Seasonal Dynamics of Epigeic Arthropods under the Conditions of Ecological Management of the Triticum aestivum Crop
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Levy, A.A.; Feldman, M. Evolution and origin of bread wheat. Plant Cell 2022, 34, 2549–2567. [Google Scholar] [CrossRef]
- Farooq, M.U.; Bashir, M.F.; Khan, M.U.S.; Iqbal, B.; Ali, Q. Role of crispr to improve abiotic stress tolerance in crop plants. Biol. Clin. Sci. Res. J. 2021, 1, 1–9. [Google Scholar] [CrossRef]
- Batáry, P.; Fischer, J.; Báldi, A.; Crist, T.O.; Tscharntke, T. Does habitat heterogeneityincrease farmland biodiversity? Front. Ecol. Environ. 2011, 33, 152–153. [Google Scholar] [CrossRef]
- Holzschuh, A.; Dormann, C.F.; Tscharntke, T.; Steffan-Dewenter, I. Mass-floweringcrops enhance wild bee abundance. Oecologia 2013, 172, 477–484. [Google Scholar] [CrossRef]
- Bouvier, J.C.; Ricci, B.; Agerberg, J.; Lavigne, C. Apple orchard pest control strategies affect bird communities in southeastern France. Environ. Toxicol. Chem. 2011, 30, 212–219. [Google Scholar] [CrossRef]
- Crowder, D.W.; Northfield, T.D.; Strand, M.R.; Snyder, W.E. Organic agriculture promotes evenness and natural pest control. Nature 2010, 466, 109–112. [Google Scholar] [CrossRef]
- Pimentel, D.; Hepperly, P.; Hanson, J.; Douds, D.; Seidel, R. Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience 2005, 55, 573–582. [Google Scholar] [CrossRef]
- Legrand, A.; Gaucherel, C.; Baudry, J. Long-term effects of organic, conventional, and integrated crop systems on Carabids. Agron. Sust. Dev. 2011, 31, 515–524. [Google Scholar] [CrossRef]
- Langraf, V.; Petrovičová, K.; Schlarmannová, J.; Chovancová, Z. Changes in the community structure of epigeic arthropods in the conditions of ecological farming of pea (Pisum sativum L.). Chil. J. Agric. Res. 2022, 82, 527–536. [Google Scholar]
- Dyman, T.; Yashchenko, S.; Mazur, T.; Dyman, N.; Zagoruy, L. Comparative analysis of the diversity of bees in agroecosystem habitats. Tehnol. Virobnictva Pererobki Produktìv Tvarinnictva 2022, 2, 70–77. [Google Scholar] [CrossRef]
- Barnes, A.D.; Allen, K.; Kreft, H.; Corre, M.D.; Jochum, M.; Veldkamp, E. Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nat. Ecol. Evol. 2017, 1, 1511–1519. [Google Scholar] [CrossRef]
- Vignozzi, N.; Agnelli, A.E.; Brandi, G.; Gagnarli, E.; Goggioli, D.; Lagomarsino, A.; Pellegrini, S.; Simoncini, S.; Simoni, S.; Valboa, G.; et al. Soil ecosystem functions in a high-density olive orchard managed by different soil conservation practices. Appl. Soil Ecol. 2019, 134, 64–76. [Google Scholar] [CrossRef]
- Ernst, D.; Kolenčík, M.; Šebesta, M.; Ubaďurišová, L.; Ďúranová, H.; Kšiňan, S. Agronomic Investigation of Spray Dispersion of Metal-Based Nanoparticles on Sunflowers in Real-World Environments. Plants 2023, 12, 1789. [Google Scholar] [CrossRef] [PubMed]
- Brygadyrenko, V.V. Community structure of litter invertebrates of forest belt ecosystems in the Ukrainian steppe zone. Int. J. Environ. Res. 2015, 9, 1183–1192. [Google Scholar]
- Dudley, N.; Alexander, S. Agriculture and biodiversity: A review. Biodiversity 2017, 18, 45–49. [Google Scholar] [CrossRef]
- Faly, L.I.; Kolombar, T.M.; Prokopenko, E.V.; Pakhomov, O.Y.; Brygadyrenko, V.V. Structure of litter macrofauna communities in poplar plantations in an urban ecosystem in Ukraine. Biosyst. Divers. 2017, 25, 29–38. [Google Scholar] [CrossRef]
