Growth Dynamics of Lithuanian Blackface Lambs: Role of Crossbreeding with German Blackheaded Mutton Rams, Sex and Seasonality
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Danta, S. Lietuvos Juodgalvių Avių Veilslė ir Tolesnio Jos Tobulinimo Priemonės. Ph.D. Thesis, Institutes of Animal Science, Baisogala, Lithuania, 1962; pp. 40–56. [Google Scholar]
- Šveistienė, E. Lietuvos Avininkystė (Nuo Seniausių Laikų iki 1990 m); UAB Litera: Baisogala, Lithuania, 2010; pp. 17–31. [Google Scholar]
- Sveistiene, R.; Tapio, M. SNPs in Sheep: Characterization of Lithuanian Sheep populations. Animals 2021, 11, 2651. [Google Scholar] [CrossRef] [PubMed]
- Kupčinskas, T.; Stadalienė, I.; Šarkūnas, M.; Riškevičienė, V.; Várady, M.; Höglund, J.; Petkevičius, S. Prevalence of anthelmintic resistance on Lithuanian sheep farms assessed by in vitro methods. Acta Vet. Scand. 2015, 57, 88. [Google Scholar] [CrossRef] [PubMed]
- Šveistienė, R.; Razmaitė, V. Animal genetic resources in Lithuania. Slovak J. Anim. Sci. 2013, 46, 131–136. [Google Scholar]
- 3D-465 Dėl Lietuvos Ūkinių Gyvūnų Genetinių Išteklių Išsaugojimo Programos Administravimo Taisyklių Patvirtinimo. Available online: https://e-seimas.lrs.lt/portal/legalActEditions/lt/TAD/TAIS.326502 (accessed on 12 November 2024).
- Zapasnikiene, B. The prospects of sheep breeds raised in Lithuania. Vet. Med. Zoot. 2001, 15, 131–134. [Google Scholar]
- Stock, J.; Bennewitz, J.; Hinrichs, D.; Wellmann, R. A review of genomic models for the analysis of livestock crossbred data. Front. Genet. 2020, 11, 568. [Google Scholar] [CrossRef]
- Van Arendonk, J.A.M. The role of reproductive etechnologies in breeding schemes for livestock populations in developing countries. Livest. Sci. 2011, 136, 29–37. [Google Scholar] [CrossRef]
- Freyer, G.; Konig, S.; Fischer, B.; Bergfeld, U.; Cassell, B.G. Invited review: Crossbreeding in dairy cattle from a German perspective of the past and today. J. Dairy Sci. 2008, 91, 3725–3743. [Google Scholar] [CrossRef]
- Trapina, I.; Kairisa, D.; Paramonova, N. Analysing the Cost of Concentrated Feed and Income from Meat in Relation to Relative Growth Rate and Kleiber’s Ratio in Intensive Fattening of Latvian Dark-Headed Lambs. Agriculture 2024, 14, 593. [Google Scholar] [CrossRef]
- Abdoli, R.; Zamani, P.; Mirhoseini, S.Z.; Ghavi Hossein-Zadeh, N.; Nadri, S. A review on prolificacy genes in sheep. Reprod. Dom. Anim. 2016, 51, 631–637. [Google Scholar] [CrossRef]
- Notter, D.R. Effects of ewe age and season of lambing on prolificacy in US Targhee, Suffolk, and Polypay sheep. Small Rumin. Res. 2000, 38, 1–7. [Google Scholar] [CrossRef]
- Murphy, T.W.; Keele, J.W.; Freking, B.A. Genetic and nongenetic factors influencing ewe prolificacy and lamb body weight in a closed Romanov flock. J. Anim. Sci. 2020, 98, skaa283. [Google Scholar] [CrossRef] [PubMed]
