Delayed Sowing Can Improve Potassium Utilization Efficiency and Grain Potassium Concentration in Winter Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Crop Measurements
2.2.1. Tillers and AGK
2.2.2. K Transport Content and Contribution Ratio to Grain
2.2.3. Yield and Components
2.2.4. KUE and Components
2.2.5. NNI and KNI
2.3. Statistical Analysis
3. Results
3.1. KNI
3.2. Grain Yield Formation and GKC
3.3. Number of Tillers
3.4. K Content
3.5. K Transport
3.6. KUE and Its Components
3.7. Correlations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
K | potassium |
KUE | K use efficiency |
KNI | K nutrition index |
UPE | K uptake efficiency |
UTE | K utilization efficiency |
GKC | grain K concentration |
AGK | above-ground K uptake |
SN23 | Shannong 23 |
TN18 | Tainong 18 |
N | nitrogen |
P | phosphorus |
KTpre | K transport content from pre-anthesis accumulation in vegetative organs to grain |
KTpost | K transport content from post-anthesis absorption to grain |
KCRpre | K contribution ratio of pre-anthesis accumulation in vegetative organs to grain |
KCRpost | K contribution ratio of post-anthesis absorption to grain |
References
- Wang, X.S.; Mi, X.T.; Sun, L.Q.; He, G.; Wang, Z.H. Straw return cannot prevent soil potassium depletion in wheat fields of drylands. Eur. J. Agron. 2023, 143, 126728. [Google Scholar] [CrossRef]
- Adams, E.; Shin, R. Transport, signaling, and homeostasis of potassium and sodium in plants. J. Integr. Plant Biol. 2014, 56, 231–249. [Google Scholar] [CrossRef] [PubMed]
- Imtiza, H.; Mir, A.R.; Corpas, F.J.; Hayat, S. Impact of potassium starvation on the uptake, transportation, photosynthesis, and abiotic stress tolerance. Plant Growth Regul. 2023, 99, 429–448. [Google Scholar]
- Dong, H.Z.; Kong, X.Q.; Li, W.J.; Tang, W.; Zhang, D.G. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crops Res. 2010, 119, 106–113. [Google Scholar] [CrossRef]
- Lago, B.C.; Favarin, J.L.; Almeida, R.E.M.D.; Junior, C.P.; Oliveira, S.M.D.; Tezotto, T.; Reis, A.F.D.B.; Siebecker, M.G. Potassium application timing to improve corn K-fertilizer use in the oat-corn sequence: A tracer study for high yielding corn. J. Plant Nutr. 2023, 46, 618–629. [Google Scholar] [CrossRef]
- Tan, D.; Liu, Z.; Jiang, L.; Luo, J.; Li, J. Long-term potash application and wheat straw return reduced soil potassium fixation and affected crop yields in North China. Nutr. Cycl. Agroecosyst. 2017, 108, 121–133. [Google Scholar] [CrossRef]
- Bourke, R.M. Influence of nitrogen and potassium fertilizer on growth of sweet potato (Ipomoea batatas) Papua New Guinea. Field Crops Res. 1985, 12, 363–375. [Google Scholar] [CrossRef]
- Yan, S.C.; Wu, Y.; Fan, J.L.; Zhang, F.C.; Guo, J.J.; Zheng, J.; Wu, L.F. Quantifying grain yield, protein, nutrient uptake and utilization of winter wheat under various drip fertigation regimes. Agric. Water Manag. 2022, 261, 107380. [Google Scholar] [CrossRef]
