The Impact of Income Disparity on Food Consumption—Microdata from Rural China
Abstract
:1. Introduction
2. Theoretical Framework and Research Hypotheses
2.1. Relative Income Theory
2.2. Income Disparity among Rural Residents
2.3. Demonstration Effect
2.4. Ratchet Effect
3. Research Methods, Variable Descriptions, and Data Sources
3.1. Data Sources
3.2. Research Methods
3.2.1. Two-Way Fixed Effects Model
3.2.2. Mediation Effect Model
3.3. Variable Descriptions
3.3.1. Dependent Variable
3.3.2. Core Explanatory Variable
3.3.3. Mediating Variables
3.3.4. Control Variables
4. Empirical Results
4.1. Basic Regression
4.2. Endogeneity Discussion: Instrumental Variable
4.3. Robustness Checks
4.3.1. Sample Processing
4.3.2. Addition of Variables
4.3.3. Alternative Methods
5. Mechanism Analysis
5.1. Heterogeneity Analysis
5.1.1. Grouping by Income
5.1.2. Grouping by Educational Level
5.2. Mediation Mechanism Test
6. Further Discussion
7. Conclusions and Implications
7.1. Conclusions
7.2. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, S. Guiding the transformation of the agri-food system with a comprehensive food perspective, solidifying the foundation of food security in all aspects. Chin. Rural Econ. 2022, 12, 14–19. [Google Scholar] [CrossRef]
- Fang, F. Viewing China’s consumption potential and realization path from the consumption rate. Economist 2020, 8, 27–38. [Google Scholar] [CrossRef]
- Blinder, A.S. Distribution Effects and the Aggregate Consumption Function. J. Political Econ. 1975, 83, 447–475. [Google Scholar] [CrossRef]
- Khan, A.R.; Griffin, K.; Riskin, C. Income Distribution in Urban China during the Period of Economic Reform and Globalization. Am. Econ. Rev. 1999, 89, 296–300. [Google Scholar] [CrossRef]
- Hang, B.; Xiu, L. Income inequality, credit constraints, and household consumption. Stat. Res. 2016, 33, 73–79. [Google Scholar] [CrossRef]
- Jin, Y.; Li, H.; Wu, B. Income inequality and social status seeking: A cause of high savings rate. Econ. Q. 2011, 10, 887–912. [Google Scholar] [CrossRef]
- Hopkins, E.; Kornienko, T. Methods of Social Comparison in Games of Status; Edinburgh School of Economics Discussion Paper Series: Edinburgh, UK, 2006. [Google Scholar]
- Zhou, G.; Fan, G.; Li, L. Income inequality, material desire, and household risk financial asset investment. World Econ. 2018, 41, 53–74. [Google Scholar] [CrossRef]
- Wu, L.; Xu, C.; Cao, Y. Does income inequality expand household education consumption?—Empirical analysis based on CFPS 2014 data. J. Shanghai Univ. Financ. Econ. 2018, 20, 100–111. [Google Scholar] [CrossRef]
- Rodrigo, G.; Martín, L.; Andrea, V. Visible Consumption, Income Inequality and Social Comparisons. Evidence from Four Latin American Countries. J. Dev. Stud. 2024, 60, 511–532. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, M.; Zhang, M. Income Inequality and Educational Expenditures on Children: Evidence from the China Family Panel Studies. China Econ. Rev. 2023, 78, 101932. [Google Scholar] [CrossRef]
- Jesse, B.; Jacob, K.; Rodney, R. Signaling Status: The Impact of Relative Income on Household Consumption and Financial Decisions. Manag. Sci. 2020, 67, 1993–2009. [Google Scholar] [CrossRef]
