Temporal and Spatial Variation of Agricultural and Pastoral Production in the Eastern Section of the Agro-Pastoral Transitional Zone in Northern China
Abstract
:1. Introduction
2. Research Location
3. Materials and Methods
3.1. Data Sources
3.2. Research Methods
3.2.1. Trend Analysis Method
3.2.2. Analysis of Influencing Factors
Stepwise Regression Method
Gray Relation Analysis
4. Results
4.1. Annual Growth Rate of Agricultural and Pastoral Production
4.2. Temporal and Spatial Variation Characteristics of Agricultural and Pastoral Production
4.3. Influencing Factors of Temporal and Spatial Changes in Agricultural and Pastoral Production
4.3.1. Qualitative Analysis Results of Influencing Factors
4.3.2. Quantitative Analysis Results of Influencing Factors
5. Discussion
5.1. The Impact of Climate Change on Agricultural and Pastoral Production
5.2. The Impact of Land Use Change on Agricultural and Pastoral Production
5.3. Planning and Implications in Agricultural and Pastoral Management
5.4. Limitations and Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, L.; Xu, C.; Chen, Z.; Fang, F. The fluctuation of grain production in China: Characteristics, causes and implications. Chin. J. Agric. Resour. Reg. Plan. 2020, 41, 46–52. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Insecurity in the World. Urbanization, Agrifood Systems Transformation and Healthy Diets across the Rural–Urban Continuum; FAO: Rome, Italy, 2023. [Google Scholar]
- Global Network Against Food Crises (GNAFC). Global Report on Food Crises; GNAFC: Rome, Italy, 2023. [Google Scholar]
- Simpson, N.P.; Mach, K.J.; Constable, A.; Hess, J.; Hogarth, R.; Howden, M.; Lawrence, J.; Lempert, R.J.; Muccione, V.; Mackey, B.; et al. A framework for complex climate change risk assessment. One Earth 2021, 4, 489–501. [Google Scholar] [CrossRef]
- Zscheischler, J.; Westra, S.; van den Hurk, B.J.J.M. Future climate risk from compound events. Nat. Clim. Chang. 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Matthews, T.; Wilby, R.L.; Murphy, C. An emerging tropical cyclone-deadly heat compound hazard. Nat. Clim. Chang. 2019, 9, 602. [Google Scholar] [CrossRef]
- Kibue, G.W.; Pan, G.X.; Zheng, J.F.; Li, Z.D.; Mao, L. Assessment of climate change awareness and agronomic practices in an agricultural region of Henan Province, China. Environ. Dev. Sustain. 2015, 17, 379–391. [Google Scholar] [CrossRef]
- Rice, A.M.; Einbinder, N.; Calderón, C.I. ’With agroecology, we can defend ourselves’: Examining campesino resilience and economic solidarity during pandemic-era economic shock in Guatemala. Agroecol. Sustain. Food Syst. 2023, 47, 273–305. [Google Scholar] [CrossRef]
- Amiraslani, F.; Dragovich, D. Food-energy-water nexus in Iran over the last two centuries: A food secure future? Energy Nexus 2023, 10, 100189. [Google Scholar] [CrossRef]
- Aleminew, A.; Abera, M. Effect of Climate Change on the Production and Productivity of Wheat Crop in the Highlands of Ethiopia: A Review. Agric. Rev. 2020, 11, 5–15. [Google Scholar] [CrossRef]
- Zhang, E.Z.; Yin, X.A.; Yang, Z.F. Contributions of climate change and human activities to changes in the virtual water content of major crops: An assessment for the Shijiazhuang Plain, northern China. Resour. Conserv. Recycl. 2021, 169, 105498. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Akbar, A.; Askari, S.H.; Iqbal, M.; Rasheed, R.; Hussain, I. Recent Advances in Abiotic Stress Tolerance of Plants Through Chemical Priming: An Overview. In Advances in Seed Priming; Springer: Berlin/Heidelberg, Germany, 2018; pp. 51–79. [Google Scholar]
- Abhin, K.; Skori, L.; Stanic, M.; Hickerson, N.M.N.; Jamshed, M.; Samuel, M.A. Abiotic Stress Signaling in Wheat—An Inclusive Overview of Hormonal Interactions During Abiotic Stress Responses in Wheat. Front. Plant Sci. 2018, 9, 734. [Google Scholar] [CrossRef]
- Lesk, C.; Coffel, E.; Winter, J.; Ray, D.; Zscheischler, J.; Seneviratne, S.I.; Horton, R. Stronger temperature-moisture couplings exacerbate the impact of climate warming on global crop yields. Nat. Food 2021, 2, 683. [Google Scholar] [CrossRef] [PubMed]