- Berg, M.P.; Bengtsson, J. Temporal and spatial variability in soil food web structure. Oikos 2007, 116, 1789–1804. [Google Scholar] [CrossRef]
- Kolesnikova, A.; Lapteva, E.; Degteva, S.; Taskaeva, A.; Kudrin, A.; Vinogradova, Y. Biodiversity of foodplain soils in the European north-east of Russia. In River Basin Management; IntechOpen: London, UK, 2016; pp. 271–294. [Google Scholar]
- Boháč, J.; Jahnov, Z. Land Use Changes and Landscape Degradation in Central and Eastern Europe in the Last Decades: Epigeic Invertebrates as Bioindicators of Landscape Changes. In Environmental Indicators; Springer: Berlin/Heidelberg, Germany, 2015; pp. 395–420. [Google Scholar]
- Boetzl, A.F.; Sponsler, D.; Albrecht, M.; Batáry, P.; Birkhofer, K.; Knapp, M.; Krauss, J.; Maas, B.; Martin, A.E.; Sirami, C.; et al. Distance functions of carabids in crop fields depend on functional traits, crop type and adjacent habitat: A synthesis. Proc. R. Soc. B 2024, 291, 1–10. [Google Scholar] [CrossRef]
- Fazekašová, D.; Bobuľovská, L. Soil organisms as an Indicator of Quality and Environmental Stress in the Soil Ecosystem. Zivotn. Prostr. 2012, 46, 103–106. [Google Scholar]
- Coleman, D.C.; Wall, D.H. Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. In Soil Microbiology, Ecology, and Biochemistry, 4th ed.; Paul, E.A., Ed.; Academic Press: New York, NY, USA, 2015; Chapter 5; pp. 111–149. [Google Scholar]
- Menta, C.; Remelli, S. Soil Health and Arthropods: From Complex System to Worthwhile Investigation. Insects 2020, 11, 54. [Google Scholar] [CrossRef]
- Murphy, B.W. Soil Organic Matter and Soil Function—Review of the Literature and Underlying Data; Department of the Environment: Canberra, Australia, 2014. [Google Scholar]
- Ondrasek, G.; Bakić, H.; Zovko, M.; Filipović, L.; Meriño-Gergichevich, C.; Savić, R.; Rengel, Z. Biogeochemistry of soil organic matter in agroecosystems & environmental implications. Sci. Total Environ. 2019, 658, 1559–1573. [Google Scholar]
- Schierwater, B.; DeSalle, R. Invertebrate Zoology: A Tree of Life Approach; CRC Press: London, UK, 2021; 644p. [Google Scholar]
- Ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0; Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- R Version 4.1.3; The R Foundation for Statistical Computing: Vienna, Austria, 2020.
- Balqees, N.; Ali, Q.; Malik, A. Genetic evaluation for seedling traits of maize and wheat under biogas wastewater, sewage water and drought stress conditions. Biol. Clin. Sci. Res. J. 2020, 1, 1–6. [Google Scholar] [CrossRef]
- Javed, A.; Muhammad, S.; Ali, Q.; Manzoor, T. An Overview of Leaf Rust Resistance Genes in Triticum aestivum. Bull. Biol. Allied Sci. Res. 2022, 7, 1–6. [Google Scholar] [CrossRef]
- Fahrig, L.; Girard, J.; Duro, D.; Pasher, J.; Smith, A.; Javorek, S.; King, D.; Lindsay, K.F.; Mitchell, S.; Tischendorf, L. Farmlands with smaller crop fields have higher within-field biodiversity. Agric. Ecosyst. Environ. 2015, 200, 219–234. [Google Scholar] [CrossRef]
- Burel, F.; Butet, A.; Delettre, Y.R.; de la Pena, N.M. Differential response of selected taxa tolandscape context and agricultural intensification. Landsc. Urban Plan. 2004, 67, 195–204. [Google Scholar] [CrossRef]