- Jaikumar, S.; Sarin, A. Conspicuous Consumption and Income Inequality in an Emerging Economy: Evidence from India. Mark. Lett. 2015, 26, 279–292. [Google Scholar] [CrossRef]
- Sun, W.; Wang, X. Do Relative Income and Income Inequality Affect Consumption? Evidence from the Villages of Rural China. J. Dev. Stud. 2013, 49, 533–546. [Google Scholar] [CrossRef]
- Charles, M.; Lundy, J.D. The Local Joneses: Household Consumption and Income Inequality in Large Metropolitan Areas. Res. Soc. Stratif. Mobil. 2013, 34, 14–29. [Google Scholar] [CrossRef]
- Frank, R.; Levine, A.; Dijk, O. Expenditure Cascades. Rev. Behav. Econ. 2014, 1, 55–73. [Google Scholar] [CrossRef]
- Chai, A.; Kaus, W.; Kiedaisch, C. Conspicuous Spending and the Income Distribution of Social Groups. Econ. Inq. 2019, 57, 1324–1341. [Google Scholar] [CrossRef]
- Zhang, A.; Ni, P.; Ling, C. Peer effects in rural housing demand: Evidence from China. China Econ. Rev. 2022, 73, 101787. [Google Scholar] [CrossRef]
- Zhang, W. Social capital, income and subjective well-being: Evidence in rural China. Heliyon 2022, 8, e08705. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Payne, D. Characteristics of Chinese rural networks: Evidence from villages in central China. Chin. J. Sociol. 2017, 3, 74–97. [Google Scholar] [CrossRef]
- Lee, K.O.; Mori, M. Conspicuous Consumption and Household Indebtedness. Real Estate Econ. 2021, 49, 557–586. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y. The impact of urban-rural income inequality on rural residents’ consumption: “suppression effect” or “demonstration effect”. Rural Econ. 2021, 8, 18–28. [Google Scholar]
- Linssen, R.; van Kempen, L.; Kraaykamp, G. Subjective Well-Being in Rural India: The Curse of Conspicuous Consumption. Soc. Indic. Res. 2011, 101, 57–72. [Google Scholar] [CrossRef]
- Hopkins, E.; Kornienko, T. Running to Keep in the Same Place: Consumer Choice as a Game of Status. Am. Econ. Rev. 2004, 94, 1085–1107. [Google Scholar] [CrossRef]
- Brown, P.H.; Bulte, E.; Zhang, X. Positional Spending and Status Seeking in Rural China. J. Dev. Econ. 2011, 96, 139–149. [Google Scholar] [CrossRef]
- Xu, T. Income Diversification and Rural Consumption—Evidence from Chinese Provincial Panel Data. Sustainability 2017, 9, 1014. [Google Scholar] [CrossRef]
- Zhai, T.; Hu, B. A review of the theory of consumption habit formation. Econ. Rev. 2017, 2, 138–149. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Fu, Q. Effects of Common Prosperity on China’s Education Expenditure—Empirical Analysis Based on CFPS Quasi-Micro Panel Data. Int. Rev. Econ. Financ. 2024, 91, 440–455. [Google Scholar] [CrossRef]
- Wang, M.; Chao, M.; Zhang, D. The ratchet effect of rural residents’ consumption and its spatial clustering. Rural Econ. 2015, 5, 38–43. [Google Scholar]
- Wang, W.; Chen, Y.; Pei, X. Can Agricultural Trade Openness Facilitate Agricultural Carbon Reduction? Evidence from Chinese Provincial Data. J. Clean. Prod. 2024, 441, 140877. [Google Scholar] [CrossRef]
- Han, X.; Yang, S.; Chen, Y.; Wang, Y. Urban Segregation and Food Consumption: The Impacts of China’s Household Registration System. China Agric. Econ. Rev. 2019, 11, 583–599. [Google Scholar] [CrossRef]