- Harper, A.B.; Powell, T.; Cox, P.M.; House, J.; Huntingford, C.; Lenton, T.M.; Sitch, S.; Burke, E.; Chadburn, S.E.; Collins, W.J.; et al. Land-use emissions play a critical role in landbased mitigation for Paris climate targets. Nat. Commun. 2018, 9, 2938. [Google Scholar] [CrossRef]
- Alkama, R.; Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 2016, 351, 600–604. [Google Scholar] [CrossRef]
- Burrell, A.L.; Evans, J.P.; De Kauwe, M.G. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 2020, 11, 3853. [Google Scholar] [CrossRef]
- Luyssaert, S.; Jammet, M.; Stoy, P.C. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Chang. 2014, 4, 389–393. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Chen, W.; Li, A.J.; Hu, Y.G.; Li, L.H.; Zhao, H.M.; Han, X.R.; Yang, B. Exploring the long-term vegetation dynamics of different ecological zones in the farming-pastoral ecotone in northern China. Environ. Sci. Pollut. Res. 2021, 28, 27914–27932. [Google Scholar] [CrossRef]
- Wuyun, D.; Sun, L.; Chen, Z.X.; Hou, A.H.; Crusiol, L.G.T.; Yu, L.F.; Chen, R.Q.; Sun, Z. The spatiotemporal change of cropland and its impact on vegetation dynamics in the farming-pastoral ecotone of northern China. Sci. Total Environ. 2022, 805, 150286. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, Y.; Li, Y. Anthropogenic contributions dominate trends of vegetation cover change over the farming-pastoral ecotone of Northern China. Ecol. Indic. 2018, 95, 370–378. [Google Scholar] [CrossRef]
- Han, Y.N.; Peng, J.; Meersmans, J.; Liu, Y.X.; Zhao, Z.Q.; Mao, Q. Integrating Spatial Continuous Wavelet Transform and Normalized Difference Vegetation Index to Map the Agro-Pastoral Transitional Zone in Northern China. Remote Sens. 2018, 10, 1928. [Google Scholar] [CrossRef]
- Sun, W.R.T. Study on Cultivated Land Change and Its Impact on Grain Yield in Agro-Pastoral Ecotone during 1990–2013. Master’s Thesis, Inner Mongolia Normal University, Hohhot, China, 2016. [Google Scholar]
- Yao, F.; Zhang, J. Progresses of study on pattern of crop production of Northern China Agriculture and Animal Husbandry Interlaced Zone and prediction under climate changes on spatial-temporal scales. Trans. Chin. Soc. Agric. Eng. 2005, 21, 173–176. [Google Scholar]
- Ye, Y.; Fang, X. Expansion of cropland area and formation of the eastern farming-pastoral ecotone in northern China during the twentieth century. Reg. Environ. Chang. 2012, 12, 923–934. [Google Scholar] [CrossRef]
- Zhang, J.; Chu, S.; Chen, Q. Advances in defining the boundary of farming-grazing transition zone in China. Pratacultural Sci. 2008, 3, 78–84. [Google Scholar]
- Shuzhen, Z. Meteorology and Climatology, 3rd ed.; Higher Education Press: Beijing, China, 1997. [Google Scholar]
- Dekuan, S. The special position of the agricultural pastoral transitional zone in the sustainable development strategy. J. Grassl. 1999, 7, 17–21. [Google Scholar]
- Zhou, L.; Ma, Y.; Ma, S. Grain and Returning Farmland to Forests (Grassland) Issues in the Fengshui Erosion Complex Zone of Agriculture and Animal Husbandry in Northern China. Desert China 2007, 4, 552–557. [Google Scholar]
- Hou, Q. Ecological Environment Characteristics and Reasonable Development and Utilization of Water Resources in Semiarid Regions of Western Jilin Province. Agric. Mod. Res. 2006, 1, 32–34. [Google Scholar]
- Frazier, R.J.; Coops, N.C.; Wulder, M.A.; Hermosilla, T.; White, J.C. Analyzing spatial and temporal variability in short-term rates of post-fire vegetation return from Landsat time series. Remote Sens. Environ. 2018, 205, 32–45. [Google Scholar] [CrossRef]
- Vogel, M.M.; Zscheischler, J.; Wartenburger, R.; Dee, D.; Seneviratne, S.I. Concurrent 2018 hot extremes across northern hemisphere due to human-induced climate change. Earths Future 2019, 7, 692–703. [Google Scholar] [CrossRef] [PubMed]
- Somalia FSNAU Food Security & Nutrition Quarterly Brief—Focus on Post Gu 2017 Season Early Warning; Food Security and Nutrition Analysis Unit and Famine Early Warning System Network: Washibgton, DC, USA, 2022.