- Tornero, C.; Balasse, M.; Bréhard, S.; Carrère, I.; Fiorillo, D.; Guilaine, J.; Vigne1, J.-D.; Manen, C. Early evidence of sheep lambing de-seasoning in the Western Mediterranean in the sixth millennium BCE. Sci. Rep. 2020, 10, 12798. [Google Scholar] [CrossRef] [PubMed]
- Kern, G.; Kemper, N.; Traulsen, I.; Henze, C.; Stamer, E.; Krieter, J. Analysis of different effects on longevity in four sheep breeds of northern Germany. Small Rumin. Res. 2010, 90, 71–74. [Google Scholar] [CrossRef]
- Gootwine, E. Invited review: Opportunities for genetic improvement toward higher prolificacy in sheep. Small Rumin. Res. 2020, 186, 106090. [Google Scholar] [CrossRef]
- Gudra, D.; Valdovska, A.; Kairisa, D.; Galina, D.; Jonkus, D.; Ustinova, M.; Viksne, K.; Kalnina, I.; Fridmanis, D. Genomic diversity of the locally developed Latvian Darkheaded sheep breed. Heliyon 2024, 10, e31455. [Google Scholar] [CrossRef]
- Ozolins, I. Characteristics of Sheep Farming Sector and Its Development in LATVIA; Economic Science for Rural Development No. 34; Latvia University of Life Sciences and Technologies: Jelgava, Latvia, 2014; ISSN 1691-3078. ISBN 978-9934-8466-1-8. [Google Scholar]
- Ekiz, B.; Altinel, A. The Growth and Survival Characteristics of Lambs Produced by Commercial Crossbreeding Kıvırcık Ewes with F_2 Rams with the German Black-Headed Mutton Genotype. Turk. J. Vet. Anim. Sci. 2006, 30, 507–512. Available online: https://journals.tubitak.gov.tr/veterinary/vol30/iss6/1 (accessed on 12 November 2024).
- Ceyhan, A.; Sezenler, T.; Erdoğan, İ.; Torun, O. Improvement studies on mutton sheep for Marmara region conditions: I. fertility, lamb survival, and growth traits of lambs. Turk. J. Vet. Anim. Sci. 2011, 35, 79–86. [Google Scholar] [CrossRef]
- Gavojdian, D.; Sauer, M.; Pacala, N.; Padeanu, I.; Voia, S. Improving growth rates in Turcana Indigenous sheep breed using German Blackheaded Mutton rams. Scientific Papers: Anim. Sci. Biotechnol. 2011, 44, 379–382. [Google Scholar]
- Duman, L.; Răducuță, I.; Ilişiu, E.; Marin, A.; Ciurea, A.-M.; Dreve, V.; Bucătaru, T.; Călin, I. improvement of meat lamb production in Mures county by crossbreeding of local TsigaI breed with German Blackheaded breed. Sci. Papers. Series D Anim. Sci. 2017, LX, 226–230. [Google Scholar]
- Justinski, C.; Wilkens, J.; Distl, O. Inbreeding Depression and Purging for Meat Performance Traits in German Sheep Breeds. Animals 2023, 13, 3547. [Google Scholar] [CrossRef]
- Ajafar, M.H.; Kadhim, A.H.; AL-Thuwaini, T.M. The reproductive traits of sheep and their influencing factors. Rev. Agric. Sci. 2022, 10, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Gül, S.; Keskin, M.; Biçer, O.; Gündüz, Z.; Behrem, S. Effects of different lambing season on some reproductive characteristics of ewes and growth performance of lambs in Awassi sheep. Livest. Stud. 2020, 60, 32–36. [Google Scholar] [CrossRef]