- Wu, X.W.; Wang, D.; Riaz, M.; Zhang, L.; Jiang, C.C. Investigating the effect of biochar on the potential of increasing cotton yield, potassium efficiency and soil environment. Ecotoxicol. Environ. Saf. 2019, 182, 109451. [Google Scholar] [CrossRef]
- Sauerbeck, D.R.; Helal, H.M. Factors affecting the nutrient efficiency of plants. In Genetic Aspects of Plant Mineral Nutrition; El Bassam, N., Dambroth, M., Loughman, B.C., Eds.; Martinus Nijhoff: Dordrecht, The Netherlands, 1990; pp. 361–372. [Google Scholar]
- Du, X.Q.; Wang, F.L.; Li, H.; Jing, S.; Yu, M.; Li, J.G.; Wu, W.H.; Kudla, J.; Wang, Y. The Transcription Factor MYB59 Regulates K+/NO3− Translocation in the Arabidopsis Response to Low K+ Stress. Plant Cell 2019, 31, 699–714. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; She, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
- Pettigrew, W.T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 2008, 133, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X. A plan for efficient use of nitrogen fertilizers. Nature 2017, 543, 322–323. [Google Scholar] [CrossRef] [PubMed]
- Baligar, V.C.; Fageria, N.K.; He, Z.L. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 2001, 32, 921–950. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R.; Greenwood, D.J.; Hammond, J.P. Genetic Modifications to Improve Phosphorus Acquisition by Roots, Proceedings of the Conference of the International Fertiliser Society, Cambridge, UK, 15 December 2005; IFS: York, UK, 2005. [Google Scholar]
- White, P.J.; Bown, P.H. Plant nutrient for sustainable development and global health. Ann. Bot. 2010, 105, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- White, P.J. Improving potassium acquisition and utilization by crop plants. J. Plant Nutri. Soil Sci. 2013, 176, 305–316. [Google Scholar] [CrossRef]
- Zhan, A.; Zou, C.Q.; Ye, Y.L.; Liu, Z.H.; Cui, Z.L.; Chen, X.P. Estimating on-farm wheat yield response to potassium and potassium uptake requirement in China. Field Crops Res. 2016, 191, 13–19. [Google Scholar] [CrossRef]
- Lemaire, G.; Sinclair, T.; Sadras, V.; Bélanger, G. Allometric approach to crop nutrition and implications for crop diagnosis and phenotyping. A review. Agron. Sustain. Dev. 2019, 39, 27. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Liu, C.; Qin, H.; Sun, F.; Liu, J.; Lyu, M.; Xing, Y.; Tian, G.; Zhu, Z.; et al. Appropriate increasing potassium supply alleviates the inhibition of high nitrogen on root growth by regulating antioxidant system, hormone balance, carbon assimilation and transportation in apple. Sci. Hortic. 2023, 311, 111828. [Google Scholar] [CrossRef]
- Hu, W.S.; Ren, T.; Meng, F.J.; Cong, R.H.; Li, X.K.; White, P.J.; Lu, J.W. Leaf photosynthetic capacity is regulated by the interaction of nitrogen and potassium through coordination of CO2 diffusion and carboxylation. Physiol. Plant. 2019, 167, 418–432. [Google Scholar] [CrossRef]
- Yan, Y.Y.; Duan, F.Y.; Li, X.; Zhao, R.L.; Hou, P.; Zhao, M.; Li, S.K.; Wang, Y.H.; Dai, T.B.; Zhou, W.B. Photosynthetic capacity and assimilate transport of the lower canopy influence maize yield under high planting density. Plant Physiol. 2024, kiae204. [Google Scholar] [CrossRef] [PubMed]