- Di Paola, A.; Caporaso, L.; Di Paola, F.; Bombelli, A.; Vasenev, I.; Nesterova, O.V.; Castaldi, S.; Valentini, R. The expansion of wheat thermal suitability of Russia in response to climate change. Land Use Policy 2018, 78, 70–77. [Google Scholar] [CrossRef]
- Pugh, T.A.M.; Mueller, C.; Elliott, J.; Deryng, D.; Folberth, C.; Olin, S.; Schmid, E.; Arneth, A. Climate analogues suggest limited potential for intensification of production on current croplands under climate change. Nat. Commun. 2016, 7, 12608. [Google Scholar] [CrossRef]
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A.G. Livestock and climate change: Impact of livestock on climate and mitigation strategies. Anim. Front. 2019, 9, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Tian, Q.S.; Yan, F.X. Climate change and its impact on rice acreage in high-latitude regions of China: An estimation by machine learning. Int. J. Clim. Chang. Strateg. Manag. 2022, 14, 313–331. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, Y. Research on the Factors Influencing Grain Yield Increase in Main Production Areas and Development Strategies Based on the Differences in North and South Main Production Areas. Southwest Agric. J. 2023, 36, 1603–1611. [Google Scholar]
- Chen, L.; Zhao, H.; Song, G.; Liu, Y. Optimization of cultivated land pattern for achieving cultivated land system security: A case study in Heilongjiang Province, China. Land Use Policy 2021, 108, 105589. [Google Scholar] [CrossRef]
- Bao, T.; Li, J.; Chang, I.; Jin, E.; Wu, J.; Burenjargal; Bao, Y. The influence of ecological engineering projects on dust events: A case study in the northern China. Environ. Impact Assess. Rev. 2022, 96, 106847. [Google Scholar] [CrossRef]
- Li, M.L.; Qin, Y.B.; Zhang, T.B.; Zhou, X.B.; Yi, G.H.; Bie, X.J.; Li, J.J.; Gao, Y.B. Climate Change and Anthropogenic Activity Co-Driven Vegetation Coverage Increase in the Three-North Shelter Forest Region of China. Remote Sens. 2023, 15, 1509. [Google Scholar] [CrossRef]
- Wang, X.Y.; Gong, Z.; Zhao, D.D.; Liu, J.C. Spatiotemporal changes of forest vegetation after the implementation of a natural forest protection project and underlying driving factors: Case study of a typical natural secondary forest area in the Loess Plateau. Ecol. Eng. 2024, 199, 107164. [Google Scholar] [CrossRef]
- Qiu, H.; Su, L.; Feng, X.; Tang, J. Role of monitoring in environmental regulation: An empirical analysis of grazing restrictions in pastoral China. Environ. Sci. 2020, 114, 295–304. [Google Scholar] [CrossRef]
- Dong, S.K.; Gao, H.W.; Xu, G.C.; Hou, X.Y.; Long, R.J.; Kang, M.Y.; Lassoie, J.P. Farmer and professional attitudes to the large-scale ban on livestock grazing of grasslands in China. Environ. Conserv. 2007, 34, 246–254. [Google Scholar] [CrossRef]
- Jiang, H.L.; Xu, X.; Guan, M.X.; Wang, L.F.; Huang, Y.M.; Jiang, Y. Determining the contributions of climate change and human activities to vegetation dynamics in agro-pastural transitional zone of northern China from 2000 to 2015. Sci. Total Environ. 2020, 718, 134871. [Google Scholar] [CrossRef]
