Remediation of Pb-, Zn-, Cu-, and Cd-Contaminated Soil in a Lead–Zinc Mining Area by Co-Cropping Ilex cornuta and Epipremnum aureum with Illite Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Samples
2.2. Experimental Design
2.3. Soil Physicochemical Properties
2.4. Plant Growth and Metal Accumulation
2.5. Statistical Analysis
3. Results
3.1. Soil Properties
3.2. Heavy Metal Cd Availability and Fractions
3.3. Heavy Metal Content in Plants
3.4. Bioconcentration Factor and Translocation Factor of Plants
3.5. Physiological Processes and Growth Parameters of Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kan, X.; Dong, Y.; Feng, L.; Zhou, M.; Hou, H. Contamination and Health Risk Assessment of Heavy Metals in China’s Lead-Zinc Mine Tailings: A Meta-Analysis. Chemosphere 2021, 267, 128909. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, E.M.; Taherian, M.; Almalki, S.G.; Asban, P.; Kareem, A.K.; Alhachami, F.R.; Almulla, A.F.; Romero-Parra, R.M.; Jawhar, Z.H.; Kiani, F.; et al. Relationship between Exposure to Heavy Metals on the Increased Health Risk and Carcinogenicity of Urinary Tract (Kidney and Bladder). Rev. Environ. Health, 2023; advance online publication. [Google Scholar] [CrossRef]
- Farkhondeh, T.; Naseri, K.; Esform, A.; Aramjoo, H.; Naghizadeh, A. Drinking Water Heavy Metal Toxicity and Chronic Kidney Diseases: A Systematic Review. Rev. Environ. Health 2021, 36, 359–366. [Google Scholar] [CrossRef]
- He, B.; Yun, Z.; Shi, J.; Jiang, G. Research Progress of Heavy Metal Pollution in China: Sources, Analytical Methods, Status, and Toxicity. Chin. Sci. Bull. 2013, 58, 134–140. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, X.; Xu, Y.; Qin, X.; Huang, Q.; Wang, L.; Sun, Y. Remediation of Heavy Metal-Polluted Agricultural Soils Using Clay Minerals: A Review. Pedosphere 2017, 27, 193–204. [Google Scholar] [CrossRef]
- Chiu, A.C.F.; Akesseh, R.; Moumouni, I.M.; Xiao, Y. Laboratory Assessment of Rice Husk Ash (RHA) in the Solidification/Stabilization of Heavy Metal Contaminated Slurry. J. Hazard. Mater. 2019, 371, 62–71. [Google Scholar] [CrossRef]
- Galati, S.; Gulli, M.; Giannelli, G.; Furini, A.; DalCorso, G.; Fragni, R.; Buschini, A.; Visioli, G. Heavy Metals Modulate DNA Compaction and Methylation at CpG Sites in the Metal Hyperaccumulator Arabidopsis halleri. Environ. Mol. Mutagen. 2021, 62, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Siyar, R.; Ardejani, F.D.; Norouzi, P.; Maghsoudy, S.; Yavarzadeh, M.; Taherdangkoo, R.; Butscher, C. Phytoremediation Potential of Native Hyperaccumulator Plants Growing on Heavy Metal-Contaminated Soil of Khatunabad Copper Smelter and Refinery, Iran. Water 2022, 14, 3597. [Google Scholar] [CrossRef]
- Cao, D.; Zhang, H.; Wang, Y.; Zheng, L. Accumulation and Distribution Characteristics of Zinc and Cadmium in the Hyperaccumulator Plant Sedum Plumbizincicola. Bull. Environ. Contam. Toxicol. 2014, 93, 171–176. [Google Scholar] [CrossRef]
- Fayiga, A.O.; Saha, U.K. Arsenic Hyperaccumulating Fern: Implications for Remediation of Arsenic Contaminated Soils. Geoderma 2016, 284, 132–143. [Google Scholar] [CrossRef]
- Abdulkadir, S.; Chhimwal, M.; Srivastava, R.K. Remediation of Kalyani River Water Using Plant-Bacterial Cell Synergism. Water Supply 2022, 22, 2573–2585. [Google Scholar] [CrossRef]
- Singh, H.; Tripathi, V.; Alka, A.; Joshi, H.C.; Kumar, G.; Pant, G.; Hossain, K.; Ahmad, A.; Alshammari, M.B. Water Hyacinth (Eichhornia crassipes and Epipremnum aureum)—A Potent Tool for the Removal of Cadmium and Chromium from Industrial Discharges. Desalination Water Treat. 2023, 315, 432–445. [Google Scholar] [CrossRef]