- Molero, G.; Reynolds, M.P. Spike photosynthesis measured at high throughput indicates genetic variation independent of flag leaf photosynthesis. Field Crops Res. 2020, 255, 107866. [Google Scholar] [CrossRef]
- Dawson, A.E.; Bedford, A.J.; Hamilton, R.T.; Shand, M.J. The effect of potassium fertilisation and timing on potassium uptake, grain yield and grain quality in a spring sown wheat crop. Agron. N. Z. 2018, 48, 13–23. [Google Scholar]
- Wang, L. Study on the price fluctuate of potassium in China. Price Theory Pr. 2012, 2, 44–45. [Google Scholar]
- Zheng, C.; Yang, X.; Liu, K.X. Effects of Potassium Application and Straw Returning on Potassium Management and Benefit of Banana. Trans. ASABE 2021, 64, 1511–1518. [Google Scholar] [CrossRef]
- Yadav, S.; Kanwar, R.S.; Patil, J.A.; Tomar, D. Effects of Heterodera avenaeon the absorption and translocation of N, P, K, and Zn from the soil in wheat. J. Plant Nut. 2020, 43, 17–20. [Google Scholar] [CrossRef]
- Ye, T.H.; Xue, X.X.; Lu, J.W.; Hou, W.F.; Ren, T.; Cong, R.H.; Li, X.K. Yield and potassium uptake of rice as affected by potassium rate in the middle reaches of the Yangtze River, China. Agron. J. 2020, 112, 1318–1329. [Google Scholar] [CrossRef]
- Yang, J.; Lai, X.; Shen, Y. Response of dual-purpose winter wheat yield and its components to sowing date and cutting timing in a semiarid region of China. Crop Sci. 2021, 62, 425–440. [Google Scholar] [CrossRef]
- Anderson, W.K.; Smith, W.R. Yield advantage of two semi-dwarf compared with two tall wheats depends on sowing time. Aust. J. Agric. Res. 1990, 41, 811–826. [Google Scholar] [CrossRef]
- Widdowson, F.V.; Penny, A.; Darby, R.J.; Bird, E.; Hewitt, M.V. Amounts of NO3-N and NH4-N in soil, from autumn to spring, under winter wheat and their relationship to soil type, sowing date, previous crop and N uptake at Rothamsted, Woburn and Saxmundham, 1979–85. J. Agric. Sci. 1987, 108, 73–95. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.J.; Xu, H.C.; Dong, S.X.; Chu, J.P.; Dai, X.L.; He, M.R. Optimized nitrogen allocation favours improvement in canopy photosynthetic nitrogen-use efficiency: Evidence from late-sown winter wheat. Environ. Exp. Bot. 2019, 159, 75–86. [Google Scholar] [CrossRef]
- Tao, F.; Yokozawa, M.; Liu, J.Y.; Zhang, Z. Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Clim. Res. 2008, 38, 83–94. [Google Scholar] [CrossRef]
- Wang, J.; Wang, E.; Yang, X.; Zhang, F.; Yin, H. Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Clim. Change 2012, 113, 825–840. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, X.; Chen, S.; Pei, D.; Liu, C. Effects of harvest and sowing time on the performance of the rotation of winter wheat-summer maize in the North China Plain. Ind. Crops Prod. 2007, 25, 239–247. [Google Scholar] [CrossRef]
- Yin, L.J.; Dai, X.L.; He, M.R. Delayed sowing improves nitrogen utilization efficiency in winter wheat without impacting yield. Field Crops Res. 2018, 221, 90–97. [Google Scholar] [CrossRef]
