-Neutralizing Capacity and Rice Yield in Acidic Paddy Fields. Agriculture 2025, 15, 1042. https://doi.org/10.3390/agriculture15101042
Yang T, Sun G, Sun M, Du H, Luo Z, Feng Q, Zheng Y, Zhou J, Long Z. Effects of Lime, Magnesia and Silicon on Soil Acid-Neutralizing Capacity and Rice Yield in Acidic Paddy Fields. Agriculture. 2025; 15(10):1042. https://doi.org/10.3390/agriculture15101042
Chicago/Turabian StyleYang, Ting, Geng Sun, Mei Sun, Huihui Du, Zunchang Luo, Qiufen Feng, Yong Zheng, Junyu Zhou, and Zedong Long. 2025. "Effects of Lime, Magnesia and Silicon on Soil Acid-Neutralizing Capacity and Rice Yield in Acidic Paddy Fields" Agriculture 15, no. 10: 1042. https://doi.org/10.3390/agriculture15101042
APA StyleYang, T., Sun, G., Sun, M., Du, H., Luo, Z., Feng, Q., Zheng, Y., Zhou, J., & Long, Z. (2025). Effects of Lime, Magnesia and Silicon on Soil Acid-Neutralizing Capacity and Rice Yield in Acidic Paddy Fields. Agriculture, 15(10), 1042. https://doi.org/10.3390/agriculture15101042