Possibilities of Climate Control of Poultry Complexes through Co-Combustion of Poultry Waste–Solid Biomass for Agriculture in Romania
Abstract
:1. Introduction
- Eighteen identical production halls, with an area of 910 m2 each;
- Heating installations with air heaters for twelve halls, two of 100 kW each for one hall, and radiant heating for six halls (13 units of 12 kW each for one hall);
- Ventilation with 6 units of 35,000 m3/h each (1.5 kW power).
2. Determination of the Thermal Power for Heating
Fuel Consumption
- Week 1: 0.007 (m3/s)/m3;
- Week 6–8: 0.0028–0.0042 (m3/s)/m3.
3. Fuel Consumption of Poultry Manure–Solid Biomass for an Annual Growth Cycle
3.1. The First Poultry Growth Cycle
- Fuel consumption for the first chick rearing cycle is calculated as follows:
- Checking the heat removed by ventilation to the outside environment.
3.2. The Second Poultry Growth Cycle
3.3. The Third Poultry Growth Cycle
3.4. The Fourth Poultry Growth Cycle
3.5. The Fifth Poultry Growth Cycle
3.6. The Sixth Growth Cycle of the Poultry
4. Validity of the Calculation Model for a Unit of 1000 m3
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Ren, J.; Bai, W. A Review of Poultry Waste-to-Wealth: Technological Progress, Modeling and Simulation Studies, and Economic- Environmental and Social Sustainability. Sustainability 2023, 15, 5620. [Google Scholar] [CrossRef]
- Lazaroiu, G.; Mihaescu, L. Innovative Renewable Waste Conversion Technologies; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 978-3-030-81431-1. [Google Scholar] [CrossRef]
- Gangagni Rao, A.; Surya Prakash, S.; Joseph, J.; Rajashekhara Reddy, A.; Sarma, P.N. Multi stage high rate biomethanation of poultry litter with self mixed anaerobic digester. Bioresour. Technol. 2011, 102, 729–735. [Google Scholar] [CrossRef]
- Costa, J.C.; Barbosa, S.G.; Alves, M.M.; Sousa, D.Z. Thermochemical pre- and biological co-treatments to improve hydrolysis and methane production from poultry litter. Bioresour. Technol. 2012, 111, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Zang, G.; Zhang, J.; Jia, J.; Weger, N.; Ratner, A. Clean Poultry Energy System Design Based on Biomass Gasification Technology: Thermodynamic and Economic Analysis. Energies 2019, 12, 4235. [Google Scholar] [CrossRef]
- Demirbas, M.F.; Balat, M.; Balat, H. Biowastes-to-biofuels. Energy Convers. Manag. 2011, 52, 1815–1828. [Google Scholar] [CrossRef]
- Konkol, I.; Świerczek, L.; Cenian, A. Chicken Manure Pretreatment for Enhancing Biogas and Methane Production. Energies 2023, 16, 5442. [Google Scholar] [CrossRef]
- Halmaciu, A.I.; Ionel, I.; Wächter, M.R.; Vetres, I. Biogas from poultry waste—A source of energy, IOP Conference Series: Materials Science and Engineering. In Proceedings of the 25th Edition of IManEE 2021 International Conference (IMANEE 2021) Online, 21–22 October 2021; Volume 1235, p. 012063. [Google Scholar] [CrossRef]
- Country Report WP3 A-3.1. Cross-Clustering Partnership for Boosting Eco-Innovation by Developing a Joint Bio-Based Value-added Network for the Danube Region, Framework Conditions for Cluster Development in Bio-Based Industry in Romania. Available online: https://ipe.ro/Country%20Report%20Romania.pdf (accessed on 18 January 2024).
