Development and Experimentation of a Real-Time Greenhouse Positioning System Based on IUKF-UWB
Abstract
:1. Introduction
- (1)
- A real-time greenhouse IoT positioning system with a three-tier architecture is designed to upload the collected ranging information to the cloud for processing and computation in order to reduce the energy consumption of distributed wireless IoT terminals in greenhouses and to enhance the system’s life cycle.
- (2)
- Using DS-TWR to obtain real-time distance information between the anchor and the tags carried by the robot, and designing the communication type identification method to recognize the ranging communication type of the UWB in the current state.
- (3)
- Based on the ranging deviation propagation characteristics of UWB signals in a greenhouse environment, IUKF is proposed to construct the error compensation function in the non-line-of-sight state in order to improve the positioning accuracy of the localization system in the NLOS situation.
2. Materials and Methods
2.1. System Composition and Design
2.2. UWB Ranging Correction Model
2.2.1. UWB Communication State Discrimination Method
2.2.2. LOS Correction Model
2.2.3. NLOS Correction Model
2.3. Remote Operation Interface
3. Results
3.1. Test Environment and Equipment
3.2. Analysis of Experiment Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, L.; Chen, H.; Xu, J. Research on multi-sensor positioning and number identification method of greenhouse based on hall effect. Comput. Electron. Agric. 2023, 209, 107818. [Google Scholar] [CrossRef]
- Huang, Z.; Jacky, T.L.; Zhao, X.; Fukuda, H.; Shiigi, T.; Nakanishi, H.; Suzuki, T.; Ogawa, Y.; Kondo, N. Position and orientation measurement system using spread spectrum sound for greenhouse robots. Biosyst. Eng. 2020, 198, 50–62. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, S.; Yi, Z.; Zhang, M.; Lv, X. Autonomous navigation system of greenhouse mobile robot based on 3D Lidar and 2D Lidar SLAM. Front. Plant Sci. 2022, 13, 815218. [Google Scholar] [CrossRef] [PubMed]
- Grimstad, L.; Zakaria, R.; Le, T.D.; From, P.J. A novel autonomous robot for greenhouse applications. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1–9. [Google Scholar]
- Xie, B.; Jin, Y.; Faheem, M.; Gao, W.; Liu, J.; Jiang, H.; Cai, L.; Li, Y. Research progress of autonomous navigation technology for multi-agricultural scenes. Comput. Electron. Agric. 2023, 211, 107963. [Google Scholar] [CrossRef]
- Qun, R. Intelligent control technology of agricultural greenhouse operation robot based on fuzzy PID path tracking algorithm. INMATEH-Agric. Eng. 2020, 62, 181–190. [Google Scholar] [CrossRef]
- Yao, L.; Hu, D.; Zhao, C.; Yang, Z.; Zhang, Z. Wireless positioning and path tracking for a mobile platform in greenhouse. Int. J. Agric. Biol. Eng. 2021, 14, 216–223. [Google Scholar] [CrossRef]
- Huang, Y.; Fu, J.; Xu, S.; Han, T.; Liu, Y. Research on Integrated Navigation System of Agricultural Machinery Based on RTK-BDS/INS. Agriculture 2022, 12, 1169. [Google Scholar] [CrossRef]
- Aslan, M.F.; Durdu, A.; Sabanci, K.; Ropelewska, E.; Gültekin, S.S. A comprehensive survey of the recent studies with UAV for precision agriculture in open fields and greenhouses. Appl. Sci. 2022, 12, 1047. [Google Scholar] [CrossRef]
