Ammonium Content Determination by Different Analytical Methods in the Manure with Different Additives and Its Change During Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Experimental Site
2.2. Chemical Analysis of Manure Ammonium
2.3. Statistical Analysis
3. Results and Discussion
3.1. Comparison of Analytical Methods for the Ammonium Determination in Manure Samples
3.2. Effect of Manure Storage Time and Additives on the Change in the Ammonium Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cattaneo, M.; Tayà, C.; Burgos, L.; Morey, L.; Noguerol, J.; Provolo, G.; Cerrillo, M.; Bonmatí, A. Assessing Ammonia and Greenhouse Gas Emissions from Livestock Manure Storage: Comparison of Measurements with Dynamic and Static Chambers. Sustainability 2023, 15, 15987. [Google Scholar] [CrossRef]
- Qi, J.; Yang, H.; Wang, X.; Zhu, H.; Wang, Z.; Zhao, C.; Li, B.; Liu, Z. State-of-the-Art on Animal Manure Pollution Control and Resource Utilization. J. Environ. Chem. Eng. 2023, 11, 110462. [Google Scholar] [CrossRef]
- Bilong, E.G.; Abossolo-Angue, M.; Nanganoa, L.T.; Anaba, B.D.; Ajebesone, F.N.; Madong, B.À.; Bilong, P. Organic Manures and Inorganic Fertilizers Effects on Soil Properties and Economic Analysis under Cassava Cultivation in the Southern Cameroon. Sci. Rep. 2022, 12, 20598. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Liptzin, D.; Maharjan, B. Long-Term Manure Application Improves Soil Health and Stabilizes Carbon in Continuous Maize Production System. Geoderma 2023, 430, 116338. [Google Scholar] [CrossRef]
- Fu, Y.; de Jonge, L.W.; Moldrup, P.; Paradelo, M.; Arthur, E. Improvements in Soil Physical Properties after Long-Term Manure Addition Depend on Soil and Crop Type. Geoderma 2022, 425, 116062. [Google Scholar] [CrossRef]
- Köninger, J.; Lugato, E.; Panagos, P.; Kochupillai, M.; Orgiazzi, A.; Briones, M.J.I. Manure Management and Soil Biodiversity: Towards More Sustainable Food Systems in the EU. Agric. Syst. 2021, 194, 103251. [Google Scholar] [CrossRef]
- Kovačić, Đ.; Lončarić, Z.; Jović, J.; Samac, D.; Popović, B.; Tišma, M. Digestate Management and Processing Practices: A Review. Appl. Sci. 2022, 12, 9216. [Google Scholar] [CrossRef]
- European Union Council Directive 91/676/EEC of 12 December 1991. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31991L0676 (accessed on 10 November 2024).
- Huang, D.; Gao, L.; Cheng, M.; Yan, M.; Zhang, G.; Chen, S.; Du, L.; Wang, G.; Li, R.; Tao, J.; et al. Carbon and N Conservation during Composting: A Review. Sci. Total Environ. 2022, 840, 156355. [Google Scholar] [CrossRef]
- Kupper, T.; Häni, C.; Neftel, A.; Kincaid, C.; Bühler, M.; Amon, B.; VanderZaag, A. Ammonia and Greenhouse Gas Emissions from Slurry Storage—A Review. Agric. Ecosyst. Env. 2020, 300, 106963. [Google Scholar] [CrossRef]
- Sommer, S.G.; Hafner, S.D.; Laubach, J.; van der Weerden, T.J.; Leytem, A.B.; Pacholski, A. Model for Calculating Ammonia Emission from Stored Animal Liquid Manure. Biosyst. Eng. 2022, 223, 41–55. [Google Scholar] [CrossRef]
- Wyer, K.E.; Kelleghan, D.B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T.P. Ammonia Emissions from Agriculture and Their Contribution to Fine Particulate Matter: A Review of Implications for Human Health. J. Environ. Manag. 2022, 323, 116285. [Google Scholar] [CrossRef] [PubMed]
- Esteban, R.; Ariz, I.; Cruz, C.; Moran, J.F. Review: Mechanisms of Ammonium Toxicity and the Quest for Tolerance. Plant Sci. 2016, 248, 92–101. [Google Scholar] [CrossRef] [PubMed]
- van der Eerden, L.J.M. Toxicity of Ammonia to Plants. Agric. Environ. 1982, 7, 223–235. [Google Scholar] [CrossRef]
- Misselbrook, T.H.; Nicholson, F.A.; Chambers, B.J. Predicting Ammonia Losses Following the Application of Livestock Manure to Land. Bioresour. Technol. 2005, 96, 159–168. [Google Scholar] [CrossRef]