- Yu, Y.; Feng, K.; Hubacek, K.; Sun, L. Global Implications of China’s Future Food Consumption. J. Ind. Ecol. 2016, 20, 593–602. [Google Scholar] [CrossRef]
- Rashidi Chegini, K.; Pakravan-Charvadeh, M.R.; Rahimian, M.; Gholamrezaie, S. Is There a Linkage between Household Welfare and Income Inequality, and Food Security to Achieve Sustainable Development Goals? J. Clean. Prod. 2021, 326, 129390. [Google Scholar] [CrossRef]
- Liu, Z.; Si, W. Does Aging Inhibit Sugar Consumption among Chinese Residents? J. China Agric. Univ. 2022, 9, 272–282. [Google Scholar]
- Li, L.; Bai, J.; Zhang, C. Does Out-migration Promote Meat Consumption among Rural Left-behind Population? An Empirical Analysis Based on Four Provinces: Henan, Sichuan, Anhui, and Jiangxi. J. Agric. Technol. Econ. 2019, 9, 27–37. [Google Scholar] [CrossRef]
- Bai, J.; Min, S.; Qiu, H.; Wang, X. The Impact of Population Aging on Meat Consumption in China. China Soft Sci. 2014, 11, 17–26. [Google Scholar]
- Dicken, S.J.; Batterham, R.L. The Role of Diet Quality in Mediating the Association between Ultra-Processed Food Intake, Obesity and Health-Related Outcomes: A Review of Prospective Cohort Studies. Nutrients 2022, 14, 23. [Google Scholar] [CrossRef]
- Salazar-Fernández, C.; Palet, D.; Haeger, P.A.; Román Mella, F. The Perceived Impact of COVID-19 on Comfort Food Consumption over Time: The Mediational Role of Emotional Distress. Nutrients 2021, 13, 1910. [Google Scholar] [CrossRef]
- Zheng, Z.; Henneberry, S.R. The Impact of Changes in Income Distribution on Current and Future Food Demand in Urban China. J. Agric. Resour. Econ. 2010, 35, 51–71. [Google Scholar]
- Wu, H.; Yuan, Y.-Q.; Wang, Y.-C.; Zhou, X.-F.; Liu, S.-J.; Cai, M.-Q.; He, G.-S.; Li, S.-G.; Zang, J.-J.; Chen, B. The Development of a Chinese Healthy Eating Index for School-Age Children and Its Application in Children from China Health and Nutrition Survey. Int. J. Food Sci. Nutr. 2021, 72, 280–291. [Google Scholar] [CrossRef]
- Li, X.; Wang, K.; Liu, F.; Nie, J.; Feng, Q.; Yang, Y.; Wang, S. Association between Dietary Quality and Perceived Stress Based on the CHNS Database. J. Public Health Prev. Med. 2023, 20–24. Available online: https://pesquisa.bvsalud.org/gim/resource/fr/wpr-996408 (accessed on 20 April 2024).
- Zakari, A.; Toplak, J.; Tomažič, L.M. Exploring the Relationship between Energy and Food Security in Africa with Instrumental Variables Analysis. Energies 2022, 15, 5473. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Z.; Wang, H. Internet Development and Urban–Rural Consumption Inequality: Evidence from Chinese Cities. Sustainability 2023, 15, 9755. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, K.; Taghizadeh-Hesary, F. Is income inequality a stumbling block to the global natural gas market? Energy Econ. 2023, 118, 106520. [Google Scholar] [CrossRef]
- Pan, L.; Biru, A.; Lettu, S. Energy Poverty and Public Health: Global Evidence. Energy Econ. 2021, 101, 105423. [Google Scholar] [CrossRef]
- Xiao, Z.; Chen, K.; Liu, Z. Analysis of the heterogeneous effects of residents’ leverage on consumption—Based on a causal inference method integrating machine learning. Econ. Perspect. 2023, 12, 26–40. [Google Scholar]
