Isolation, Characterization, and Biopreservation of Lactobacillus brevis DN-1 to Inhibit Mold and Remove Aflatoxin B1 in Peanut and Sunflower Cakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Chemical Reagents
2.2. Determination of the Potential LAB Isolates Capable of Removing AFB1
2.3. Identifying the Selected Potential Strain
2.4. Inhibition of Fungi by DN-1
2.5. Effect of Culture Conditions on Strain Growth and Removal of AFB1
2.6. Different Active Components of AFB1 Removal
2.7. Biopreservation of Peanut and Sunflower Cakes
2.8. Analytical Methods
2.9. Statistical Analysis
3. Results and Discussion
3.1. Isolation and Identification of AFB1 Removal by LAB
3.2. Inhibitory Effect of DN-1 Strain on Toxin-Producing Fungi
3.3. Effect of Culture Conditions on the Growth of DN-1
3.4. Effects of Culture Conditions on AFB1 Removal
3.5. Efficiency of Removal of AFB1 by Different Active Components
3.6. Possible Removal Pathways for AFB1
3.7. The Potential of DN-1 for Biopreservation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neme, K.; Mohammed, A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control 2017, 78, 412–425. [Google Scholar] [CrossRef]
- Sadighara, P.; Ghanati, K. The aflatoxin B1 content of peanut-based foods in Iran: A systematic review. Rev. Environ. Health 2022, 37, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Driehuis, F.; Spanjer, M.C.; Scholten, J.M.; Te Giffel, M.C. Occurrence of mycotoxins in maize, grass and wheat silage for dairy cattle in the Netherlands. Food Addit. Contam Part B Surveill 2008, 1, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Heshmati, A.; Mozaffari Nejad, A.S.; Mehri, F. Occurrence, dietary exposure, and risk assessment of aflatoxins in wheat flour from Iran. Int. J. Environ. Anal. Chem. 2021, 103, 9395–9408. [Google Scholar] [CrossRef]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens-the IARC Monographs classification. Mycotoxin Res. 2017, 33, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Yu, P.; Yang, K.; Cao, D. Aflatoxin B1: Metabolism, toxicology, and its involvement in oxidative stress and cancer development. Toxicol. Mech. Methods 2022, 32, 395–419. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.D.; Pulford, D.J.; Ellis, E.M.; McLeod, R.; James, R.F.; Seidegård, J.; Mosialou, E.; Jernström, B.; Neal, G.E. Regulation of rat glutathione S-transferase A5 by cancer chemopreventive agents: Mechanisms of inducible resistance to aflatoxin B1. Chem.-Biol. Interact. 1998, 111–112, 51–67. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; He, Z.; Shi, Y.; Sun, H.; Yuan, B.; Cai, J.; Chen, J.; Long, M. Role of epigenetics in mycotoxin toxicity: A review. Environ. Toxicol. Pharmacol. 2023, 100, 104154. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Huang, K.; Zhang, B.; Zhu, L.; Xu, W. Aflatoxin B1-induced epigenetic alterations: An overview. Food Chem. Toxicol. 2017, 109, 683–689. [Google Scholar] [CrossRef]
- Fasihi-Ramandi, M.; Bayat, G.; Kachuei, R.; Golmohammadi, R. Effects of aflatoxin B1 exposure on sperm in rodents: A systematic review and meta-analysis. Int. J. Environ. Health Res. 2022, 33, 1629–1639. [Google Scholar] [CrossRef]
- González-Jartín, J.M.; Ferreiroa, V.; Rodríguez-Cañás, I.; Alfonso, A.; Sainz, M.J.; Aguín, O.; Vieytes, M.R.; Gomes, A.; Ramos, I.; Botana, L.M. Occurrence of mycotoxins and mycotoxigenic fungi in silage from the north of Portugal at feed-out. Int. J. Food Microbiol. 2022, 365, 109556. [Google Scholar] [CrossRef] [PubMed]
- Abedini, A.; Alizadeh, A.M.; Mahdavi, A.; Golzan, S.A.; Salimi, M.; Tajdar-Oranj, B.; Hosseini, H. Oilseed Cakes in the Food Industry; A Review on Applications, Challenges, and Future Perspectives. Curr. Nutr. Food Sci. 2022, 18, 345–362. [Google Scholar] [CrossRef]