- Baethgen, W.E.; Alley, M.M. A Manual Colorimetric Procedure for Measuring Ammonium Nitrogen in Soil and Plant Kjeldahl Digests. Commun. Soil. Sci. Plant Anal. 1989, 20, 961–969. [Google Scholar] [CrossRef]
- Peters, J.; Combs, S.; Hoskins, B.; Jarman, J.; Kovar, J.; Watson, M.; Wolf, A.; Wolf, N. Recommended Methods of Manure Analysis; University of Wisconsin Cooperative Extension Publishing: Madison, WI, USA, 2003; pp. 25–29. [Google Scholar]
- Wang, J.; Duan, C.; Ji, Y.; Sun, Y. Methane Emissions during Storage of Different Treatments from Cattle Manure in Tianjin. J. Environ. Sci. 2010, 22, 1564–1569. [Google Scholar] [CrossRef]
- Molins-Legua, C.; Meseguer-Lloret, S.; Moliner-Martinez, Y.; Campíns-Falcó, P. A Guide for Selecting the Most Appropriate Method for Ammonium Determination in Water Analysis. TrAC Trends Anal. Chem. 2006, 25, 282–290. [Google Scholar] [CrossRef]
- Jurgutis, L.; Šlepetienė, A.; Amalevičiūtė-Volungė, K.; Volungevičius, J.; Šlepetys, J. The Effect of Digestate Fertilisation on Grass Biogas Yield and Soil Properties in Field-Biomass-Biogas-Field Renewable Energy Production Approach in Lithuania. Biomass Bioenergy 2021, 153, 106211. [Google Scholar] [CrossRef]
- Utomo, W.P.; Wu, H.; Ng, Y.H. Quantification Methodology of Ammonia Produced from Electrocatalytic and Photocatalytic Nitrogen/Nitrate Reduction. Energies 2022, 16, 27. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, J.; Yuan, D.; Yang, Z.; Shi, X.; Li, H.; Jin, H.; Ran, L. Development of Analytical Methods for Ammonium Determination in Seawater over the Last Two Decades. TrAC Trends Anal. Chem. 2019, 119, 115627. [Google Scholar] [CrossRef]
- Penzel, S.; Mayer, T.; Goblirsch, T.; Borsdorf, H.; Rudolph, M.; Kanoun, O. A Novel Turbidity Compensation Method for Water Measurements by UV/Vis and Fluorescence Spectroscopy. Measurement 2025, 239, 115447. [Google Scholar] [CrossRef]
- Nelson, D.W. Determination of Ammonium in KCl Extracts of Soils by the Salicylate Method. Commun. Soil Sci. Plant Anal. 1983, 14, 1051–1062. [Google Scholar] [CrossRef]
- Kozloski, G.V.; Senger, C.C.D.; Perottoni, J.; Sanchez, L.M.B. Evaluation of Two Methods for Ammonia Extraction and Analysis in Silage Samples. Anim. Feed. Sci. Technol. 2006, 127, 336–342. [Google Scholar] [CrossRef]
- Holmboe, N.; Kristensen, E. Ammonium Adsorption in Sediments of a Tropical Mangrove Forest (Thailand) and a Temperate Wadden Sea Area (Denmark). Wetl. Ecol. Manag. 2002, 10, 453–460. [Google Scholar] [CrossRef]
- Dorich, R.A.; Nelson, D.W. Direct Colorimetric Measurement of Ammonium in Potassium Chloride Extracts of Soils. Soil Sci. Soc. Am. J. 1983, 47, 833–836. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, H.; Yuan, W.; Williams, D.; Walker, J.T.; Shi, W. Is Biochar-Manure Co-Compost a Better Solution for Soil Health Improvement and N2O Emissions Mitigation? Soil Biol. Biochem. 2017, 113, 14–25. [Google Scholar] [CrossRef]
- Abid, A.A.; Yu, S.; Zou, X.; Batool, I.; Castellano-Hinojosa, A.; Wang, J.; Li, D.; Zhang, Q. Unraveling Nitrogen Loss in Paddy Soils: A Study of Anaerobic Nitrogen Transformation in Response to Various Irrigation Practice. Environ. Res. 2024, 252, 118693. [Google Scholar] [CrossRef]
- Kachurina, O.M.; Zhang, H.; Raun, W.R.; Krenzer, E.G. Simultaneous Determination of Soil Aluminum, Ammonium- and Nitrate-nitrogen Using 1 M Potassium Chloride Extraction. Commun. Soil Sci. Plant Anal. 2000, 31, 893–903. [Google Scholar] [CrossRef]
- Available online: Https://Www.Hach.Com/p-Ammonium-Ionic-Strength-Adjustor-Isa-Pillows-Pk100/2980699?Srsltid=AfmBOopg3WgZlDUm59xXsmeJ8rugzJH2PU3RabQuk4EB-Vv3vlr1hJeo (accessed on 20 October 2023).