- Yuan, Y.-Q.; Li, F.; Dong, R.-H.; Chen, J.-S.; He, G.-S.; Li, S.-G.; Chen, B. The Development of a Chinese Healthy Eating Index and Its Application in the General Population. Nutrients 2017, 9, 977. [Google Scholar] [CrossRef]
- Liu, W. Income Disparity, Social Capital, and Household Consumption. Chin. Rural. Econ. 2018, 6, 84–100. [Google Scholar]
- Dokova, K.G.; Feigin, V.L. Trends in Stroke Burden in Central and Eastern Europe 1990–2019. Neuroepidemiology 2022, 56, 333–344. [Google Scholar] [CrossRef]
- Wang, Z.; Li, T.; Xu, Q. Gradual or Sudden? Research on the Law of Structural Transformation of Urban Residents’ Food Consumption. Econ. Theory Econ. Manag. 2012, 9, 32–39. [Google Scholar]
- Wu, B.; Chen, Y.; Yi, F. The Impact of Changes in Urban Household Income Distribution on Food Consumption: A Comparison of Dynamic and Static Simulation Results. Mod. Agric. Res. 2019, 40, 264–272. [Google Scholar] [CrossRef]
- Conrad, M.; Grown, C.; Givious, S. Food expenditure shares and income elasticities in Zimbabwe: Accounting for gender and poverty differences. Cogent Econ. Financ. 2022, 10, 2101241. [Google Scholar] [CrossRef]
- Zhu, W.; Li, G.; Chen, Y. Income Distribution, Hukou Disparity, and Beef Consumption among Urban Residents: An Empirical Study Based on the Generalized Double-Log Model. China Agric. Resour. Reg. Plan. 2021, 42, 60–73. [Google Scholar]
- Luo, F.; Li, X. Dynamic Semi-Parametric Panel Data Analysis of Urban Residents’ Consumption Demand in China. Soc. Sci. China 2009, 30, 41–52. [Google Scholar]
- Han, L.; Du, C. Income inequality, borrowing level, and regional and urban-rural differences in resident consumption. Econ. Res. J. 2012, 47, 15–27. [Google Scholar]
- Lawrence, R.S. Meeting the challenge of food security and a sustainable food system. In Proceedings of the Beijing Forum (2006) Reflections on Civilization and Shared Prosperity: Reflections on Human Civilization: “Population and Regional Development”, Beijing, China, 27 October 2006; Population Sub-Forum Papers or Abstracts. Volume II, pp. 80–90. [Google Scholar]
Variable | Abbreviation | Units | Sample Size | Mean Value | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|---|---|---|
Grains | gr | g/day | 32,004 | 1517.743 | 600.5739 | 0 | 2716.748 |
Vegetables and edible fungi | vg | g/day | 32,004 | 918.3966 | 475.4367 | 0 | 1915 |
Tubers | sl | g/day | 32,004 | 109.8674 | 158.5111 | 0 | 500 |
Beans | bn | g/day | 32,004 | 134.4055 | 168.1833 | 0 | 580 |
Eggs | eg | g/day | 32,004 | 74.30256 | 84.45381 | 0 | 280 |
Meat | mt | g/day | 32,004 | 182.8873 | 178.3328 | 0 | 620 |
Aquatic products | fs | g/day | 32,004 | 67.70194 | 117.0522 | 0 | 400 |
Poultry | ql | g/day | 32,004 | 31.41392 | 73.34061 | 0 | 275 |
Fruits and nuts | fr | g/day | 32,004 | 121.2411 | 234.6905 | 0 | 860 |
Dairy products | mk | g/day | 32,004 | 22.57268 | 101.1456 | 0 | 600 |
Logarithmic income | inc | - | 32,004 | 8.634919 | 1.075818 | 0 | 12.88736 |
Rural Thiel index | TPi | - | 32,004 | 0.35978774 | 1.179068 | 0.09256049 | 1 |