- Salamah, A.H.; Tamazin, M.; Sharkas, M.A.; Khedr, M. An enhanced WiFi indoor localization system based on machine learning. In Proceedings of the 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain, 4–7 October 2016; pp. 1–8. [Google Scholar]
- Rodrigues, B.; Halter, C.; Franco, M.; Scheid, E.J.; Killer, C.; Stiller, B. BluePIL: A Bluetooth-based PassIve localization method. In Proceedings of the 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), Bordeaux, France, 17–21 May 2021; pp. 28–36. [Google Scholar]
- Bianchi, V.; Ciampolini, P.; De Munari, I. RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes. IEEE Trans. Instrum. Meas. 2018, 68, 566–575. [Google Scholar] [CrossRef]
- Li, M.-G.; Zhu, H.; You, S.-Z.; Tang, C.-Q. UWB-based localization system aided with inertial sensor for underground coal mine applications. IEEE Sens. J. 2020, 20, 6652–6669. [Google Scholar] [CrossRef]
- Poulose, A.; Han, D.S. UWB indoor localization using deep learning LSTM networks. Appl. Sci. 2020, 10, 6290. [Google Scholar] [CrossRef]
- Ridolfi, M.; Van de Velde, S.; Steendam, H.; De Poorter, E. Analysis of the scalability of UWB indoor localization solutions for high user densities. Sensors 2018, 18, 1875. [Google Scholar] [CrossRef] [PubMed]
- Long, Z.; Xiang, Y.; Lei, X.; Li, Y.; Hu, Z.; Dai, X. Integrated indoor positioning system of greenhouse robot based on uwb/imu/odom/lidar. Sensors 2022, 22, 4819. [Google Scholar] [CrossRef] [PubMed]
- Ridolfi, M.; Kaya, A.; Berkvens, R.; Weyn, M.; Joseph, W.; Poorter, E.D. Self-calibration and collaborative localization for UWB positioning systems: A survey and future research directions. ACM Comput. Surv. (CSUR) 2021, 54, 1–27. [Google Scholar] [CrossRef]
- Bagagiolo, G.; Matranga, G.; Cavallo, E.; Pampuro, N. Greenhouse robots: Ultimate solutions to improve automation in protected cropping systems—A review. Sustainability 2022, 14, 6436. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, H.; Zhou, M.; Zhu, J.; Chen, J.; Li, B. Design and Experiment of an Autonomous Navigation System for a Cattle Barn Feed-Pushing Robot Based on UWB Positioning. Agriculture 2024, 14, 694. [Google Scholar] [CrossRef]
- Kong, Q. NLOS Identification for UWB Positioning Based on IDBO and Convolutional Neural Networks. IEEE Access 2023, 11, 144705–144721. [Google Scholar] [CrossRef]
- Xiangze, L.; Xiang, W.; Caixin, L.; Jing, G.; Jinlin, X.; Enlai, Z. Location information collection and optimization for agricultural vehicle based on UWB. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2018, 49, 23–29. [Google Scholar]
- Ma, D.; Zhao, K.; Zheng, Z.; Yu, C.; Wang, Y.; Yao, Y. Indoor positioning with adaptive wavelet denoise enhancement and trend surface analysis based multipath map. IEEE Sens. J. 2022, 22, 15191–15198. [Google Scholar] [CrossRef]
- Liu, C.; Yang, J.; Wang, F. Joint TDOA and AOA location algorithm. J. Syst. Eng. Electron. 2013, 24, 183–188. [Google Scholar] [CrossRef]
- Taponecco, L.; D’Amico, A.A.; Mengali, U. Joint TOA and AOA estimation for UWB localization applications. IEEE Trans. Wirel. Commun. 2011, 10, 2207–2217. [Google Scholar] [CrossRef]
- Bouza, M.; Altieri, A.O.; Galarza, C.G. UWB target classification using SVM. In Proceedings of the 2018 IEEE Biennial Congress of Argentina (ARGENCON), San Miguel de Tucuman, Argentina, 6–8 June 2018; pp. 1–8. [Google Scholar]