- Magdoff, F. Ecological agriculture: Principles, practices, and constraints. Renew. Agric. Food Syst. 2007, 22, 109–117. [Google Scholar] [CrossRef]
- Kubicová, Ľ.; Dobák, D.; Kádeková, Z. Trends in consumption of milk and dairy products in Slovakia after EUaccession. Zesz. Nauk. SGGW Polityki Eur. Finans. I Mark. 2014, 12, 90–97. [Google Scholar]
- Porhajašová, J.; Babošová, M. Impact of arable farming management on the biodiversity of Carabidae (Coleoptera). Saudi J. Biol. Sci. 2022, 29, 1–9. [Google Scholar] [CrossRef]
- Whalen, J.K.; Hamel, C. Effects of key soil organisms on nutrient dynamics in temperate agroecosystems. J. Crop Improv. 2004, 11, 175–207. [Google Scholar] [CrossRef]
- Schuster, N.R.; Peterson, J.A.; Gilley, J.E.; Schott, L.R.; Schmidt, A.M. Soil arthropod abundance and diversityfollowing land application of swine slurry. Agric. Sci. 2019, 10, 150–163. [Google Scholar]
- Menta, C.; Conti, F.D.; Fondón, L.C.; Staffilani, F.; Remelli, S. Soil Arthropod Responses in Agroecosystem: Implications of Different Management and Cropping Systems. Agronomy 2020, 10, 982. [Google Scholar] [CrossRef]
- Magura, T.; Ferrante, M.; Lövei, L.G. Only habitat specialists become smaller with advancing urbanization. Glob. Ecol. Biogeogr. 2020, 29, 1978–1987. [Google Scholar] [CrossRef]
- Diehl, E.; Wolters, V.; Birkhofer, K. Arable weeds in organically managed wheat fields foster carabid beetles byresource and structure-mediated effects. Arthropod-Plant Interact. 2012, 6, 75–82. [Google Scholar] [CrossRef]
- Diehl, E.; Mader, V.L.; Wolters, V.; Birkhofer, K. Management intensity and vegetation complexity affect web-building spiders and their prey. Oecologia 2013, 173, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Bote, J.L.; Romero, A.J. Epigeic soil arthropod abundance under different agricultural land uses. Span. J. Agric. Res. 2012, 10, 55–61. [Google Scholar] [CrossRef]
- Liu, R.T.; Zhu, F.; Steinberger, Y. Effect of shrub microhabitats on aboveground and belowground arthropod distributionin a desertified steppe ecosystem. Pol. J. Ecol. 2015, 63, 534–548. [Google Scholar]
- Sticht, C.; Schrader, S.; Giesemann, A.; Weigel, H.J. Atmospheric CO2 enrichment induces life strategy- and species-specific responses of collembolans in the rhizosphere of sugar beet and winter wheat. Soil Biol. Biochem. 2008, 40, 1432–1445. [Google Scholar] [CrossRef]
- Magro, S.; Gutiérrez-López, M.; Casado, M.A.; Jiménez, M.D.; Trigo, D.; Mola, I. Soil functionality at the roadside: Zooming in on a microarthropod community in an anthropogenic soil. Ecol. Eng. 2013, 60, 81–87. [Google Scholar] [CrossRef]
- Holmstrup, M.; Maraldo, K.; Krogh, P.H. Combined effect of copper and prolonged summer drought on soil Microarthropods in the field. Environ. Pollut. 2007, 146, 525–533. [Google Scholar] [CrossRef]
- Bianchni, F.; Booij, C.; Tscherntke, T. Sustainable pest regulation in agricultural landscape: A review on landscape composition. Biodiversity and natural pest control. Proc. R. Soc. 2006, 273, 1715–1727. [Google Scholar]
- Bagyaraj, D.J.; Nethravathi, C.J.; Nitin, K.S. Soil Biodiversity and Arthropods: Role in Soil Fertility. In Economic and Ecological Significance of Arthropods in Diversified Ecosystems; Springer: Singapore, 2016; pp. 17–51. [Google Scholar]