Educational level | edu | 0 = below primary school; 1 = primary school; 2 = junior high school; 3 = high school; 4 = secondary vocational school; 5 = College or university; 6 = Master’s degree or above | 32,004 | 1.425728 | 1.286729 | 0 | 6 |
Marital status | mar | 0 = Living alone (unmarried, divorced, widowed, etc.); 1 = married | 32,004 | 0.7001312 | 0.4582074 | 0 | 1 |
Age | age | year | 32,001 | 42.88155 | 20.34006 | 0.7 | 99.4 |
Gender | gen | 0 = female; 1 = male | 32,004 | 0.4891264 | 0.4998896 | 0 | 1 |
Household size | hhs | person | 32,004 | 3.970992 | 1.662422 | 1 | 13 |
Whether they have health insurance | med | 0 = No; 1 = Yes | 32,004 | 0.6506999 | 0.4767564 | 0 | 1 |
Have you been sick in the last week | sik | 0 = No; 1 = Yes | 32,004 | 0.1360455 | 0.3428422 | 0 | 1 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | |
---|---|---|---|---|---|---|---|---|---|---|
Variable | Grains | Vegetables and Edible Fungi | Beans | Tubers | Eggs | Meat | Aquatic Products | Poultry | Dairy Products | Fruits and Nuts |
Rural Thiel index | −149.9 *** | −158.0 *** | −16.86 *** | 14.76 *** | −1.436 | 25.28 *** | 3.027 | 8.474 *** | 11.54 *** | −6.635 |
(14.43) | (12.01) | (4.436) | (3.786) | (2.252) | (4.327) | (2.986) | (1.915) | (2.744) | (6.120) | |
Logarithmic income | −17.70 *** | 8.331 *** | 4.664 *** | −4.885 *** | 5.043 *** | 22.61 *** | 9.346 *** | 5.739 *** | 5.421 *** | 16.06 *** |
(3.073) | (2.558) | (0.945) | (0.807) | (0.480) | (0.922) | (0.636) | (0.408) | (0.585) | (1.304) | |
Educational level | −37.57 *** | −11.29 *** | 11.07 *** | −4.680 *** | 4.424 *** | 17.00 *** | 6.348 *** | 3.502 *** | 6.374 *** | 12.52 *** |
(2.674) | (2.225) | (0.822) | (0.702) | (0.417) | (0.802) | (0.553) | (0.355) | (0.508) | (1.134) | |
Have you been sick in the last week | −59.77 *** | 12.55* | −5.644 ** | −0.0321 | −3.237 ** | −10.04 *** | −7.652 *** | 0.0352 | 3.040 * | 16.61 *** |
(8.700) | (7.242) | (2.675) | (2.283) | (1.358) | (2.609) | (1.800) | (1.155) | (1.655) | (3.691) | |
Whether they have health insurance | 25.90 *** | 28.88 *** | 4.530 * | 1.195 | 0.811 | 22.89 *** | −3.681 ** | 1.778 | −0.828 | 6.945 * |
(8.472) | (7.052) | (2.605) | (2.223) | (1.322) | (2.541) | (1.753) | (1.124) | (1.611) | (3.594) | |
Gender | 242.9 *** | 73.60 *** | 9.743 *** | 10.91 *** | 2.892 *** | 24.12 *** | 6.724 *** | 3.574 *** | −4.040 *** | −19.08 *** |
(5.915) | (4.924) | (1.819) | (1.552) | (0.923) | (1.774) | (1.224) | (0.785) | (1.125) | (2.509) | |
Marital status | −32.09 *** | 0.732 | −6.595 ** | 2.314 | 3.119 ** | 3.815 | 7.739 *** | 0.139 | 6.502 *** | 4.776 |
(9.540) | (7.941) | (2.934) | (2.504) | (1.489) | (2.861) | (1.974) | (1.266) | (1.814) | (4.047) | |
Age | 48.47 *** | 26.74 *** | 2.178 *** | 2.513 *** | −0.585 *** | 2.401 *** | 0.593 *** | 0.370 *** | −3.928 *** | −2.011 *** |
(0.798) | (0.664) | (0.245) | (0.209) | (0.125) | (0.239) | (0.165) | (0.106) | (0.152) | (0.339) | |
Quadratic term for age | −0.534 *** | −0.278 *** | −0.0199 *** | −0.0303 *** | 0.00662 *** | −0.0291 *** | −0.00689 *** | −0.00590 *** | 0.0417 *** | 0.0128 *** |
(0.00890) | (0.00741) | (0.00274) | (0.00234) | (0.00139) | (0.00267) | (0.00184) | (0.00118) | (0.00169) | (0.00378) | |