- Billen, P.; Costa, J.; Van der Aa, L.; Van Caneghem, J.; Vandecasteele, C. Electricity from poultry manure: A cleaner alternative to direct land application. J. Clean. Prod. 2015, 96, 467–475. [Google Scholar] [CrossRef]
- Ren, K.; Su, L.; Zhang, Y.; He, X.; Cai, X. Optimization and Experiment of Livestock and Poultry Manure Composting Equipment with Vented Heating. Sustainability 2023, 15, 11353. [Google Scholar] [CrossRef]
- Iglinski, B.; Buczkowski, R.; Iglinska, A.; Cichosz, M.; Piechota, G.; Kujawski, W. Agricultural biogas plants in Poland: Investment process, economical and environmental aspects, biogas potential. Renew. Sustain. Energy Rev. 2012, 16, 4890–4900. [Google Scholar] [CrossRef]
- Masocha, B.L.; Dikinya, O. The Role of Poultry Litter and Its Biochar on Soil Fertility and Jatropha curcas L. Growth Sandy-Loam Soil. Appl. Sci. 2022, 12, 12294. [Google Scholar] [CrossRef]
- Ahn, H.K.; Richard, T.L.; Choi, H.L. Mass and thermal balance during composting of a poultry manure—Wood shavings mixture at different aeration rates. Process Biochem. 2007, 42, 215–223. [Google Scholar] [CrossRef]
- Petric, I.; Sestan, A.; Sestan, I. Influence of initial moisture content on the composting of poultry manure with wheat straw. Biosyst. Eng. 2009, 104, 125–134. [Google Scholar] [CrossRef]
- Agyarko-Mintah, E.; Cowie, A.; Van Zwieten, L.; Pal Singh, B.; Smillie, R.; Harden, S.; Fornasier, F. Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting. Waste Manag. 2017, 61, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Georgakakis, D.; Krintas, T. Optimal use of the Hosoya system in composting poultry manure. Bioresour. Technol. 2000, 72, 227–233. [Google Scholar] [CrossRef]
- Czekała, W.; Malińska, K.; Cáceres, R.; Janczak, D.; Dach, J.; Lewicki, D. Co-composting of poultry manure mixtures amended with biochar e the effect of biochar on temperature and C-CO2 emission. Bioresour. Technol. 2016, 200, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Kumar Awasthi, M.; Kumar Pandey, A.; Singh Bundela, P.; Wong, J.W.C.; Li, R.; Zhang, Z. Co-composting of gelatin industry sludge combined with organic fraction of municipal solid waste and poultry waste employing zeolite mixed with enriched nitrifying bacterial consortium. Bioresour. Technol. 2016, 213, 181–189. [Google Scholar] [CrossRef]
- Osorio Saraz, J.A.; Tinôco, I.F.F.; Oliveira Rocha, K.S.; Martins, M.A.; De Paula, M. Modeling and experimental validation to estimate the energy balance for a poultry house with misting cooling. DYNA 2011, 78, 167–174. [Google Scholar]
- Joseph, C.R.N.; Flora, R.V. Availability of Poultry Manure as a Potential Bio-Fuel Feedstock for Energy Production. 2006. Available online: https://www.semanticscholar.org/paper/FINAL-REPORT-AVAILABILITY-OF-POULTRY-MANURE-AS-A-By-Flora-Riahi-Nezhad/6b61b33796e255deba80c5f1399a767df210cd05?utm_source=direct_link (accessed on 18 January 2024).