- Ghiglieno, I.; Simonetto, A.; Donna, P.; Tonni, M.; Valenti, L.; Bedussi, F. Soil Biological Quality Assessment to Improve Decision Support in the Wine Sector. Agronomy 2019, 9, 593. [Google Scholar] [CrossRef]
- Ghiglieno, I.; Simonetto, A.; Orlando, F.; Donna, P.; Tonni, M.; Valenti, L. Response of the Arthropod Community to Soil Characteristics and Management in the Franciacorta Viticultural Area (Lombardy, Italy). Agronomy 2020, 10, 740. [Google Scholar] [CrossRef]
- Jasinski, M.; Twardowski, J.; Tendziagolska, E. The occurrence of soil mesofauna in organic crops. J. Res. Appl. Agric. Eng. 2016, 61, 193–199. [Google Scholar]
- Fazekašová, D.; Bobuľovská, L.; Angelovičová, L. Biological activity of soil as an indicator of soil fertility. Nővénytérmeles 2013, 62, 205–208. [Google Scholar]
- Langellotto, G.A.; Denno, R.F. Responses of invertebrate natural enemies to complex-structured habitats: A meta-analytical synthesis. Oecologia 2004, 139, 1–10. [Google Scholar] [CrossRef]
- Lenoir, L.; Lennartsson, T. Effects of timing of grazing on arthropod communities in semi-natural grasslands. J. Insect Sci. 2010, 10, 5–24. [Google Scholar] [CrossRef]
- Moço, S.K.M.; Gama-Rodrigues, F.E.; Gama-Rodrigues, C.A.; Machado, R.C.R.; Baligar, C.V. Relationships between invertebrate communities, litter quality and soil attributes under different cacao agroforestry systems in the south of Bahia. Appl. Soil Ecol. 2010, 46, 347–354. [Google Scholar] [CrossRef]
Period/Taxa | Year 2020 | Year 2021 | Year 2022 | ∑ N | ∑% | |||
---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | |||
spring | 345 | 7.86% | 547 | 12.46% | 3499 | 79.69% | 4391 | 100.00% |
Acarina | 0 | 0.00% | 6 | 0.14% | 163 | 3.71% | 169 | 3.85% |
Araneida | 0 | 0.00% | 35 | 0.80% | 200 | 4.55% | 235 | 5.35% |
Coleoptera | 125 | 2.85% | 300 | 6.83% | 1854 | 42.22% | 2279 | 51.90% |
Collembola | 0 | 0.00% | 4 | 0.09% | 384 | 8.75% | 388 | 8.84% |
Dermaptera | 35 | 0.80% | 0 | 0.00% | 0 | 0.00% | 35 | 0.80% |
Hemiptera | 0 | 0.00% | 0 | 0.00% | 10 | 0.23% | 10 | 0.23% |
Hymenoptera | 0 | 0.00% | 97 | 2.21% | 25 | 0.57% | 122 | 2.78% |
Isopoda | 0 | 0.00% | 22 | 0.50% | 5 | 0.11% | 27 | 0.61% |
julida | 161 | 3.67% | 74 | 1.69% | 847 | 19.29% | 1082 | 24.64% |
Lithobiomorpha | 0 | 0.00% | 0 | 0.00% | 1 | 0.02% | 1 | 0.02% |
Lumbricida | 12 | 0.27% | 1 | 0.02% | 4 | 0.09% | 17 | 0.39% |
Opilionida | 0 | 0.00% | 5 | 0.11% | 0 | 0.00% | 5 | 0.11% |
Orthoptera | 12 | 0.27% | 3 | 0.07% | 5 | 0.11% | 20 | 0.46% |
Siphonaptera | 0 | 0.00% | 0 | 0.00% | 1 | 0.02% | 1 | 0.02% |
summer | 725 | 6.84% | 886 | 8.36% | 8986 | 84.80% | 10,597 | 100.00% |
Acarina | 0 | 0.00% | 2 | 0.02% | 62 | 0.59% | 64 | 0.60% |
Araneida | 16 | 0.15% | 10 | 0.09% | 534 | 5.04% | 560 | 5.28% |
Coleoptera | 537 | 5.07% | 680 | 6.42% | 5084 | 47.98% | 6301 | 59.46% |
Collembola | 0 | 0.00% | 8 | 0.08% | 2371 | 22.37% | 2379 | 22.45% |
Dermaptera | 4 | 0.04% | 0 | 0.00% | 0 | 0.00% | 4 | 0.04% |
Hemiptera | 0 | 0.00% | 0 | 0.00% | 56 | 0.53% | 56 | 0.53% |
Hymenoptera | 25 | 0.24% | 44 | 0.42% | 474 | 4.47% | 543 | 5.12% |
Isopoda | 2 | 0.02% | 59 | 0.56% | 66 | 0.62% | 127 | 1.20% |
julida | 77 | 0.73% | 2 | 0.02% | 238 | 2.25% | 317 | 2.99% |
Lithobiomorpha | 0 | 0.00% | 1 | 0.01% | 5 | 0.05% | 6 | 0.06% |
Lumbricida | 0 | 0.00% | 49 | 0.46% | 0 | 0.00% | 49 | 0.46% |
Opilionida | 0 | 0.00% | 4 | 0.04% | 56 | 0.53% | 60 | 0.57% |