- Novikau, R.; Lujaniene, G. Adsorption Behaviour of Pollutants: Heavy Metals, Radionuclides, Organic Pollutants, on Clays and Their Minerals (Raw, Modified and Treated): A Review. J. Environ. Manag. 2022, 309, 114685. [Google Scholar] [CrossRef] [PubMed]
- Otunola, B.O.; Aghoghovwia, M.P.; Thwala, M.; Gomez-Arias, A.; Jordaan, R.; Hernandez, J.C.; Ololade, O.O. Influence of Clay Mineral Amendments Characteristics on Heavy Metals Uptake in Vetiver Grass (Chrysopogon zizanioides L. Roberty) and Indian Mustard (Brassica juncea L. Czern). Sustainability 2022, 14, 5856. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L.; Yin, J.; Qi, L.; Feng, Y. Combined Amendments of Nano-Hydroxyapatite Immobilized Cadmium in Contaminated Soil-Potato (Solanum tuberosum L.). System. Bull. Environ. Contam. Toxicol. 2018, 100, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Li, H.; Yan, Z.; Zhou, Y.; Bai, L.; Zhang, C.; Wang, X.; Chen, G. In Situ Immobilisation of Toxic Metals in Soil Using Maifan Stone and Illite/Smectite Clay. Sci. Rep. 2018, 8, 4618. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Li, S.; Islam, E.; Chen, J.; Wu, J.; Ye, Z.; Peng, D.; Yan, W.; Lu, K. Lead Accumulation and Tolerance of Moso Bamboo (Phyllostachys pubescens) Seedlings: Applications of Phytoremediation. J. Zhejiang Univ.-Sci. B 2015, 16, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Otunola, B.O.; Ololade, O.O. A Review on the Application of Clay Minerals as Heavy Metal Adsorbents for Remediation Purposes. Environ. Technol. Innov. 2020, 18, 100692. [Google Scholar] [CrossRef]
- Uddin, M.K. A Review on the Adsorption of Heavy Metals by Clay Minerals, with Special Focus on the Past Decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Zhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H. Adsorbents Based on Montmorillonite for Contaminant Removal from Water: A Review. Appl. Clay Sci. 2016, 123, 239–258. [Google Scholar] [CrossRef]
- Ure, A.M.; Quevauviller, P.H.; Muntau, H.; Griepink, B. Speciation of Heavy Metals in Soils and Sediments. An Account of the Improvement and Harmonization of Extraction Techniques Undertaken Under the Auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar] [CrossRef]
- Wang, Q.; Liang, X.; Dong, Y.; Xu, L.; Zhang, X.; Kong, J.; Liu, S. Effects of Exogenous Salicylic Acid and Nitric Oxide on Physiological Characteristics of Perennial Ryegrass Under Cadmium Stress. J. Plant Growth Regul. 2013, 32, 721–731. [Google Scholar] [CrossRef]
- Li, X.; Cao, Y.; Xiao, J.; Salam, M.M.A.; Chen, G. Bamboo Biochar Greater Enhanced Cd/Zn Accumulation in Salix psammophila under Non-Flooded Soil Compared with Flooded. Biochar 2022, 4, 7. [Google Scholar] [CrossRef]
- Hong, C.O.; Owens, V.N.; Kim, Y.G.; Lee, S.M.; Park, H.C.; Kim, K.K.; Son, H.J.; Suh, J.M.; Kim, P.J. Soil pH Effect on Phosphate Induced Cadmium Precipitation in Arable Soil. Bull. Environ. Contam. Toxicol. 2014, 93, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Shafi, M.; Penttinen, P.; Hou, S.; Wang, X.; Ma, J.; Zhong, B.; Guo, J.; Xu, M.; Ye, Z.; et al. Bioavailability of Heavy Metals in Contaminated Soil as Affected by Different Mass Ratios of Biochars. Environ. Technol. 2020, 41, 3329–3337. [Google Scholar] [CrossRef] [PubMed]