- Gültekin Subaşı, B.; Vahapoğlu, B.; Capanoglu, E.; Mohammadifar, M.A. A review on protein extracts from sunflower cake: Techno-functional properties and promising modification methods. Crit. Rev. Food Sci. Nutr. 2022, 62, 6682–6697. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Wang, H.; Qiu, H.; Zhang, M.; Li, S.; Luo, X.; Song, Y.; Zhou, H.; Ma, W.; et al. Rapid biodegradation of aflatoxin B1 by metabolites of Fusarium sp. WCQ3361 with broad working temperature range and excellent thermostability. J. Sci. Food Agric. 2017, 97, 1342–1348. [Google Scholar] [PubMed]
- Song, Y.; Wang, Y.; Guo, Y.; Qiao, Y.; Ma, Q.; Ji, C.; Zhao, L. Degradation of zearalenone and aflatoxin B1 by Lac2 from Pleurotus pulmonarius in the presence of mediators. Toxicon 2021, 201, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Z.; Lu, F.P.; Jiang, H.L.; Tan, C.P.; Yao, D.S.; Xie, C.F.; Liu, D.L. The furofuran-ring selectivity, hydrogen peroxide-production and low Km value are the three elements for highly effective removal of aflatoxin oxidase. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2015, 76, 125–131. [Google Scholar] [CrossRef]
- Sadiq, F.A.; Yan, B.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W. Lactic Acid Bacteria as Antifungal and Anti-Mycotoxigenic Agents: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1403–1436. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, Y.; Yang, Q. Antifungal properties and AFB1 removal activity of a new strain of Lactobacillus plantarum. J. Hazard Mater. 2021, 414, 125569. [Google Scholar] [CrossRef]
- Ragoubi, C.; Quintieri, L.; Greco, D.; Mehrez, A.; Maatouk, I.; D’Ascanio, V.; Landoulsi, A.; Avantaggiato, G. Mycotoxin Removal by Lactobacillus spp. and Their Application in Animal Liquid Feed. Toxins 2021, 13, 185. [Google Scholar] [CrossRef]
- Chelule, P.K.; Mbongwa, H.P.; Carries, S.; Gqaleni, N. Lactic acid fermentation improves the quality of amahewu, a traditional South African maize-based porridge. Food Chem. 2010, 122, 656–661. [Google Scholar] [CrossRef]
- Nazareth, T.d.M.; Luz, C.; Torrijos, R.; Quiles, J.M.; Luciano, F.B.; Mañes, J.; Meca, G. Potential Application of Lactic Acid Bacteria to Reduce Aflatoxin B1 and Fumonisin B1 Occurrence on Corn Kernels and Corn Ears. Toxins 2019, 12, 21. [Google Scholar] [CrossRef]
- Kim, H.S.; Han, O.K.; Kim, S.C.; Kim, M.J.; Kwak, Y.S. Screening and investigation Lactobacillius spp. to improve Secale cereale silage quality. Anim. Sci. J. Nihon Chikusan Gakkaiho 2017, 88, 1538–1546. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yang, Q. Isolation of Antibacterial, Nitrosylmyoglobin Forming Lactic Acid Bacteria and Their Potential Use in Meat Processing. Front. Microbiol. 2020, 11, 1315. [Google Scholar] [CrossRef]
- Hazan, R.; Que, Y.A.; Maura, D.; Rahme, L.G. A method for high throughput determination of viable bacteria cell counts in 96-well plates. BMC Microbiol. 2012, 12, 259. [Google Scholar] [CrossRef]
- Xiong, D.; Wen, J.; Lu, G.; Li, T.; Long, M. Isolation, Purification, and Characterization of a Laccase-Degrading Aflatoxin B1 from Bacillus amyloliquefaciens B10. Toxins 2022, 14, 250. [Google Scholar] [CrossRef] [PubMed]
- Lahtinen, S.J.; Haskard, C.A.; Ouwehand, A.C.; Salminen, S.J.; Ahokas, J.T. Binding of aflatoxin B1 to cell wall components of Lactobacillus rhamnosus strain GG. Food Addit. Contam. 2004, 21, 158–164. [Google Scholar] [CrossRef]