- Oh, S.Y.; Sung, H.K.; Shin, H.H.; Jeong, U.; Eom, I.; Kim, P.; Kim, Y. Effect of Ionic-Strength Adjusters on the Detection of Silver Ion Using Ion-Selective Electrode. Korean J. Chem. Eng. 2015, 32, 1924–1927. [Google Scholar] [CrossRef]
- Frant, M.; Ross, J.W. Use of a Total Ionic Strength Adjustment Buffer for Electrode Determination of Fluoride in Water Supplies. Anal. Chem. 1968, 40, 1169–1171. [Google Scholar] [CrossRef]
- Thorn, C.E.; Nolan, S.; Lee, C.S.; Friel, R.; O’Flaherty, V. Novel Slurry Additive Reduces Gaseous Emissions during Storage Thereby Improving Renewable Energy and Fertiliser Potential. J. Clean. Prod. 2022, 358, 132004. [Google Scholar] [CrossRef]
Distillation | Ionometry | Spectrophotometry | Min | Max | SE* | |||||
---|---|---|---|---|---|---|---|---|---|---|
Cv% | Cv% | Cv% | ||||||||
1-1K | 26,484 | 0.74 | 21,006 | 5.31 | 27,108 | 2.98 | 21,006 | 27,108 | 1938 | |
Start of experiment | 2-1K | 21,947 | 1.25 | 24,498 | 1.49 | 22,980 | 4.10 | 21,947 | 24,498 | 741 |
3-1K | 18,239 | 0.11 | 17,278 | 2.99 | 19,642 | 9.94 | 17,278 | 19,642 | 686 | |
4-1K | 22,415 | 1.04 | 18,315 | 0.60 | 24,504 | 4.25 | 18,315 | 24,504 | 1818 | |
1-2D | 24,059 | 0.45 | 16,806 | 3.75 | 25,501 | 3.11 | 16,806 | 25,501 | 2691 | |
2-2D | 24,364 | 0.69 | 26,529 | 2.99 | 26,217 | 2.44 | 24,364 | 26,529 | 676 | |
3-2D | 16,863 | 0.44 | 16,613 | 3.88 | 16,936 | 2.49 | 16,613 | 16,936 | 98 | |
4-2D | 19,577 | 0.44 | 17,296 | 1.49 | 21,091 | 6.57 | 17,296 | 21,091 | 1103 | |
1-3P | 25,337 | 0.71 | 17,794 | 2.50 | 27,577 | 2.14 | 17,794 | 27,577 | 2959 | |
2-3P | 23,479 | 0.33 | 24,226 | 1.20 | 25,843 | 5.16 | 23,479 | 25,843 | 697 | |
3-3P | 16,982 | 0.74 | 15,920 | 1.79 | 17,628 | 5.38 | 15,920 | 17,628 | 498 | |
4-3P | 20,193 | 0.13 | 17,743 | 0.60 | 21,579 | 5.17 | 17,743 | 21,579 | 1121 | |
1-4V | 25,717 | 0.16 | 16,904 | 0.62 | 31,056 | 0.76 | 16,904 | 31,056 | 4126 | |
2-4V | 25,322 | 0.36 | 27,731 | 0.30 | 28,633 | 1.61 | 27,731 | 29,322 | 461 | |
3-4V | 16,163 | 0.54 | 14,395 | 3.88 | 15,203 | 9.26 | 14,395 | 16,163 | 511 | |
4-4V | 19,376 | 1.01 | 16,264 | 2.09 | 19,649 | 5.09 | 16,264 | 19,649 | 1086 | |
End of experiment | 5-1K | 6380 | 1.46 | 4688 | 0.11 | 5762 | 8.42 | 4688 | 6380 | 494 |
6-1K | 9304 | 0.17 | 6840 | 0.62 | 10,810 | 1.48 | 6840 | 10,810 | 1157 | |
7-1K | 5392 | 1.07 | 3532 | 0.90 | 5413 | 6.13 | 3532 | 5413 | 623 | |
8-1K | 7006 | 0.52 | 4661 | 0.60 | 7867 | 1.38 | 4661 | 7867 | 958 | |
5-2D | 5113 | 1.08 | 3985 | 1.63 | 4539 | 3.04 | 3985 | 5113 | 326 | |
6-2D | 7131 | 1,06 | 5129 | 1.63 | 7946 | 0.69 | 5129 | 7946 | 837 | |
7-2D | 5688 | 0,02 | 3751 | 1.79 | 5299 | 2.21 | 3751 | 5688 | 592 | |