- Maj, I. Significance and Challenges of Poultry Litter and Cattle Manure as Sustainable Fuels: A Review. Energie 2022, 15, 8981. [Google Scholar] [CrossRef]
- Kiss, N.É.; Tamás, J.; Szőllősi, N.; Gorliczay, E.; Nagy, A. Assessment of Composted Pelletized Poultry Litter as an Alternative to Chemical Fertilizers Based on the Environmental Impact of Their Production. Agriculture 2021, 11, 1130. [Google Scholar] [CrossRef]
- Isemin, R.; Mikhalev, A.; Milovanov, O.; Nebyvaev, A. Some Results of Poultry Litter Processing into a Fertilizer by the Wet Torrefaction Method in a Fluidized Bed. Energies 2022, 15, 2414. [Google Scholar] [CrossRef]
- Dalólio, F.S.; da Silva, J.N.; de Oliveira, A.C.; Tinôco, I.D.; Barbosa, R.C.; de Oliveira Resende, M.; Albino, L.F.; Coelho, S.T. Poultry litter as biomass energy: A review and future perspectives. Renew. Sustain. Energy Rev. 2017, 76, 941–949. [Google Scholar] [CrossRef]
- Frazão, J.J.; De Melo Benites, V.; Pierobon, V.M.; Ribeiro, J.V.S.; Lavres, J. A Poultry Litter-Derived Organomineral Phosphate Fertilizer Has Higher Agronomic Effectiveness Than Conventional Phosphate Fertilizer Applied to Field-Grown Maize and Soybean. Sustainability 2021, 13, 11635. [Google Scholar] [CrossRef]
- Heathman, G.C.; Sharpley, A.N.; Smith, S.J.; Robinson, J.S. Land application of poultry litter and water quality in Oklahoma U.S.A. Fertilizer. Res. 1995, 40, 165–173. [Google Scholar] [CrossRef]
- Li, Z.; Shuman, L.M. Mobility of Zn, Cd and Pb in soils as affected by poultry litter extracte I. Leaching is soil columns. Environ. Pollut. 1997, 95, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Dróżdż, D.; Malińska, K.; Wystalska, K.; Meers, E.; Robles-Aguilar, A. The Influence of Poultry Manure-Derived Biochar and Compost on Soil Properties and Plant Biomass Growth. Materials 2023, 16, 6314. [Google Scholar] [CrossRef] [PubMed]
- Pop, E.; Mihăescu, L.; Lăzăroiu, G.; Pîșă, I.; Negreanu, G.P.; Berbece, V. Energy characteristics of char obtained by tow steps pyrolysis of chicken manure. In Proceedings of the XXIInd National Conference on Thermodynamics with International Participation, Bucharest, Romania, 23–24 May 2019. [Google Scholar] [CrossRef]
- Cotana, F.; Coccia, V.; Petrozzi, A.; Cavalaglio, G.; Gelosia, M.; Merico, M.C. Energy valorization of poultry manure in a thermal power plant: Experimental campaign. Energy Procedia 2014, 45, 315–322. [Google Scholar] [CrossRef]
- Lazaroiu, G.; Ciupageanu, D.A.; Grigoriu, R.M.; Simion, I. Energy recovery from poultry manure: A viable solution to reduce poultry industry energy consumption. RE&PQJ 2020, 18, 202–206. [Google Scholar] [CrossRef]
- Cavalaglio, G.; Coccia, V.; Cotana, F.; Gelosia, M.; Nicolini, A.; Petrozzi, A. Energy from poultry waste: An Aspen Plus-based approach to the thermo-chemical processes. Waste Manag. 2018, 73, 496–503. [Google Scholar] [CrossRef]
- Loyon, L. Overview of manure treatment in France. Waste Manag. 2017, 61, 516–520. [Google Scholar] [CrossRef]
- Filippis, P.; Scarsella, M.; Verdone, N.; Zeppieri, M. Poultry litter valorization to energy. WIT Trans. Ecol. Environ. 2008, 109, 261–267. [Google Scholar]
- Lazaroiu, G.; Mihaescu, L.; Negreanu, G.; Pana, C.; Pisa, I.; Cernat, A.; Ciupageanu, D.A. Experimental Investigations of Innovative Biomass Energy Harnessing Solutions. Energies 2018, 11, 3469. [Google Scholar] [CrossRef]
- Grigoriu, R.M.; Lăzăroiu, G.; Simion, I. Combustion of poultry manure with solid biamass—An alternative for environmental protection and local energy production. U.P.B. Sci. Bull. Ser. D 2022, 84, 155–174. [Google Scholar]
- Johansen, N.F.; Balle, K.M.; Stafie, L.C.; Greculescu, A.C.; Maşinistru, M.C. Poultry Housing Systems. Farm Standards, Editura—Danish Agricultural Advisory Service, 1st ed.; The Manual has the Official Approval of the following Public Institutions: Ministry of Agriculture and Rural Development, Ministry of Environment and Forests, National Veterinary Sanitary and Food Safety Authority, National Agricultural Consultancy Agency. Available online: https://portal.afir.info/Uploads/GHIDUL%20Solicitantului/PNDR2020/Standarde_de_ferma/Pasari_by%20EC_WEB.pdf (accessed on 18 January 2024).