- Yin, L.J.; Liu, K.Z.; Li, L.L.; Wei, M.M.; Yang, R.; Xue, K.Y.; Cao, Z.C.; Zhang, C.X.; Li, Y.; Wu, X.; et al. Late-sown winter wheat requires less nitrogen input but maintains high grain yield. Agron. J. 2020, 112, 1992–2005. [Google Scholar] [CrossRef]
- Yin, L.J.; Zhang, C.X.; Liu, K.Z.; Wang, X.Y. Low-tillering winter wheat cultivars are more adaptable to late sowing. J. Agric. Sci. 2021, 158, 870–883. [Google Scholar] [CrossRef]
- Justes, E.; Mary, B.; Meynard, J.M.; Machet, J.N.; Thelier-Huche, L. Determination of a critical nitrogen dilution curve for winter wheat crops. Ann. Bot. (Lond.) 1994, 74, 397–407. [Google Scholar] [CrossRef]
- Rose, T.J.; Rengel, Z.; Ma, Q.; Bowden, J.W. Postflowering supply of P, but not K, is required for maximum canola seed yields. Eur. J. Agron. 2008, 28, 371–379. [Google Scholar] [CrossRef]
- Ding, J.F.; Li, F.J.; Xu, D.Y.; Wu, P.; Zhu, M.; Li, C.Y.; Zhu, X.K.; Chen, Y.L.; Guo, W.S. Tillage and nitrogen managements increased Wheat yield through promoting vigor growth and production of tillers. Agron. J. 2020, 113, 1640–1652. [Google Scholar] [CrossRef]
- Whaley, J.M.; Sparkes, D.L.; Foulkes, M.J.; Spink, J.H.; Semere, T.; Scott, R.K. The physiological response of winter wheat to relations in plant density. Ann. Appl. Biol. 2000, 137, 167–177. [Google Scholar] [CrossRef]
- Berry, P.M.; Spink, J.H.; Foulkes, M.J.; Wade, A. Quantifying the contributions and losses of dry matter from non-surviving shoots in four cultivars of winter wheat. Field Crops Res. 2003, 80, 111–121. [Google Scholar] [CrossRef]
- Weiss, A.; Hays, C.J.; Won, J. Assessing winter wheat responses to climate change scenarios: A simulation study in U.S. Great Plains. Clim. Change 2003, 58, 119–148. [Google Scholar] [CrossRef]
- Dordas, C.A. Nitrogen nutrition index and its relationship to N use efficiency in linseed. Eur. J. Agron. 2011, 34, 124–132. [Google Scholar] [CrossRef]
- Dordas, C.A. Nitrogen nutrition index and leaf chlorophyll concentration and its relationship with nitrogen use efficiency in barley (Hordeum vulgare L.). J. Plant Nutr. 2017, 40, 1190–1203. [Google Scholar] [CrossRef]
- Hu, D.W.; Sun, Z.P.; Han, H.Z.; Zhang, H. Nitrogen nutrition index and its relationship with N use efficiency, tuber yield, radiation use efficiency, and leaf parameters in potatoes. J. Integr. Agric. 2014, 13, 1008–1016. [Google Scholar] [CrossRef]
- Zhang, G.X.; Liu, S.J.; Dong, Y.J.; Liao, Y.C.; Han, J. A nitrogen fertilizer strategy for simultaneously increasing wheat grain yield and protein content: Mixed application of controlled-release urea and normal urea. Field Crops Res. 2022, 277, 108405. [Google Scholar] [CrossRef]
- Hu, L.; Tu, B.; Yang, W.; Yuan, H.; Li, J.L.; Guo, L.A.; Zheng, L.; Chen, W.L.; Zhu, X.B.; Wang, Y.P.; et al. Mitochondria-Associated Pyruvate Kinase Complexes Regulate Grain Filling in Rice. Plant Physiol. 2020, 183, 1073–1087. [Google Scholar] [CrossRef]