- Luo, N.; Meng, Q.F.; Feng, P.Y.; Qu, Z.R.; Yu, Y.H.; Liu, D.L.; Müller, C.; Wang, P. China can be self-sufficient in maize production by 2030 with optimal crop management. Nat. Commun. 2023, 14, 2637. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.; Wang, S.B.; Wu, J.H.; Wang, Y.X.; Wang, X.T.; Liu, S.W.; Han, D.J.; Xia, G.M.; Wang, M.C. Allelic variation of TaWD40-4B.1 contributes to drought tolerance by modulating catalase activity in wheat. Nat. Commun. 2023, 14, 1200. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.W.; Xia, R.; Chen, C.X.; Shang, X.L.; Ge, F.Y.; Wei, H.M.; Chen, H.B.; Wu, Y.R.; Xie, Q. ZmbHLH124 identified in maize recombinant inbred lines contributes to drought tolerance in crops. Plant Biotechnol. J. 2021, 19, 2069–2081. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Teng, Y.; Yue, T.; Wang, Z.; Feng, G.; Ruan, J.; Yan, S.; Zheng, Y.; Zhang, L.; Chen, Q.; et al. The Overexpression of Peanut (Arachis hypogaea L.) AhALDH2B6 in Soybean Enhances Cold Resistance. Plants 2023, 12, 2928. [Google Scholar] [CrossRef]
- Li, D.Q.; Zhang, M.X.; Lue, X.X.; Hou, L.L. Does nature-based solution sustain grassland quality? Evidence from rotational grazing practice in China. J. Integr. Agric. 2023, 22, 2567–2576. [Google Scholar] [CrossRef]
- Shi, Y.X.; Cai, Y.; Zhao, M.J. Social interaction effect of rotational grazing and its policy implications for sustainable use of grassland: Evidence from pastoral areas in Inner Mongolia and Gansu, China. Land Use Policy 2021, 111, 105734. [Google Scholar] [CrossRef]
- Jiang, Q.; Rong, Z.; Yuan, Z. Research on the Construction of China’s Provincial Food Security Evaluation System and Regional Performance—Based on the “Great Food View”. Agriculture 2023, 13, 1240. [Google Scholar] [CrossRef]
- Liang, X.; Jin, X.; Xu, X.; Chen, H.; Liu, J.; Yang, X.; Xu, W.; Sun, R.; Han, B.; Zhou, Y. Uncertainty in China’s food self-sufficiency: A dynamic system assessment. Sustain. Prod. Consum. 2023, 40, 135–146. [Google Scholar] [CrossRef]
Province | County |
---|---|
Heilongjiang Province | Longjiang, Tailai, Gannan, Qiqihar municipal District, Dorbod Mongolian Autonomous County |
Inner Mongolia Province | Wengniute, Harqin, Ningcheng, Chifeng municipal district, Kulun, Holingol, Arshan, Dolun, Arhorchin, Bairin right banner, Hexigten, Horqin Right Middle Banner, Bairin left banner, Linxi, Aohan, Horqin Left Middle Banner, Horqin Left Back Banner, Kailu, Naiman, Jarud, Tongliao Municipal District, Horqin Right Front Banner, Jalaid, Tuquan |
Hebei Province | Chengde, Xinglong, Pingquan, Luanping, Longhua, Kuancheng Manchu Autonomous County, Chengde municipal District, Fengning Manchu Autonomous County, Weichang Manchu and Mongolian Autonomous County |
Jilin Province | Changling, Tongyu |
Liaoning Province | Fuxin Mongolian Autonomous County, Changwu, Fuxin Municipal District, Chaoyang, Harqin Left Wing Mongolian Autonomous County, Lingyuan, Chaoyang Municipal District, Jianchang, Jianping, Beipiao |
Data Type | Index | Data Source | Data Specifications |
---|---|---|---|
Socio-economic data | Agricultural and pastoral production | CNKI (China National Knowledge Infrastructure) China Economic and Social Big Data | County-scale statistical data from 2000 to 2020 |
Primary industry | |||