- Hernandez-Mendoza, A.; Guzman-de-Pena, D.; Garcia, H.S. Key role of teichoic acids on aflatoxin B binding by probiotic bacteria. J. Appl. Microbiol. 2009, 107, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Muaz, K.; Riaz, M.; Rosim, R.E.; Akhtar, S.; Corassin, C.H.; Gonçalves, B.L.; Oliveira, C.A.F. In vitro ability of nonviable cells of lactic acid bacteria strains in combination with sorbitan monostearate to bind to aflatoxin M1 in skimmed milk. LWT 2021, 147, 111666. [Google Scholar] [CrossRef]
- Michael, G.; Peter, K.; Hans, B.; Martha, E.; Trujillo, K.S.; Wolfgang, L.; William, B. Bergey’s Manual of Systematic Bacteriology; Williams & Wilkins: New York, NY, USA, 1984; pp. 7–10. [Google Scholar]
- Martha, E.T. International Journal of Systematic and Evolutionary Microbiology; Microbiology Society: London, UK, 2000; pp. 25–36. [Google Scholar]
- Abdelazez, A.; Abdelmotaal, H.; Evivie, S.E.; Melak, S.; Jia, F.F.; Khoso, M.H.; Zhu, Z.T.; Zhang, L.J.; Sami, R.; Meng, X.C. Screening Potential Probiotic Characteristics of Lactobacillus brevis Strains In Vitro and Intervention Effect on Type I Diabetes In Vivo. BioMed Res. Int. 2018, 2018, 7356173. [Google Scholar] [CrossRef]
- Alfano, A.; Perillo, F.; Fusco, A.; Savio, V.; Corsaro, M.M.; Donnarumma, G.; Schiraldi, C.; Cimini, D. Lactobacillus brevis CD2: Fermentation Strategies and Extracellular Metabolites Characterization. Probiotics Antimicrob. Proteins 2020, 12, 1542–1554. [Google Scholar] [CrossRef]
- Son, S.H.; Jeon, H.L.; Yang, S.J.; Lee, N.K.; Paik, H.D. In vitro characterization of Lactobacillus brevis KU15006, an isolate from kimchi, reveals anti-adhesion activity against foodborne pathogens and antidiabetic properties. Microb. Pathog. 2017, 112, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Yakabe, T.; Shimohata, T.; Takahashi, A. Lactobacillus brevis KB290 enhances IL-8 secretion by Vibrio parahaemolyticus-infected Caco-2 cells. J. Microbiol. Biotechnol. 2013, 23, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Soundharrajan, I.; Kim, D.; Kuppusamy, P.; Muthusamy, K.; Lee, H.J.; Choi, K.C. Probiotic and Triticale Silage Fermentation Potential of Pediococcus pentosaceus and Lactobacillus brevis and Their Impacts on Pathogenic Bacteria. Microorganisms 2019, 7, 318. [Google Scholar] [CrossRef] [PubMed]
- Ondiek, W.; Wang, Y.; Sun, L.; Zhou, L.; On, S.L.W.; Zheng, H.; Ravi, G. Removal of aflatoxin b1 and t-2 toxin by bacteria isolated from commercially available probiotic dairy foods. Food Sci. Technol. Int. 2021, 28, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Taheur, F.B.; Fedhila, K.; Chaieb, K.; Kouidhi, B.; Bakhrouf, A.; Abrunhosa, L. Adsorption of aflatoxin B1, zearalenone and ochratoxin A by microorganisms isolated from Kefir grains. Int. J. Food Microbiol. 2017, 251, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yasmeen, R.; Zahid, B.; Alyas, S.; Akhtar, R.; Zahra, N.; Kouser, S.; Hashmi, A.S.; Athar, M.; Tayyab, M.; Anjum, A.A. Ameliorative effects of Lactobacillus against Aflatoxin B1. Braz. J. Biol. 2021, 84, e250517. [Google Scholar] [CrossRef] [PubMed]
- Dong, A.-R.; Thuy Ho, V.T.; Lo, R.; Bansal, N.; Turner, M.S. A genetic diversity study of antifungal Lactobacillus plantarum isolates. Food Control 2017, 72, 83–89. [Google Scholar] [CrossRef]
- Gomaa, E.Z.; Abdelall, M.F.; El-Mahdy, O.M. Removal of Aflatoxin B1 by Antifungal Compounds from Lactobacillus brevis and Lactobacillus paracasei, Isolated from Dairy Products. Probiotics Antimicrob. Proteins 2018, 10, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, A.; Venancio, A.; Abrunhosa, L. Antifungal effect of organic acids from lactic acid bacteria on Penicillium nordicum. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 2018, 35, 1803–1818. [Google Scholar] [CrossRef]