- Spyridon, D.K.; Despo, K.P.; Alexandros, D. Cultivars and seasonal effects on the contribution of pre-anthesis assimilates to safflower yield. Field Crops Res. 2004, 90, 263–274. [Google Scholar]
Season | Cultivar | Sowing Date | Grain Yield (kg ha−1) | Spike Number (104 ha−1) | Grain Number Per Spike | Thousand Grain Weight (g) | GKC (%) |
---|---|---|---|---|---|---|---|
2021–2022 | SN23 | 26-Sep | 9210.6 ± 285.3a | 702.5 ± 28.1a | 34.6 ± 1.5c | 39.1 ± 2.1a | 0.65 ± 0.021b |
8-Oct | 9316.5 ± 306.2a | 665.3 ± 20.1b | 37.2 ± 2.0b | 39.5 ± 2.0a | 0.67 ± 0.020b | ||
22-Oct | 9385.1 ± 151.8a | 590.1 ± 26.8c | 41.5 ± 0.7a | 39.4 ± 2.3a | 0.71 ± 0.015a | ||
TN18 | 26-Sep | 9482.6 ± 361.7a | 717.6 ± 10.6a | 32.1 ± 1.8c | 38.1 ± 1.8a | 0.67 ± 0.013b | |
8-Oct | 9681.1 ± 112.1a | 680.6 ± 27.5b | 36.4 ± 2.5b | 38.5 ± 1.5a | 0.68 ± 0.014b | ||
22-Oct | 9499.3 ± 267.4a | 615.8 ± 9.2c | 39.8 ± 2.3a | 38.6 ± 2.1a | 0.73 ± 0.005a | ||
2022–2023 | SN23 | 26-Sep | 9355.1 ± 403.5a | 692.4 ± 21.6a | 35.1 ± 1.7c | 39.0 ± 0.9a | 0.63 ± 0.021b |
8-Oct | 9401.2 ± 332.8a | 653.8 ± 13.8b | 37.6 ± 0.6b | 39.4 ± 2.1a | 0.65 ± 0.031b | ||
22-Oct | 9435.7 ± 187.6a | 584.9 ± 16.8c | 41.8 ± 1.5a | 39.3 ± 2.3a | 0.71 ± 0.026a | ||
TN18 | 26-Sep | 9582.3 ± 258.4a | 723.6 ± 23.5a | 34.1 ± 2.1c | 37.9 ± 1.6a | 0.66 ± 0.022b | |
8-Oct | 9613.2 ± 365.1a | 691.2 ± 20.7b | 36.5 ± 2.3b | 38.2 ± 1.2a | 0.69 ± 0.018b | ||
22-Oct | 9511.7 ± 218.9a | 625.4 ± 30.5c | 40.3 ± 1.4a | 38.4 ± 1.1a | 0.73 ± 0.011a | ||
Year (Y) | ns | ns | ns | ns | ns | ||
Cultivar (C) | * | *** | *** | ** | *** | ||
Sowing date (S) | ns | *** | *** | ns | *** | ||
Y × C | ns | ns | ns | ns | ns | ||
Y × S | ns | ns | ns | ns | ns | ||
C × S | ns | ns | ns | ns | ns | ||
Y × C × S | ns | ns | ns | ns | ns |
Season | Cultivar | Sowing Date | Tiller Number (104 ha−1) | Productive Tiller Percentage (%) | ||
---|---|---|---|---|---|---|
Jointing | Maturity | Sterile Tillers | ||||
2021–2022 | SN23 | 26-Sep | 1723.5 ± 51.2a | 702.5 ± 23.6a | 1021.0 ± 33.6a | 40.8 ± 1.2c |
8-Oct | 1465.8 ± 50.2b | 665.3 ± 25.1b | 800.5 ± 35.7b | 45.4 ± 2.1b | ||
22-Oct | 1153.2 ± 36.1c | 590.1 ± 12.6c | 563.1 ± 12.3c | 51.2 ± 2.5a | ||
TN18 | 26-Sep | 1821.6 ± 25.8a | 717.6 ± 35.8a | 1104.0 ± 54.2a | 39.4 ± 1.6c | |
8-Oct | 1564.2 ± 69.2b | 680.6 ± 20.7b | 883.6 ± 42.6b | 43.5 ± 1.2b | ||
22-Oct | 1189.3 ± 71.5c | 615.8 ± 11.9c | 573.5 ± 21.2c | 51.8 ± 2.3a | ||
2022–2023 | SN23 | 26-Sep | 1684.3 ± 32.8a | 692.4 ± 32.7a | 991.9 ± 28.6a | 41.1 ± 2.0c |
8-Oct | 1420.9 ± 33.6b | 653.8 ± 40.5b | 767.1 ± 33.8b | 46.0 ± 0.6b | ||
22-Oct | 1092.8 ± 42.9c | 584.9 ± 18.9c | 507.9 ± 18.7c | 53.5 ± 1.2a | ||
TN18 | 26-Sep | 1768.2 ± 56.7a | 723.6 ± 26.5a | 1044.6 ± 26.7a | 40.9 ± 0.8c | |
8-Oct | 1600.3 ± 27.1b | 691.2 ± 23.5b | 909.1 ± 13.2b | 43.2 ± 2.1b | ||
22-Oct | 1231.5 ± 16.8c | 625.4 ± 37.1c | 606.1 ± 8.2c | 50.8 ± 3.0a | ||
Year (Y) | ns | ns | * | ns | ||
Cultivar (C) | *** | *** | *** | ** | ||
Sowing date (S) | *** | *** | *** | *** | ||
Y × C | * | ns | * | ns | ||
Y × S | ns | ns | ns | ns | ||
C × S | ns | ns | ** | ns | ||