Household size | 6.631 *** | 0.474 | 0.562 | 0.476 | −1.698 *** | −2.280 *** | −3.226 *** | 0.661 ** | −3.125 *** | −3.253 *** |
(1.986) | (1.653) | (0.611) | (0.521) | (0.310) | (0.596) | (0.411) | (0.264) | (0.378) | (0.843) | |
Control | 393.7 *** | 122.6 *** | 5.509 | 74.25 *** | 45.53 *** | −180.0 *** | −75.56 *** | −50.45 *** | 98.49 *** | −39.70 ** |
(39.38) | (32.78) | (12.11) | (10.33) | (6.148) | (11.81) | (8.150) | (5.227) | (7.490) | (16.71) | |
Obs. | 31352 | 31352 | 31352 | 31352 | 31352 | 31352 | 31352 | 31352 | 31352 | 31352 |
R2 | 0.671 | 0.591 | 0.518 | 0.677 | 0.499 | 0.650 | 0.575 | 0.543 | 0.475 | 0.544 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | |
---|---|---|---|---|---|---|---|---|---|---|
Grains | Vegetables and Edible Fungi | Beans | Tubers | Eggs | Meat | Aquatic Products | Poultry | Dairy Products | Fruits and Nuts | |
Rural Thiel index | −411.953 *** | −62.573 | 52.163 ** | 0.104 | 55.620 *** | 202.636 *** | 33.758 ** | 39.731 *** | 42.322 *** | 3.920 |
(80.814) | (63.648) | (23.966) | (19.493) | (13.345) | (24.680) | (16.183) | (11.344) | (13.309) | (34.489) | |
Control | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Obs. | 23514 | 23514 | 23514 | 23514 | 23514 | 23514 | 23514 | 23514 | 23514 | 23514 |
Kleibergen-Paap rk LM statistic | 606.166 *** | |||||||||
Kleibergen-Paap rk Wald F statistic | 529.158 | |||||||||
Stock-Yogo bias critical value | 16.38 (10%) |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Grains | Vegetables and Edible Fungi | Beans | Tubers | Eggs | Meat | Aquatic Products | Poultry | Dairy Products | Fruits and Nuts | |
Sample processing | Income inequality within groups | −135.7 *** | −172.9 *** | −21.85 *** | 23.90 *** | −8.774 ** | 21.23 *** | −4.710 | 10.05 *** | 15.38 *** | 1.310 |
(21.81) | (18.71) | (6.976) | (5.928) | (3.469) | (6.543) | (4.680) | (2.833) | (3.374) | (9.395) | ||
Join the rural income gap between communities in the same province | Income inequality within groups | −166.8 *** | −141.4 *** | −16.50 *** | 16.51 *** | 1.610 | 24.49 *** | 3.307 | 9.813 *** | 11.16 *** | −3.644 |
(14.73) | (12.26) | (4.531) | (3.867) | (2.299) | (4.419) | (3.049) | (1.955) | (2.802) | (6.250) | ||
Income gap between groups | 22.95 *** | −22.53 *** | −0.487 | −2.385 ** | −4.147 *** | 1.074 | −0.382 | −1.824 *** | 0.523 | −4.073 ** | |
(4.080) | (3.395) | (1.255) | (1.071) | (0.637) | (1.224) | (0.845) | (0.542) | (0.776) | (1.731) | ||
Join the urban–rural income gap between communities in the same province | Income inequality within groups | −167.8 *** | −146.6 *** | −18.19 *** | 16.66 *** | 0.942 | 24.28 *** | 3.090 | 8.685 *** | 11.59 *** | −2.511 |
(14.65) | (12.20) | (4.508) | (3.847) | (2.287) | (4.396) | (3.034) | (1.946) | (2.788) | (6.217) | ||
Income gap between groups | 47.02 *** | −29.82 *** | 3.497 * | −4.992 *** | −6.241 *** | 2.611 | −0.166 | −0.555 | −0.123 | −10.83 *** | |
(6.824) | (5.682) | (2.100) | (1.792) | (1.065) | (2.048) | (1.413) | (0.906) | (1.299) | (2.896) | ||
Control variable | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Obs | 31352 | 31352 | 31352 | 31352 | 31352 | 31352 | 31352 | 31352 | 31352 | 31352 |
Nonlinear Model | Linear Model | Total Utility | Low Limit | High Limit | |