- Drobik, W.; Martyniuk, E. Factors affecting prolificacy and lambs rearing results in Olkuska sheep population. Ann. Warsaw Univ. Life Sci. 2014, 53, 85–94. [Google Scholar]
- Bartlewski, P.M.; Baby, T.E.; Giffin, J.L. Reproductive cycles in sheep. Anim. Reprod. Sci. 2011, 124, 259–268. [Google Scholar] [CrossRef]
- Gómez-Brunet, A.; Santiago-Moreno, J.; Toledano-Diaz, A.; López-Sebastián, A. Reproductive seasonality and its control in Spanish sheep and goats. Trop. Subtrop. Agroecosystems 2012, 15 (Suppl. 1), S47–S70. [Google Scholar]
- Zapasnikienė, B. The effect of age of ewes and lambing season on litter size and weight of lambs. Vet. Med. Zoot. 2002, 19, 112–115. [Google Scholar]
- Zapasnikienė, B. Effects of lambing season on ewe fertility and progeny weight. Gyvulininkystė 2009, 53, 17–29. [Google Scholar]
- Wilke, E. Breeding aims and development of the German Blackheaded Mutton sheep. Tierzuchter 1978, 30, 284–285. [Google Scholar]
- Notter, D.R. Genetic aspects of reproduction in sheep. Reprod. Dom. Anim. 2008, 43 (Suppl. S2), 122–128. [Google Scholar] [CrossRef]
- Casas, E.; Freking, B.A.; Leymaster, K.A. Evaluation of Dorset, Finnsheep, Romanov, Texel, and Montadale breeds of sheep: V. Reproduction of F1 ewes in spring mating seasons. J. Anim. Sci. 2005, 83, 2743–2751. [Google Scholar] [CrossRef]
- Đuričić, D.; Benić, M.; Žura Žaja, I.; Valpotić, H.; Samardžija, M. Influence of season, rainfall and air temperature on the reproductive efficiency in Romanov sheep in Croatia. Int. J. Biometeorol. 2019, 63, 817–824. [Google Scholar] [CrossRef]
Genotype | Litter Size | N | % | Birth Weight | ||
---|---|---|---|---|---|---|
Mean ± SE | Min | Max | ||||
LBF | 1 | 2866 | 51.62 | 4.32 ± 0.02 | 4.29 | 4.35 |
2 | 2575 | 47.64 | 3.90 ± 0.02 | 3.86 | 3.93 | |
3 | 36 | 0.73 | 3.58 ± 0.15 | 3.29 | 3.87 | |
6.25 GBM | 1 | 62 | 80.45 | 4.50 ± 0.11 | 4.27 | 4.72 |
2 | 23 | 19.55 | 3.88 ± 0.19 | 3.52 | 4.25 | |
3 | - | - | - | - | - | |
12.5 GBM | 1 | 142 | 62.3 | 4.28 ± 0.08 | 4.14 | 4.43 |
2 | 86 | 37.7 | 3.82 ± 0.10 | 3.63 | 4.01 | |
3 | - | - | - | - | - | |
25 GBM | 1 | 90 | 63.83 | 3.95 ± 0.09 | 3.76 | 4.13 |
2 | 51 | 36.17 | 3.65 ± 0.13 | 3.41 | 3.90 | |
3 | - | - | ||||
50 GBM | 1 | 38 | 61.29 | 4.04 ± 0.15 | 3.76 | 4.33 |
2 | 24 | 38.71 | 3.93 ± 0.18 | 3.57 | 4.29 | |
3 | - | - | - | - | - |
Weight | Genotype | Litter Size | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
LBF (n = 4925) | 6.25%GBM (n = 85) | 12.5% GBM (n = 227) | 25% GBM (n = 141) | 50% GBM (n = 62) | 1 (n = 2866) | 2 (n = 2574) | G | LS | |
At birth | 4.0 ± 0.10 | 4.3 c ± 0.16 | 4.0 d,a ± 0.09 | 3.7 b ± 0.14 | 4.00 ± 0.16 | 4.2 ± 0.08 | 3.8 ± 0.08 | 0.155 | <0.001 |
2 months | 16.7 e ± 0.30 | 16.5 e ± 0.91 | 15.1 e ± 0.56 | 11.6 f ± 0.63 | 13.7 ± 2.50 | 15.9 ± 0.48 | 13.9 ± 0.42 | <0.001 | 0.041 |