Y × C × S | ns | ns | ** | ns |
Season | Cultivar | Sowing Date | K Content Per Single Stem (mg) | K Content Per Unit Land Area (kg ha−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Leaves | True Stem | Sheath | Ear | All | Leaves | True Stem | Sheath | Ear | All | |||
2021–2022 | SN23 | 26-Sep | 5.9 ± 0.1c | 13.6 ± 0.4a | 8.6 ± 0.2a | 6.5 ± 0.2a | 34.6 ± 1.1a | 41.2 ± 1.2a | 95.3 ± 1.1a | 60.3 ± 2.1a | 45.8 ± 0.6a | 236.6 ± 6.2a |
8-Oct | 6.1 ± 0.2b | 13.3 ± 0.3a | 8.4 ± 0.3ab | 6.3 ± 0.1ab | 34.1 ± 0.2a | 40.9 ± 1.0a | 88.2 ± 3.5b | 55.6 ± 2.3b | 41.7 ± 2.5b | 226.4 ± 3.1b | ||
22-Oct | 6.8 ± 0.1a | 13.0 ± 0.6a | 8.2 ± 0.2b | 6.1 ± 0.05b | 34.1 ± 1.3a | 40.0 ± 0.5a | 76.6 ± 3.6c | 48.4 ± 3.5c | 36.2 ± 1.6c | 201.2 ± 4.5c | ||
TN18 | 26-Sep | 5.9 ± 0.3c | 12.6 ± 0.5a | 8.5 ± 0.1a | 5.7 ± 0.1a | 32.7 ± 1.0a | 42.6 ± 2.0a | 90.5 ± 4.1a | 61.3 ± 3.8a | 41.2 ± 1.2a | 235.6 ± 1.6a | |
8-Oct | 6.2 ± 0.2b | 12.5 ± 0.5a | 8.1 ± 0.4b | 5.7 ± 0.3a | 32.5 ± 0.8a | 42.0 ± 1.6a | 85.2 ± 3.8b | 54.8 ± 2.1b | 38.6 ± 1.3b | 220.6 ± 5.6b | ||
22-Oct | 6.7 ± 0.4a | 11.6 ± 0.2b | 7.6 ± 0.5c | 5.5 ± 0.6a | 31.4 ± 0.5a | 41.5 ± 0.7a | 71.7 ± 2.4c | 46.8 ± 0.8c | 33.6 ± 2.3c | 192.6 ± 3.8c | ||
2022–2023 | SN23 | 26-Sep | 5.7 ± 0.3c | 13.5 ± 0.2a | 8.3 ± 0.4a | 6.4 ± 0.2a | 33.9 ± 1.4a | 39.4 ± 1.6a | 93.4 ± 2.5a | 57. ± 1.16a | 44.5 ± 2.5a | 232.4 ± 8.1a |
8-Oct | 6.0 ± 0.3b | 13.2 ± 0.6a | 8.2 ± 0.2a | 6.1 ± 0.3b | 33.5 ± 0.6a | 39.1 ± 2.1a | 86.6 ± 1.2b | 53.8 ± 1.6b | 39.7 ± 2.1b | 219.2 ± 7.2b | ||
22-Oct | 6.5 ± 0.1a | 12.9 ± 0.1a | 8.2 ± 0.2a | 6.0 ± 0.2b | 33.6 ± 0.6a | 38.2 ± 2.7a | 75.5 ± 0.6c | 47.9 ± 1.4c | 35.2 ± 0.8c | 196.8 ± 4.0c | ||
Tn18 | 26-Sep | 5.7 ± 0.1c | 12.4 ± 0.5a | 8.3 ± 0.1a | 5.6 ± 0.4a | 32.0 ± 1.2a | 41.2 ± 0.4a | 89.6 ± 1.8a | 59.9 ± 2.8a | 40.8 ± 0.6a | 234.5 ± 5.3a | |
8-Oct | 5.9 ± 0.4b | 11.9 ± 0.2a | 7.8 ± 0.3b | 5.4 ± 0.1ab | 31.0 ± 0.8a | 41.0 ± 1.3a | 82.4 ± 3.1b | 53.6 ± 2.1b | 37.2 ± 1.8b | 214.2 ± 5.0b | ||
22-Oct | 6.4 ± 0.2a | 11.9 ± 0.3a | 7.2 ± 0.4c | 5.1 ± 0.2b | 30.6 ± 0.7a | 40.3 ± 1.1a | 74.6 ± 2.1c | 45.2 ± 0.3c | 32.0 ± 1.1c | 192.1 ± 2.1c | ||
Year (Y) | *** | ns | ** | *** | ** | *** | ns | ** | *** | * | ||
Cultivar (C) | ns | *** | *** | *** | *** | *** | *** | ns | *** | * | ||
Sowing date (S) | *** | *** | *** | *** | ns | * | *** | *** | *** | *** | ||
Y × C | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ||
Y × S | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ||
C × S | ns | ns | *** | ns | ns | ns | ns | ** | ns | ns | ||
Y × C × S | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Season | Cultivar | Sowing Date | K Content Per Single Stem (mg) | K Content Per Unit Land Area (kg ha−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Leaves | Stem | Sheath | Glumes | Grain | All | Leaves | Stem | Sheath | Glumes | Grain | All | |||
2021–2022 | SN23 | 26-Sep | 4.1 ± 0.1a | 12.9 ± 0.3a | 5.7 ± 0.2a | 5.8 ± 0.2a | 8.6 ± 0.2c | 37.1 ± 1.1a | 28.6 ± 1.0a | 90.6 ± 3.2a | 39.7 ± 1.2a | 40.6 ± 0.2a | 60.2 ± 1.6b | 259.7 ± 6.8a |