Secondary industry | |||
Population | |||
Meteorological data | Annual average temperature | National Meteorological Science Data Sharing Service Platform—China Ground Climate Daily Data Set (V3.0) (http://data.cma.cn/ (accessed on 15 February 2023)) | Daily Meteorological Station data from 2000 to 2020 |
Annual average precipitation | |||
Remote sensing data | Land use/cover type | Chinese Academy of Sciences Resource and Environmental Science Data Center (http://www.resdc.cn/ (accessd on 20 February 2023)) | For the years 2000, 2005, 2010, 2015, and 2020, with a spatial resolution of 1 km. |
Types | Category | Influencing Factors | Goodness of Fit |
---|---|---|---|
Agricultural Counties | Agricultural production | Primary industry | 0.974 |
Annual average temperature | |||
Cropland area | |||
Pastoral production | Primary industry | 0.95 | |
Urban and rural land | |||
Pastoral Counties | Agricultural production | Primary industry | 0.986 |
Secondary industry | |||
Grassland area | |||
Pastoral production | Primary industry | 0.853 | |
Secondary industry | |||
Grassland area | |||
Semi-pastoral Counties | Agricultural production | Primary industry | 0.982 |
Secondary industry | |||
Grassland area | |||
Pastoral production | Primary industry | 0.878 | |
Grassland area |
Type | Category | Influencing Factor | Strength of Association | |
---|---|---|---|---|
Agricultural Counties | Agricultural production | Annual average temperature | 0.85 | 1 |
Cropland area | 0.83 | 2 | ||
Primary industry | 0.80 | 3 | ||
Pastoral production | Urban and rural land | 0.87 | 1 | |
Primary industry | 0.78 | 2 | ||
Pastoral Counties | Agricultural production | Primary industry | 0.97 | 1 |
Grassland area | 0.84 | 2 | ||
Grassland area | 0.66 | 3 | ||
Pastoral production | Grassland area | 0.97 | 1 | |
Primary industry | 0.87 | 2 | ||
Grassland area | 0.64 | 3 | ||
Semi-pastoral Counties | Agricultural production | Primary industry | 0.89 | 1 |
Grassland area | 0.83 | 2 | ||
Secondary industry | 0.68 | 3 | ||
Pastoral production | Grassland area | 0.92 | 1 | |
Primary industry | 0.83 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Hao, R.; Qin, Y. Temporal and Spatial Variation of Agricultural and Pastoral Production in the Eastern Section of the Agro-Pastoral Transitional Zone in Northern China. Agriculture 2024, 14, 829. https://doi.org/10.3390/agriculture14060829
Zhang Y, Hao R, Qin Y. Temporal and Spatial Variation of Agricultural and Pastoral Production in the Eastern Section of the Agro-Pastoral Transitional Zone in Northern China. Agriculture. 2024; 14(6):829. https://doi.org/10.3390/agriculture14060829
Chicago/Turabian StyleZhang, Yajing, Ruifang Hao, and Yu Qin. 2024. "Temporal and Spatial Variation of Agricultural and Pastoral Production in the Eastern Section of the Agro-Pastoral Transitional Zone in Northern China" Agriculture 14, no. 6: 829. https://doi.org/10.3390/agriculture14060829
APA StyleZhang, Y., Hao, R., & Qin, Y. (2024). Temporal and Spatial Variation of Agricultural and Pastoral Production in the Eastern Section of the Agro-Pastoral Transitional Zone in Northern China. Agriculture, 14(6), 829. https://doi.org/10.3390/agriculture14060829