Orthoptera | 64 | 0.60% | 3 | 0.03% | 40 | 0.38% | 107 | 1.01% |
Pseudoskorpionida | 0 | 0.00% | 14 | 0.13% | 0 | 0.00% | 14 | 0.13% |
Stylommatophora | 0 | 0.00% | 10 | 0.09% | 0 | 0.00% | 10 | 0.09% |
∑ | 1070 | 7.14% | 1433 | 9.56% | 12,485 | 83.30% | 14,988 | 100.00% |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.985 | 0.046 | 0.998 | 0.895 | 0.009 | 0.999 | 0.915 | 0.031 | 0.895 | 0.885 | 0.008 | 0.969 | 1.000 | 0.009 | 1 |
0.028 | 0.900 | 0.958 | 0.041 | 0.978 | 0.865 | 0.031 | 0.889 | 0.876 | 0.009 | 0.901 | 0.911 | 0.050 | 2 | |
0.049 | 0.046 | 0.008 | 0.041 | 0.031 | 0.992 | 0.042 | 0.034 | 0.010 | 0.014 | 0.042 | 0.010 | 3 | ||
1.000 | 0.009 | 0.895 | 0.895 | 0.036 | 0.785 | 0.875 | 0.009 | 0.954 | 0.812 | 0.023 | 4 | |||
0.046 | 0.659 | 0.575 | 0.042 | 0.986 | 0.951 | 0.006 | 0.701 | 0.784 | 0.043 | 5 | ||||
0.008 | 0.034 | 0.045 | 0.009 | 0.030 | 0.911 | 0.018 | 0.013 | 0.895 | 6 | |||||
0.975 | 0.029 | 0.989 | 0.966 | 0.031 | 0.975 | 0.994 | 0.033 | 7 | ||||||
0.047 | 0.900 | 0.995 | 0.043 | 0.879 | 0.895 | 0.021 | 8 | |||||||
0.030 | 0.042 | 1.000 | 0.018 | 0.021 | 1.000 | 9 | ||||||||
0.957 | 0.008 | 0.898 | 0.912 | 0.050 | 10 | |||||||||
0.007 | 0.895 | 0.942 | 0.019 | 11 | ||||||||||
0.015 | 0.042 | 0.800 | 12 | |||||||||||
0.932 | 0.037 | 13 | ||||||||||||
0.008 | 14 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.775 | 0.045 | 0.788 | 0.685 | 0.034 | 0.789 | 0.705 | 0.014 | 0.685 | 0.675 | 0.012 | 0.759 | 0.790 | 0.027 | 1 |
0.042 | 0.745 | 0.859 | 0.013 | 0.879 | 0.766 | 0.010 | 0.789 | 0.776 | 0.050 | 0.801 | 0.811 | 0.050 | 2 | |
0.018 | 0.006 | 0.014 | 0.046 | 0.027 | 0.548 | 0.021 | 0.014 | 0.013 | 0.050 | 0.019 | 0.014 | 3 | ||
0.776 | 0.034 | 0.665 | 0.671 | 0.033 | 0.561 | 0.651 | 0.010 | 0.730 | 0.588 | 0.049 | 4 | |||
0.042 | 0.560 | 0.476 | 0.020 | 0.887 | 0.853 | 0.040 | 0.602 | 0.686 | 0.038 | 5 | ||||
0.041 | 0.050 | 0.018 | 0.005 | 0.010 | 0.896 | 0.021 | 0.046 | 0.758 | 6 | |||||
0.627 | 0.033 | 0.640 | 0.617 | 0.019 | 0.627 | 0.645 | 0.026 | 7 | ||||||
0.467 | 0.900 | 0.995 | 0.043 | 0.879 | 0.895 | 0.021 | 8 | |||||||
0.018 | 0.039 | 0.758 | 0.018 | 0.009 | 0.875 | 9 | ||||||||
0.712 | 0.005 | 0.746 | 0.865 | 0.010 | 10 | |||||||||
0.011 | 0.678 | 0.875 | 0.039 | 11 | ||||||||||
0.018 | 0.037 | 0.986 | 12 | |||||||||||
0.811 | 0.010 | 13 | ||||||||||||
0.050 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langraf, V.; Petrovičová, K. Seasonal Dynamics of Epigeic Arthropods under the Conditions of Ecological Management of the Triticum aestivum Crop. Agriculture 2024, 14, 482. https://doi.org/10.3390/agriculture14030482
Langraf V, Petrovičová K. Seasonal Dynamics of Epigeic Arthropods under the Conditions of Ecological Management of the Triticum aestivum Crop. Agriculture. 2024; 14(3):482. https://doi.org/10.3390/agriculture14030482
Chicago/Turabian StyleLangraf, Vladimír, and Kornélia Petrovičová. 2024. "Seasonal Dynamics of Epigeic Arthropods under the Conditions of Ecological Management of the Triticum aestivum Crop" Agriculture 14, no. 3: 482. https://doi.org/10.3390/agriculture14030482
APA StyleLangraf, V., & Petrovičová, K. (2024). Seasonal Dynamics of Epigeic Arthropods under the Conditions of Ecological Management of the Triticum aestivum Crop. Agriculture, 14(3), 482. https://doi.org/10.3390/agriculture14030482