8-Oct | 4.0 ± 0.2a | 11.8 ± 0.4b | 5.4 ± 0.2b | 5.5 ± 0.4b | 9.4 ± 0.3b | 36.1 ± 1.2a | 26.3 ± 0.3b | 78.2 ± 1.5b | 35.9 ± 1.3b | 36.8 ± 1.1b | 62.7 ± 1.8b | 239.9 ± 9.2b | ||
22-Oct | 3.7 ± 0.2b | 10.9 ± 1.0c | 5.1 ± 0.1c | 5.2 ± 0.6c | 11.3 ± 1.1a | 36.2 ± 0.6a | 22.1 ± 0.6c | 64.4 ± 2.3c | 30.1 ± 0.5c | 30.6 ± 0.6c | 66.7 ± 2.5a | 213.9 ± 7.5c | ||
TN18 | 26-Sep | 4.2 ± 0.3a | 11.7 ± 0.8a | 6.1 ± 0.4a | 5.4 ± 0.3a | 8.8 ± 1.3c | 36.2 ± 0.9a | 30.1 ± 1.2a | 84.3 ± 2.1a | 43.8 ± 0.9a | 39.1 ± 1.2a | 63.4 ± 0.6b | 260.7 ± 3.2a | |
8-Oct | 4.0 ± 0.2b | 10.9 ± 0.2b | 5.8 ± 0.1b | 5.4 ± 0.5a | 9.7 ± 0.6b | 35.8 ± 0.5ab | 27.5 ± 0.8b | 74.3 ± 3.6b | 39.4 ± 0.3b | 37.0 ± 1.1b | 65.8 ± 1.2b | 244.0 ± 6.5b | ||
22-Oct | 3.5 ± 0.1c | 9.5 ± 1.1c | 5.1 ± 0.3c | 5.2 ± 0.4a | 11.2 ± 1.0a | 34.5 ± 0.3b | 21.5 ± 1.7c | 58.4 ± 1.7c | 31.6 ± 1.1c | 31.9 ± 0.9c | 69.1 ± 1.5a | 212.5 ± 3.4c | ||
2022–2023 | SN23 | 26-Sep | 4.0 ± 0.1a | 12.9 ± 0.6a | 5.4 ± 0.3a | 5.6 ± 0.2a | 8.6 ± 0.3c | 36.5 ± 1.1a | 27.5 ± 0.5a | 89.1 ± 1.2a | 37.2 ± 0.5a | 38.7 ± 0.6a | 59.3 ± 1.2b | 251.8 ± 1.2a |
8-Oct | 3.9 ± 0.4a | 11.5 ± 0.4b | 5.4 ± 0.2a | 5.4 ± 0.4a | 9.4 ± 0.5b | 35.6 ± 1.5a | 25.6 ± 0.9b | 75.3 ± 0.8b | 35.3 ± 0.7b | 35.3 ± 0.6b | 61.4 ± 2.5b | 231.7 ± 5.8b | ||
22-Oct | 4.0 ± 0.2a | 9.7 ± 0.3c | 5.0 ± 0.1b | 5.1 ± 0.3b | 11.5 ± 0.6a | 35.3 ± 1.6a | 23.6 ± 0.3c | 56.7 ± 2.1c | 29.2 ± 0.6c | 29.8 ± 1.5c | 67.2 ± 2.6a | 215.0 ± 6.7c | ||
TN18 | 26-Sep | 4.0 ± 0.1a | 11.9 ± 0.4a | 6.0 ± 0.4a | 5.5 ± 0.4a | 8.8 ± 0.7c | 36.2 ± 0.5a | 29.3 ± 0.1a | 86.2 ± 2.1a | 43.2 ± 1.2a | 40.1 ± 0.4a | 63.6 ± 0.9b | 262.4 ± 3.1a | |
8-Oct | 3.9 ± 0.1a | 10.3 ± 0.8b | 5.5 ± 0.4b | 5.3 ± 0.5a | 9.6 ± 0.6b | 34.6 ± 0.7ab | 27.1 ± 1.1b | 71.5 ± 2.3b | 37.8 ± 0.7b | 36.8 ± 0.3b | 66.4 ± 1.0b | 239.6 ± 3.0b | ||
22-Oct | 3.3 ± 0.4b | 9.4 ± 0.4c | 4.9 ± 0.3c | 5.0 ± 0.1b | 11.2 ± 0.2a | 33.8 ± 0.8b | 20.8 ± 1.0c | 58.7 ± 0.5c | 30.6 ± 0.6c | 31.2 ± 0.6c | 69.8 ± 1.6a | 211.1 ± 4.8c | ||
Year (Y) | ns | ** | ** | * | ns | ns | ns | ** | ** | * | ns | * | ||
Cultivar (C) | ns | *** | *** | * | *** | ns | *** | *** | *** | ** | ns | ** | ||
Sowing date (S) | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | ** | ||
Y × C | ns | ** | ns | * | ns | ns | ** | ns | ns | ns | ns | ns | ||
Y × S | ns | * | ns | ns | ns | ns | ns | * | ns | ns | ns | ns | ||
C × S | *** | ns | *** | ns | ns | ns | *** | ns | *** | ns | ns | ns | ||
Y × C × S | * | ns | ns | ns | ns | ns | * | * | ns | ns | ns | ns |
Season | Cultivar | Sowing Date | KTpre (mg) | KTpost (mg) | ||||
---|---|---|---|---|---|---|---|---|
Leaves | Stem | Sheath | Glumes | All | ||||
2021–2022 | SN23 | 26-Sep | 1.8 ± 0.2c | 0.7 ± 0.1c | 2.9 ± 0.1a | 0.7 ± 0.02c | 6.1 ± 0.3c | 2.5 ± 0.1a |
8-Oct | 2.1 ± 0.1b | 1.5 ± 0.1b | 3.0 ± 0.1a | 0.8 ± 0.03b | 7.4 ± 0.4b | 2.0 ± 0.2b | ||
22-Oct | 3.1 ± 0.1a | 2.1 ± 0.2a | 3.1 ± 0.2a | 0.9 ± 0.05a | 9.2 ± 0.5a | 2.1 ± 0.06b | ||
TN18 | 26-Sep | 1.7 ± 0.1c | 0.9 ± 0.2c | 2.4 ± 0.2a | 0.3 ± 0.01a | 5.3 ± 0.1c | 3.5 ± 0.09a | |