- El Mouden, A.; El Messaoudi, N.; El Guerraf, A.; Bouich, A.; Mehmeti, V.; Lacherai, A.; Jada, A.; Americo-Pinheiro, J.H.P. Removal of Cadmium and Lead Ions from Aqueous Solutions by Novel Dolomite-quartz@Fe3O4 Nanocomposite Fabricated as Nanoadsorbent. Environ. Res. 2023, 225, 115606. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Mao, Q.; Cao, L.Y.; Sun, H.; Xie, X.; Luo, S. Insight into the Adaptability of Dominant Plant Indigofera Amblyantha Craib for Ecological Restoration of Rock Slopes in Stone Coal Mine. Adsorpt. Sci. Technol. 2021, 2021, 3827991. [Google Scholar] [CrossRef]
- Zou, J.; Song, F.; Lu, Y.; Zhuge, Y.; Niu, Y.; Lou, Y.; Pan, H.; Zhang, P.; Pang, L. Phytoremediation Potential of Wheat Intercropped with Different Densities of Sedum Plumbizincicola in Soil Contaminated with Cadmium and Zinc. Chemosphere 2021, 276, 130223. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Qin, J.; Li, J.; Lai, Z.; Li, H. Upland Rice Intercropping with Solanum Nigrum Inoculated with Arbuscular Mycorrhizal Fungi Reduces Grain Cd While Promoting Phytoremediation of Cd-Contaminated Soil. J. Hazard. Mater. 2021, 406, 124325. [Google Scholar] [CrossRef]
- Saad, R.F.; Echevarria, G.; Rodriguez-Garrido, B.; Kidd, P.; Benizri, E. A Two-Year Field Study of Nickel-Agromining Using Odontarrhena chalcidica Co-Cropped with a Legume on an Ultramafic Soil: Temporal Variation in Plant Biomass, Nickel Yields and Taxonomic and Bacterial Functional Diversity. Plant Soil 2021, 461, 471–488. [Google Scholar] [CrossRef]
- Vergara Cid, C.; Pignata, M.L.; Rodriguez, J.H. Effects of Co-Cropping on Soybean Growth and Stress Response in Lead-Polluted Soils. Chemosphere 2020, 246, 125833. [Google Scholar] [CrossRef] [PubMed]
- Hamidpour, M.; Khadivi, E.; Afyuni, M. Residual Effects of Biosolids and Farm Manure on Speciation and Plant Uptake of Heavy Metals in a Calcareous Soil. Environ Earth Sci 2016, 75, 1037. [Google Scholar] [CrossRef]
- Wen, J.; Yi, Y.; Zeng, G. Effects of Modified Zeolite on the Removal and Stabilization of Heavy Metals in Contaminated Lake Sediment Using BCR Sequential Extraction. J. Environ. Manag. 2016, 178, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Park, S.M.; Lee, J.; Jeon, E.K.; Kang, S.; Alam, M.S.; Tsang, D.C.W.; Alessi, D.S.; Baek, K. Adsorption Characteristics of Cesium on the Clay Minerals: Structural Change under Wetting and Drying Condition. Geoderma 2019, 340, 49–54. [Google Scholar] [CrossRef]
- Fellah, M.; Hezil, N.; Guerfi, K.; Djellabi, R.; Montagne, A.; Iost, A.; Borodin, K.; Obrosov, A. Mechanistic Pathways of Cationic and Anionic Surfactants Sorption by Kaolinite in Water. Environ. Sci. Pollut. Res. 2021, 28, 7307–7321. [Google Scholar] [CrossRef] [PubMed]
- Sen Gupta, S.; Bhattacharyya, K.G. Adsorption of Heavy Metals on Kaolinite and Montmorillonite: A Review. Phys. Chem. Chem. Phys. 2012, 14, 6698–6723. [Google Scholar] [CrossRef] [PubMed]
- Bahabadi, F.N.; Farpoor, M.H.; Mehrizi, M.H. Removal of Cd, Cu and Zn Ions from Aqueous Solutions Using Natural and Fe Modified Sepiolite, Zeolite and Palygorskite Clay Minerals. Water Sci. Technol. 2017, 75, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Sdiri, A.T.; Higashi, T.; Jamoussi, F. Adsorption of Copper and Zinc onto Natural Clay in Single and Binary Systems. Int. J. Environ. Sci. Technol. 2014, 11, 1081–1092. [Google Scholar] [CrossRef]
- Ding, Y.Z.; Song, Z.G.; Feng, R.W.; Guo, J.K. Interaction of Organic Acids and pH on Multi-Heavy Metal Extraction from Alkaline and Acid Mine Soils. Int. J. Environ. Sci. Technol. 2014, 11, 33–42. [Google Scholar] [CrossRef]
- Zdunek-Zastocka, E.; Grabowska, A.; Michniewska, B.; Orzechowski, S. Proline Concentration and Its Metabolism Are Regulated in a Leaf Age Dependent Manner But Not by Abscisic Acid in Pea Plants Exposed to Cadmium Stress. Cells 2021, 10, 946. [Google Scholar] [CrossRef]