- Liew, W.-P.-P.; Nurul-Adilah, Z.; Than, L.T.L.; Mohd-Redzwan, S. The Binding Efficiency and Interaction of Lactobacillus casei Shirota Toward Aflatoxin B1. Front. Microbiol. 2018, 9, 1503. [Google Scholar] [CrossRef]
- Peltonen, K.; el-Nezami, H.; Haskard, C.; Ahokas, J.; Salminen, S. Aflatoxin B1 binding by dairy strains of lactic acid bacteria and bifidobacteria. J. Dairy Sci. 2001, 84, 2152–2156. [Google Scholar] [CrossRef] [PubMed]
- Adácsi, C.; Kovács, S.; Pócsi, I.; Pusztahelyi, T. Elimination of Deoxynivalenol, Aflatoxin B1, and Zearalenone by Gram-Positive Microbes (Firmicutes). Toxins 2022, 14, 591. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Zheng, Y.; Liu, L.; Chen, S.; He, L.; Ao, X.; Yang, Y.; Liu, S. Decontamination of Aflatoxins by Lactic Acid Bacteria. Curr. Microbiol. 2020, 77, 3821–3830. [Google Scholar] [CrossRef] [PubMed]
- Sezer, Ç.; GÜVen, A.; BİLge Oral, N.; Vatansever, L. Removal of aflatoxin B1 by bacteriocins and bacteriocinogenic lactic acid bacteria. Turk. J. Vet. Anim. Sci. 2013, 37, 594–601. [Google Scholar] [CrossRef]
- Russo, P.; Arena, M.P.; Fiocco, D.; Capozzi, V.; Drider, D.; Spano, G. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. Int. J. Food Microbiol. 2017, 247, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Mokoena, M.P.; Chelule, P.K.; Gqaleni, N. Reduction of fumonisin B1 and zearalenone by lactic acid bacteria in fermented maize meal. J. Food Prot. 2005, 68, 2095–2099. [Google Scholar] [CrossRef]
Strain Name | AFB1 Percent Removal (%) | Strain Name | AFB1 Percent Removal (%) |
---|---|---|---|
QZ-11 | 64.43 ± 1.2 | DN-3 | 45.53 ± 0.3 |
FY-12 | 53.13 ± 0.6 | DN-7 | 10.57 ± 1.3 |
FT-9 | 20.88 ± 0.7 | FT-1 | 4.45 ± 0.5 |
DN-1 | 71.38 ± 0.2 | FJ-4 | 33.47 ± 1.5 |
Strain Site | AFB1 Residue ± SD (μg/L) | Percent Removal (%) |
---|---|---|
Control | 4.93 ± 0.2 | |
Bacterial suspension | 1.34 ± 0.1 | 72.82 ab |
No cell supernatant | 4.33 ± 1.1 | 12.17 f |
Bacterial lysis supernatant | 4.51 ± 0.3 | 8.52 f |
Cell wall isolates | 1.45 ± 0.1 | 70.59 b |
EPS | 3.18 ± 0.5 | 35.50 c |
Treatment | ||
Acetonitrile | 3.93 ± 0.2 | 20.28 e |
Methanol | 3.65 ± 0.4 | 25.96 d |
121 °C, 0.12 MPa, 20 min | 1.12 ± 0.3 | 77.28 a |
Feedstuff | Treatment | Days | |||
---|---|---|---|---|---|
0 d | 5 d | 10 d | 30 d | ||
Peanut Cake (lg CFU/g FM) | Control | 2.25 Bd | 3.12 Bc | 3.85 Bb | 5.63 Ba |
DN-1 | 2.26 Bd | 2.55 Cc | 3.86 Bb | 4.20 Ca | |
Sunflower Cake (lg CFU/g FM) | Control | 2.45 Ad | 3.39 Ac | 4.27 Ab | 6.35 Aa |
DN-1 | 2.43 Ad | 2.52 Dc | 2.87 Cb | 3.67 Da |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, S.; Xu, J.; Wu, B.; Hu, Z.; Niu, H. Isolation, Characterization, and Biopreservation of Lactobacillus brevis DN-1 to Inhibit Mold and Remove Aflatoxin B1 in Peanut and Sunflower Cakes. Agriculture 2024, 14, 698. https://doi.org/10.3390/agriculture14050698
Wang X, Wang S, Xu J, Wu B, Hu Z, Niu H. Isolation, Characterization, and Biopreservation of Lactobacillus brevis DN-1 to Inhibit Mold and Remove Aflatoxin B1 in Peanut and Sunflower Cakes. Agriculture. 2024; 14(5):698. https://doi.org/10.3390/agriculture14050698
Chicago/Turabian StyleWang, Xiaoni, Siyuan Wang, Junzhao Xu, Baiyila Wu, Zongfu Hu, and Huaxin Niu. 2024. "Isolation, Characterization, and Biopreservation of Lactobacillus brevis DN-1 to Inhibit Mold and Remove Aflatoxin B1 in Peanut and Sunflower Cakes" Agriculture 14, no. 5: 698. https://doi.org/10.3390/agriculture14050698
APA StyleWang, X., Wang, S., Xu, J., Wu, B., Hu, Z., & Niu, H. (2024). Isolation, Characterization, and Biopreservation of Lactobacillus brevis DN-1 to Inhibit Mold and Remove Aflatoxin B1 in Peanut and Sunflower Cakes. Agriculture, 14(5), 698. https://doi.org/10.3390/agriculture14050698