3 months | 19.4 ± 0.59 | 20.1 ± 0.59 | 20.4 ± 0.47 | 19.0 ± 1.15 | 21.5 ± 1.25 | 20.7 ± 0.41 | 19.0 ± 0.47 | 0.630 | 0.141 |
4 months | 22.4 c ± 0.66 | 22.5 ± 1.97 | 25.1 a,d ± 0.74 | 22.0 b ± 0.99 | 20.1 b ± 2.27 | 23.5 ± 0.67 | 21.9 ± 0.64 | 0.013 | 0.206 |
8 months | 37.8 a ± 0.84 | 40.0 ± 3.42 | 39.7 d,a ± 0.85 | 41.7 b ± 1.25 | 41.5 ± 2.34 | 40.3 ± 0.84 | 39.0 ± 0.81 | 0.033 | 0.683 |
12 months | 41.2 f ± 0.72 | 53.8 e ± 1.58 | 45.8 f ± 0.71 | 44.6 f ± 1.39 | 40.8 f ± 2.90 | 45.7 ± 0.57 | 43.2 b ± 0.80 | <0.001 | 0.108 |
Weight | Season | Sex | p-Value | ||||
---|---|---|---|---|---|---|---|
Winter (n = 3892) | Spring (n = 1484) | Summer (n = 62) | Male (n = 2647) | Female (n = 2793) | Season | Sex | |
At birth | 4.0 ± 0.05 | 4.1 ± 0.09 | 4.1 ± 0.25 | 4.1 ± 0.12 | 3.9 ± 0.12 | 0.901 | 0.521 |
At 2 months | 14.6 ± 0.49 | 14.6 ± 0.48 | 17.1 ± 0.93 | 15.1 ± 0.44 | 15.1 ± 0.44 | 0.174 | 0.556 |
At 3 months | 20.9 e ± 0.29 | 19.1 f ± 0.38 | 18.9 ± 1.53 | 20.2 ± 0.40 | 19.6 ± 0.47 | 0.014 | 0.776 |
At 4 months | 22.3 ± 0.61 | 22.9 ± 0.76 | 23.2 ± 1.34 | 22.5 ± 0.73 | 23.1 ± 0.56 | 0.687 | 0.582 |
At 8 months | 40.9 ± 0.67 | 37.7 ± 1.10 | 41.8 ± 2.34 | 41.5 ± 0.80 | 37.9 ± 0.92 | 0.182 | <0.001 |
At 12 months | 44.9 ± 0.67 | 44.3 ± 0.67 | 42.4 ± 2.41 | 46.7 ± 0.74 | 42.5 ± 0.66 | 0.135 | 0.147 |
Weight | Genotype × Litter Size | Genotype × Sex | Genotype × Season | Season × Litter Size | Season × Sex |
---|---|---|---|---|---|
At birth | 0.612 | 0.905 | 0.701 | 0.469 | 0.731 |
At 2 months | 0.863 | 0.187 | 0.301 | 0.861 | 0.970 |
At 3 months | 0.458 | 0.948 | 0.107 | 0.023 | 0.710 |
At 4 months | 0.137 | 0.422 | 0.032 | 0.788 | 0.703 |
At 8 months | 0.230 | 0.010 | 0.105 | 0.580 | 0.008 |
At 12 months | 0.488 | 0.189 | 0.020 | 0.229 | 0.611 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šveistienė, R.; Razmaitė, V. Growth Dynamics of Lithuanian Blackface Lambs: Role of Crossbreeding with German Blackheaded Mutton Rams, Sex and Seasonality. Agriculture 2025, 15, 31. https://doi.org/10.3390/agriculture15010031
Šveistienė R, Razmaitė V. Growth Dynamics of Lithuanian Blackface Lambs: Role of Crossbreeding with German Blackheaded Mutton Rams, Sex and Seasonality. Agriculture. 2025; 15(1):31. https://doi.org/10.3390/agriculture15010031
Chicago/Turabian StyleŠveistienė, Rūta, and Violeta Razmaitė. 2025. "Growth Dynamics of Lithuanian Blackface Lambs: Role of Crossbreeding with German Blackheaded Mutton Rams, Sex and Seasonality" Agriculture 15, no. 1: 31. https://doi.org/10.3390/agriculture15010031
APA StyleŠveistienė, R., & Razmaitė, V. (2025). Growth Dynamics of Lithuanian Blackface Lambs: Role of Crossbreeding with German Blackheaded Mutton Rams, Sex and Seasonality. Agriculture, 15(1), 31. https://doi.org/10.3390/agriculture15010031