- Deng, Q.; Deng, Q.; Wang, Y.; Li, L.; Long, X.; Ren, S.; Fan, Y.; Lin, L.; Xia, H.; Liang, D.; et al. Effects of Intercropping with Bidens Species Plants on the Growth and Cadmium Accumulation of Ziziphus acidojujuba Seedlings. Environ. Monit. Assess. 2019, 191, 342. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yang, W.T.; Zhou, X.; Liu, L.; Gu, J.F.; Wang, W.L.; Zou, J.L.; Tian, T.; Peng, P.Q.; Liao, B.H. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment. Int. J. Environ. Res. Public Health 2016, 13, 289. [Google Scholar] [CrossRef] [PubMed]
Soil Sample | Value |
---|---|
pH | 5.891 ± 0.112 |
Organic matter (g/kg) | 20.413 ± 1.265 |
Total Pb (mg/kg) | 25,069.346 ± 693.218 |
Total Zn (mg/kg) | 1199.087 ± 30.849 |
Total Cu (mg/kg) | 432.568 ± 17.392 |
Total Cd (mg/kg) | 13.561 ± 0.617 |
Illite Sample | Value |
---|---|
pH | 8.952 ± 0.365 |
Organic matter (g/kg) | 3.439 ± 0.161 |
Surface area (m2/g) | 1.037 ± 0.061 |
Total Pb (mg/kg) | 0.993 ± 0.042 |
Total Zn (mg/kg) | 34.626 ± 1.193 |
Total Cu (mg/kg) | ND |
Total Cd (mg/kg) | 0.136 ± 0.007 |
Treatment | TFS/R | |||
---|---|---|---|---|
Pb | Zn | Cu | Cd | |
II | 0.553 ± 0.051 ab | 1.360 ± 0.115 a | 0.569 ± 0.052 a | 0.951 ± 0.102 a |
IE | 0.384 ± 0.042 c | 0.452 ± 0.061 b | 0.224 ± 0.021 c | 0.616 ± 0.058 b |
IIE-I | 0.477 ± 0.041 bc | 1.504 ± 0.102 a | 0.242 ± 0.014 c | 0.942 ± 0.071 a |
IIE-E | 0.636 ± 0.064 a | 0.424 ± 0.011 b | 0.358 ± 0.051 b | 0.809 ± 0.056 a |
Treatment | BCFshoot | BCFroot | ||||||
---|---|---|---|---|---|---|---|---|
Pb | Zn | Cu | Cd | Pb | Zn | Cu | Cd | |
II | 0.008 ± 0.001 c | 0.149 ± 0.015 b | 0.013 ± 0.001 b | 0.535 ± 0.113 c | 0.015 ± 0.001 c | 0.111 ± 0014 d | 0.024 ± 0.005 c | 0.559 ± 0.051 c |
IE | 0.014 ± 0.001 b | 0.110 ± 0.016 c | 0.018 ± 0.002 b | 0.867 ± 0.123 b | 0.037 ± 0.004 b | 0.244 ± 0.004 b | 0.081 ± 0.007 a | 1.398 ± 0.012 a |
IIE-I | 0.008 ± 0.001 c | 0.208 ± 0.017 a | 0.012 ± 0.003 b | 0.910 ± 0.135 b | 0.017 ± 0.002 c | 0.139 ± 0.014 c | 0.051 ± 0.010 b | 0.999 ± 0.221 b |
IIE-E | 0.029 ± 0.001 a | 0.116 ± 0.011 c | 0.031 ± 0.005 a | 1.291 ± 0.228 a | 0.046 ± 0.005 a | 0.273 ± 0.020 a | 0.088 ± 0.009 a | 1.599 ± 0.256 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Tang, Y.; Dong, D.; Wang, X.; Wu, X.; Gul, S.; Li, Y.; Xie, X.; Liu, D.; Xu, W. Remediation of Pb-, Zn-, Cu-, and Cd-Contaminated Soil in a Lead–Zinc Mining Area by Co-Cropping Ilex cornuta and Epipremnum aureum with Illite Application. Agriculture 2024, 14, 867. https://doi.org/10.3390/agriculture14060867
Li Q, Tang Y, Dong D, Wang X, Wu X, Gul S, Li Y, Xie X, Liu D, Xu W. Remediation of Pb-, Zn-, Cu-, and Cd-Contaminated Soil in a Lead–Zinc Mining Area by Co-Cropping Ilex cornuta and Epipremnum aureum with Illite Application. Agriculture. 2024; 14(6):867. https://doi.org/10.3390/agriculture14060867
Chicago/Turabian StyleLi, Qi, Yanxin Tang, Dubin Dong, Xili Wang, Xuqiao Wu, Saima Gul, Yaqian Li, Xiaocui Xie, Dan Liu, and Weijie Xu. 2024. "Remediation of Pb-, Zn-, Cu-, and Cd-Contaminated Soil in a Lead–Zinc Mining Area by Co-Cropping Ilex cornuta and Epipremnum aureum with Illite Application" Agriculture 14, no. 6: 867. https://doi.org/10.3390/agriculture14060867
APA StyleLi, Q., Tang, Y., Dong, D., Wang, X., Wu, X., Gul, S., Li, Y., Xie, X., Liu, D., & Xu, W. (2024). Remediation of Pb-, Zn-, Cu-, and Cd-Contaminated Soil in a Lead–Zinc Mining Area by Co-Cropping Ilex cornuta and Epipremnum aureum with Illite Application. Agriculture, 14(6), 867. https://doi.org/10.3390/agriculture14060867