8-2D | 9567 | 2.85 | 5613 | 1.49 | 10,361 | 5.28 | 5613 | 10,361 | 1468 | |
5-3P | 7912 | 3.93 | 5792 | 0.76 | 6988 | 1122 | 5792 | 7912 | 614 | |
6-3P | 7478 | 0.83 | 5493 | 0.69 | 9690 | 1.09 | 5493 | 9690 | 1212 | |
7-3P | 5851 | 0.70 | 3645 | 3.58 | 5902 | 0.38 | 3645 | 5902 | 744 | |
8-3P | 8041 | 0.81 | 4464 | 1.49 | 9523 | 6.46 | 4464 | 9523 | 1502 | |
5-4V | 6661 | 1.03 | 5255 | 5.40 | 7479 | 0.36 | 5255 | 7479 | 649 | |
6-4V | 6484 | 0.07 | 4876 | 2.21 | 8431 | 1.39 | 4876 | 8431 | 1028 | |
7-4V | 5869 | 0.13 | 3780 | 0.90 | 5842 | 4.20 | 3780 | 5869 | 692 | |
8-4V | 8060 | 0.45 | 4508 | 0.90 | 9935 | 5.08 | 4508 | 9935 | 1591 | |
Cv% min | 0.02 | 0.16 | 0.36 | |||||||
Cv% max | 3.93 | 5.40 | 11.22 | |||||||
Cv% average | 0.77 | 1.83 | 3.97 | |||||||
F | 1.4144 | |||||||||
p-value | 0.2482 | |||||||||
F crit | 3.0943 |
Source of Variation | SS | Df | MS | F | p-Value | F Crit |
---|---|---|---|---|---|---|
Distilliation | ||||||
Time | 1.78 × 109 | 1 | 1.78 × 109 | 172.867 | 1.8 × 10−12 | 4.260 |
Variant | 2,157,174 | 3 | 719,057.9 | 0.070 | 0.975 | 3.009 |
Interaction | 3,818,392 | 3 | 1,272,797 | 0.124 | 0.945 | 3.009 |
Ionometry | ||||||
Time | 1.7 × 109 | 1 | 1.7 × 109 | 155.733 | 5.5 × 10−12 | 4.260 |
Variant | 3,617,078 | 3 | 1,205,693 | 0.110 | 0.953 | 3.009 |
Interaction | 1,968,935 | 3 | 656,311.7 | 0.060 | 0.980 | 3.009 |
Spectrophotometry | ||||||
Time | 1.94 × 109 | 1 | 1.94 × 109 | 125.784 | 5.0 × 10−11 | 4.260 |
Variant | 5,059,375 | 3 | 1,686,458 | 0.109 | 0.954 | 3.009 |
Interaction | 1,034,510 | 3 | 344,836.7 | 0.022 | 0.995 | 3.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parašotas, I.; Juškienė, V.; Šlepetienė, A.; Kadžienė, G. Ammonium Content Determination by Different Analytical Methods in the Manure with Different Additives and Its Change During Storage. Agriculture 2025, 15, 59. https://doi.org/10.3390/agriculture15010059
Parašotas I, Juškienė V, Šlepetienė A, Kadžienė G. Ammonium Content Determination by Different Analytical Methods in the Manure with Different Additives and Its Change During Storage. Agriculture. 2025; 15(1):59. https://doi.org/10.3390/agriculture15010059
Chicago/Turabian StyleParašotas, Irmantas, Violeta Juškienė, Alvyra Šlepetienė, and Gitana Kadžienė. 2025. "Ammonium Content Determination by Different Analytical Methods in the Manure with Different Additives and Its Change During Storage" Agriculture 15, no. 1: 59. https://doi.org/10.3390/agriculture15010059
APA StyleParašotas, I., Juškienė, V., Šlepetienė, A., & Kadžienė, G. (2025). Ammonium Content Determination by Different Analytical Methods in the Manure with Different Additives and Its Change During Storage. Agriculture, 15(1), 59. https://doi.org/10.3390/agriculture15010059