---|---|---|---|---|---|
Grains | 71.69 | 73.34 | 57.21544 | −144.825 | 259.2561 |
Vegetables and edible fungi | 103.82 | 51.27 | 57.71213 | −98.4196 | 213.8439 |
Beans | 20.93 | 19.73 | 38.34891 | −35.0994 | 111.7972 |
Tubers | 1.46 | −0.33 | 5.039404 | −148.828 | 158.9068 |
Eggs | 3.25 | 2.74 | 6.556812 | −26.7925 | 39.90616 |
Meat | 22.48 | 16.21 | 41.66597 | −155.745 | 239.0773 |
Aquatic products | 3.22 | 4.04 | 2.179254 | −130.329 | 134.6873 |
Poultry | 27.74 | 13.59 | 36.5173 | −46.2366 | 119.2712 |
Dairy products | 1.45 | 9.08 | 17.13377 | −91.9957 | 126.2633 |
Fruits and nuts | −12.10 | 8.00 | 3.304978 | −75.4168 | 82.02672 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Low-Income Group 20% | Lower-Middle-Income Group 20% | Middle-Income Group 20% | Upper-Middle-Income Group 20% | High-Income Group 20% | |
Grains | −30.60 | −285.4 *** | −258.4 *** | −100.1 *** | −12.38 |
(28.52) | (33.25) | (34.74) | (33.81) | (34.73) | |
Vegetables and edible fungi | −129.1 *** | −248.5 *** | −135.0 *** | −105.6 *** | −137.8 *** |
(24.12) | (27.71) | (29.08) | (28.72) | (28.48) | |
Beans | −4.435 | −25.74 *** | −6.557 | 16.47 | −48.96 *** |
(8.326) | (9.473) | (10.42) | (10.86) | (12.07) | |
Tubers | 13.36 * | −0.272 | 3.965 | 23.89 *** | 22.10 ** |
(7.956) | (8.537) | (8.983) | (8.793) | (9.266) | |
Eggs | −5.191 | −6.384 | −6.770 | −2.460 | 0.826 |
(4.290) | (4.848) | (5.299) | (5.537) | (5.976) | |
Meat | 20.26 *** | 15.06 | 21.14 ** | 22.09 ** | 16.47 |
(7.708) | (9.419) | (10.22) | (10.75) | (11.56) | |
Aquatic products | 12.61 *** | 16.74 *** | 6.357 | −8.113 | −26.66 *** |
(4.676) | (6.123) | (7.214) | (7.607) | (8.656) | |
Poultry | 6.572 ** | 1.102 | 5.974 | 5.349 | 7.440 |
(3.041) | (3.917) | (4.629) | (4.812) | (5.544) | |
Dairy products | 8.919 ** | 0.888 | 16.33 *** | 9.940 | 31.45 *** |
(4.068) | (4.312) | (5.721) | (7.640) | (9.058) | |
Fruits and nuts | −19.73 * | −37.09 *** | −14.46 | 23.84 | 37.61 ** |
(10.45) | (12.90) | (14.83) | (14.81) | (17.31) | |
Control | Y | Y | Y | Y | Y |
Obs. | 6014 | 6336 | 6335 | 6335 | 6332 |
(1) | (2) | (3) | |
---|---|---|---|
Primary School Graduation or Below | Junior High School–Vocational High School | Associate Degree, Bachelor’s Degree, or Higher | |
Grains | −237.9 *** | −154.7 *** | 104.9 |
(32.50) | (21.85) | (97.36) | |
Vegetables and edible fungi | −156.9 *** | −151.5 *** | −51.53 |
(27.97) | (18.24) | (73.69) | |
Beans | 2.809 | −20.02 *** | −6.476 |
(10.02) | (7.052) | (34.58) | |
Tubers | −0.855 | 22.32 *** | 91.51 *** |
(8.863) | (5.815) | (23.95) | |
Eggs | −4.673 | 3.382 | −13.78 |
(5.097) | (3.537) | (16.51) | |
Meat | 35.36 *** | 28.71 *** | 59.34 * |
(9.766) | (6.878) | (31.19) | |
Aquatic products | 0.839 | 3.494 | 41.29 * |
(6.815) | (4.841) | (24.91) | |
Poultry | 4.675 | 10.84 *** | −18.90 |
(4.366) | (3.135) | (17.24) | |
Dairy products | 4.100 | 11.70 *** | 36.59 |
(5.080) | (4.161) | (30.32) | |
Fruits and nuts | −23.76 * | −3.500 | 41.59 |
(14.08) | (9.873) | (52.40) | |
Control | Y | Y | Y |
Obs. | 17522 | 13830 | 924 |
Demonstration Effect | Ratchet Effect | |||||||
---|---|---|---|---|---|---|---|---|