- Zaarour, N.; Kandil, N.; Hakem, N.; Despins, C. Comparative experimental study on modeling the path loss of an UWB channel in a mine environment using MLP and RBF neural networks. In Proceedings of the 2012 International Conference on Wireless Communications in Underground and Confined Areas, Clermont-Ferrand, France, 28–30 August 2012; pp. 1–6. [Google Scholar]
- Jiang, C.; Shen, J.; Chen, S.; Chen, Y.; Liu, D.; Bo, Y. UWB NLOS/LOS classification using deep learning method. IEEE Commun. Lett. 2020, 24, 2226–2230. [Google Scholar] [CrossRef]
- Cui, B.; Chen, W.; Weng, D.; Wei, X.; Sun, Z.; Zhao, Y.; Liu, Y. Observability-Constrained Resampling-Free Cubature Kalman Filter for GNSS/INS with Measurement Outliers. Remote Sens. 2023, 15, 4591. [Google Scholar] [CrossRef]
- Tang, P.; Liang, Q.; Li, H.; Pang, Y. Application of Internet-of-Things Wireless Communication Technology in Agricultural Irrigation Management: A Review. Sustainability 2024, 16, 3575. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Z.; Xu, Q.; Yang, C. Comprehensive Evaluations of NLOS and Linearization Errors on UWB Positioning. Appl. Sci. 2023, 13, 6187. [Google Scholar] [CrossRef]
- Qiao, D.; Zhang, Z.; Liu, F.; Sun, B. Location optimization model of a greenhouse sensor based on multisource data fusion. Complexity 2022, 1, 3258549. [Google Scholar] [CrossRef]
- Khalaf, W.; Chouaib, I.; Wainakh, M. Novel adaptive UKF for tightly-coupled INS/GPS integration with experimental validation on an UAV. Gyroscopy Navig. 2017, 8, 259–269. [Google Scholar] [CrossRef]
- Tan, C.; Cai, Y.; Wang, H.; Sun, X.; Chen, L. Vehicle State Estimation Combining Physics-Informed Neural Network and Unscented Kalman Filtering on Manifolds. Sensors 2023, 23, 6665. [Google Scholar] [CrossRef]
- Yang, X.; Wang, J.; Song, D.; Feng, B.; Ye, H. A novel NLOS error compensation method based IMU for UWB indoor positioning system. IEEE Sens. J. 2021, 21, 11203–11212. [Google Scholar] [CrossRef]
Target Points | Longitudinal Deviation | Lateral Deviation | |||||
---|---|---|---|---|---|---|---|
Max (m) | MAE (m) | RMSE (m) | Max (m) | MAE (m) | RMSE (m) | ||
Tag | 1 | 0.153 | 0.094 | 0.101 | 0.155 | 0.097 | 0.106 |
2 | 0.138 | 0.090 | 0.094 | 0.146 | 0.093 | 0.097 | |
3 | 0.125 | 0.072 | 0.076 | 0.128 | 0.070 | 0.079 | |
4 | 0.144 | 0.096 | 0.104 | 0.141 | 0.093 | 0.098 | |
5 | 0.159 | 0.097 | 0.103 | 0.138 | 0.098 | 0.092 |
Positioning Method | Max (m) | MAE (m) | RMSE (m) |
---|---|---|---|
LS | 0.684 | 0.383 | 0.416 |
EKF | 0.312 | 0.214 | 0.235 |
UKF | 0.264 | 0.183 | 0.203 |
IUKF | 0.205 | 0.114 | 0.134 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Gao, H.; Zhao, M.; Mao, H. Development and Experimentation of a Real-Time Greenhouse Positioning System Based on IUKF-UWB. Agriculture 2024, 14, 1479. https://doi.org/10.3390/agriculture14091479
Li M, Gao H, Zhao M, Mao H. Development and Experimentation of a Real-Time Greenhouse Positioning System Based on IUKF-UWB. Agriculture. 2024; 14(9):1479. https://doi.org/10.3390/agriculture14091479
Chicago/Turabian StyleLi, Minghua, Hongyan Gao, Mingxue Zhao, and Hanping Mao. 2024. "Development and Experimentation of a Real-Time Greenhouse Positioning System Based on IUKF-UWB" Agriculture 14, no. 9: 1479. https://doi.org/10.3390/agriculture14091479
APA StyleLi, M., Gao, H., Zhao, M., & Mao, H. (2024). Development and Experimentation of a Real-Time Greenhouse Positioning System Based on IUKF-UWB. Agriculture, 14(9), 1479. https://doi.org/10.3390/agriculture14091479