8-Oct | 2.2 ± 0.2b | 1.6 ± 0.3b | 2.3 ± 0.1a | 0.3 ± 0.02a | 6.4 ± 0.5b | 3.3 ± 0.2b | ||
22-Oct | 3.2 ± 0.3a | 2.1 ± 0.4 | 2.5 ± 0.2a | 0.3 ± 0.03a | 8.1 ± 0.6a | 3.1 ± 0.3c | ||
2022–2023 | SN23 | 26-Sep | 1.7 ± 0.2c | 0.6 ± 0.05c | 2.9 ± 0.1b | 0.8 ± 0.06b | 6.0 ± 0.5c | 2.6 ± 0.1a |
8-Oct | 2.1 ± 0.1b | 1.7 ± 0.1b | 2.8 ± 0.2b | 0.7 ± 0.07c | 7.3 ± 0.4b | 2.1 ± 0.05b | ||
22-Oct | 2.5 ± 0.1a | 3.2 ± 0.3a | 3.2 ± 0.1a | 0.9 ± 0.05a | 9.8 ± 0.6a | 1.7 ± 0.1c | ||
TN18 | 26-Sep | 1.7 ± 0.1c | 0.5 ± 0.06c | 2.3 ± 0.3a | 0.1 ± 0.004a | 4.6 ± 0.1c | 4.2 ± 0.3a | |
8-Oct | 2.0 ± 0.3b | 1.6 ± 0.1b | 2.3 ± 0.2a | 0.1 ± 0.005a | 6.0 ± 0.3b | 3.6 ± 0.2b | ||
22-Oct | 3.1 ± 0.3a | 2.5 ± 0.2a | 2.3 ± 0.1a | 0.1 ± 0.006a | 8.0 ± 0.3a | 3.2 ± 0.08c | ||
Year (Y) | *** | *** | ** | *** | * | *** | ||
Cultivar (C) | *** | *** | *** | *** | *** | *** | ||
Sowing date (S) | *** | *** | *** | *** | *** | *** | ||
Y × C | ** | *** | ns | *** | *** | *** | ||
Y × S | *** | *** | ns | *** | ** | *** | ||
C × S | *** | *** | ** | *** | ns | ns | ||
Y × C × S | *** | *** | ** | *** | ns | ** |
Season | Cultivar | Sowing Date | KUE (kg kg−1) | UPE (%) | UTE (kg kg−1) |
---|---|---|---|---|---|
2021–2022 | SN23 | 26-Sep | 30.7 ± 1.1a | 86.6 ± 3.5a | 35.5 ± 1.5c |
8-Oct | 31.1 ± 0.8a | 80.0 ± 2.5b | 38.8 ± 0.9b | ||
22-Oct | 31.3 ± 0.3a | 71.3 ± 3.5c | 43.9 ± 0.3a | ||
TN18 | 26-Sep | 31.6 ± 1.5a | 86.9 ± 6.8a | 36.4 ± 2.1c | |
8-Oct | 32.3 ± 2.1a | 81.3 ± 3.7b | 39.7 ± 3.0b | ||
22-Oct | 31.7 ± 0.6a | 70.8 ± 1.0c | 44.7 ± 0.9a | ||
2022–2023 | SN23 | 26-Sep | 31.2 ± 2.1a | 83.9 ± 0.8a | 37.2 ± 2.1c |
8-Oct | 31.3 ± 3.1a | 77.2 ± 2.8b | 40.6 ± 1.9b | ||
22-Oct | 31.5 ± 1.6a | 71.7 ± 1.7c | 43.9 ± 3.1a | ||
TN18 | 26-Sep | 31.9 ± 1.9a | 87.5 ± 4.4a | 36.5 ± 2.8c | |
8-Oct | 32.0 ± 1.5a | 79.9 ± 3.8b | 40.1 ± 1.1b | ||
22-Oct | 31.7 ± 2.7a | 70.4 ± 0.9c | 45.1 ± 1.0a | ||
Year (Y) | ns | ns | * | ||
Cultivar (C) | * | ns | ns | ||
Sowing date (S) | ns | *** | *** | ||
Y × C | ns | ns | ns | ||
Y × S | ns | ns | ns | ||
C × S | ns | ns | ns | ||
Y × C × S | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, L.; Liao, Y.; Mou, X. Delayed Sowing Can Improve Potassium Utilization Efficiency and Grain Potassium Concentration in Winter Wheat. Agriculture 2024, 14, 678. https://doi.org/10.3390/agriculture14050678
Yin L, Liao Y, Mou X. Delayed Sowing Can Improve Potassium Utilization Efficiency and Grain Potassium Concentration in Winter Wheat. Agriculture. 2024; 14(5):678. https://doi.org/10.3390/agriculture14050678
Chicago/Turabian StyleYin, Lijun, Yaxin Liao, and Xiao Mou. 2024. "Delayed Sowing Can Improve Potassium Utilization Efficiency and Grain Potassium Concentration in Winter Wheat" Agriculture 14, no. 5: 678. https://doi.org/10.3390/agriculture14050678
APA StyleYin, L., Liao, Y., & Mou, X. (2024). Delayed Sowing Can Improve Potassium Utilization Efficiency and Grain Potassium Concentration in Winter Wheat. Agriculture, 14(5), 678. https://doi.org/10.3390/agriculture14050678