Total Effect | Confidence Interval | Conclusion | Total Effect | Confidence Interval | Conclusion | |||
Grains | 5.5165 *** | 3.424836 | 7.608351 | Mediating Effect | 30.98 *** | 19.65046 | 42.32058 | Mediating Effect |
Vegetables and edible fungi | 4.2948 ** | 1.863913 | 6.725749 | Mediating Effect | 13.090 *** | 6.624426 | 19.55711 | Mediating Effect |
Beans | 10.298 *** | 7.733236 | 12.86426 | Mediating Effect | 8.7671 *** | 6.245304 | 11.28903 | Mediating Effect |
Tubers | 5.9634 *** | 3.928116 | 7.998826 | Mediating Effect | 15.386 *** | 11.87048 | 18.90248 | Mediating Effect |
Eggs | 1.4790 ** | 1.014835 | 1.943268 | Mediating Effect | 0.7725 | −0.59471 | 2.139804 | Dose not exhibit a Mediating Effect |
Meat | 9.185 *** | 5.13822 | 23.23186 | Mediating Effect | 5.4826 *** | 1.50477 | 9.460422 | Mediating Effect |
Aquatic products | 1.2558 ** | 0.3141786 | 2.197547 | Mediating Effect | 3.9069 *** | 1.943817 | 5.870068 | Mediating Effect |
Poultry | 0.6680 ** | 0.2174477 | 1.118662 | Mediating Effect | 1.8350 *** | 1.066931 | 2.60312 | Mediating Effect |
Dairy products | 0.6986 *** | 0.3657516 | 1.031629 | Mediating Effect | 0.8527 * | 0.123332 | 1.828925 | Mediating Effect |
Fruits and nuts | 1.6547 * | 0.3989474 | 2.910584 | Mediating Effect | 12.492 *** | 9.419205 | 15.5666 | Mediating Effect |
Food Group | CHEI Ingredient | Recommended Intakes (g/d) | Score | |
---|---|---|---|---|
Lower Limit 0 Points | Maximum 10 Points | |||
Subsistence type | Grain | 50~150 | 0 | ≥2.5 SP/1000 kcal |
Vegetables and edible fungi | 300~500 | 0 | ≥1.9 SP/1000 kcal | |
Well-off type | Tubers | 50~100 | 0 | ≥0.3 SP/1000 kcal |
Legumes | 25~35 | 0 | ≥0.4 SP/1000 kcal | |
Egg | 40~50 | 0 | ≥0.5 SP/1000 kcal | |
Livestock meat | 40~75 | ≥5.6 SP/1000 kcal | ≤0.4 SP/1000 kcal | |
Enjoyment type | Aquatic products | 40~75 | 0 | ≥0.6 SP/1000 kcal |
Poultry | 40~75 | 0 | ≥0.3 SP/1000 kcal | |
Fruits and nuts | 200~350 | 0 | ≥1.1 SP/1000 kcal | |
Dairy products | 300~500 | 0 | ≥0.5 SP/1000 kcal |
(1) | |
---|---|
Variable | CHEI |
Rural Thiel index | 1.143 *** |
(0.332) | |
Logarithmic income | 1.276 *** |
(0.0707) | |
Educational level | 1.165 *** |
(0.0617) | |
Have you been sick in the last week | 0.368 * |
(0.201) | |
Whether they have health insurance | −0.0245 |
(0.195) | |
Gender | −0.790 *** |
(0.136) | |
Marital status | 0.591 *** |
(0.219) | |
Age | −0.172 *** |
(0.0184) | |
Quadratic term for age | 0.00157 *** |
(0.000205) | |
Household size | 0.227 *** |
(0.0458) | |
Constant | 41.03 *** |
(0.912) | |
Obs. | 31352 |
R2 | 0.602 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Chen, K.; Yan, C.; Tang, Z. The Impact of Income Disparity on Food Consumption—Microdata from Rural China. Agriculture 2024, 14, 689. https://doi.org/10.3390/agriculture14050689
Li J, Chen K, Yan C, Tang Z. The Impact of Income Disparity on Food Consumption—Microdata from Rural China. Agriculture. 2024; 14(5):689. https://doi.org/10.3390/agriculture14050689
Chicago/Turabian StyleLi, Jing, Kelin Chen, Chao Yan, and Zhong Tang. 2024. "The Impact of Income Disparity on Food Consumption—Microdata from Rural China" Agriculture 14, no. 5: 689. https://doi.org/10.3390/agriculture14050689