- Lazaroiu, G.; Pană, C.; Mihaescu, L.; Cernat, A.; Negurescu, N.; Mocanu, R.; Negreanu, G. Solutions for energy recovery of animal waste from leather industry. Energy Convers. Manag. 2017, 49, 1085–1095. [Google Scholar] [CrossRef]
- Pedersen, S.; Thomsen, M.G. Heat and moisture production of broilers kept on straw hedding. J. Agric. Eng. Res. 2000, 75, 177–187. [Google Scholar] [CrossRef]
- Tanczuk, M.; Junga, R.; Werle, S.; Chabinski, M.; Ziolkowski, L. Experimental analysis of the fixed bed gasification process of the mixtures of the chicken manure with biomass. Renew. Energy 2019, 136, 1055–1063. [Google Scholar] [CrossRef]
- Lăzăroiu, G.; Negreanu, G.P.; Pîșă, I.; Grigoriu, R.M.; Ciupăgeanu, D.A. Experimental researches on poultry manure combustion in co-combustion with biomass. In Proceedings of the 10th International Conference on Thermal Equipments, Renewable Energy and Rural Development (TE-RE-RD 2021), Kaunas, Lithuania, 21–23 September 2021. [Google Scholar] [CrossRef]
- Athanasovici, V. Utilizarea Căldurii în Industrie (Use of Heat in Industry); Tehnică Ed.: Bucharest, Romania, 1995; Volume 1. [Google Scholar]
Week | Recommended Temperature, °C | Humidity, % |
---|---|---|
1 | 33 | 50–70 |
2 | 29 | 50–60 |
3 | 25 | 50–70 |
4 | 22 | 35–75 |
5 | 20 | 35–75 |
6 | 18 | 35–75 |
7 | 18 | 35–75 |
8 * | 18 | 35–75 |
Week | Annual Period | [°C] | [°C] | Volumetric Mass Loading [kg/m3] | The Ventilation Coefficient [m3/h/kg] | [kW] | [kg] |
---|---|---|---|---|---|---|---|
1 | 1.I–7.I | −2.4 | 33 | 2 | 0.50 | 8.87 | 487 |
2 | 8.I–14.I | −2.4 | 29 | 3 | 0.50 | 12.08 | 663 |
3 | 15.I–21.I | −2.4 | 25 | 4 | 0.55 | 15.19 | 834 |
4 | 22.I–28.I | −2.4 | 22 | 5 | 0.60 | 18.68 | 1025 |
5 | 29.I–4.II | −0.1 | 20 | 6 | 0.7 | 21.49 | 1180 |
6 | 5.II–11.II | −0.1 | 18 | 6.5 | 0.7 | 21.02 | 1154 |
7 | 12.II–18.II | −0.1 | 18 | 7.0 | 0.7 | 22.57 | 1239 |
8 | 19.II–25.II | −0.1 | 18 | 7.5 | 0.7 | 24.25 | 1331 |
Cleaning | 26.II–1.III | −0.1 | 18 | - | - | 24.25 | 761 |
Total | 8674 |
Week | Annual Period | [°C] | [°C] | Heat for Heating Q [kW] | Fuel Consumption Per Unit of Time [kg/s] | Fuel Consumption Per Week [kg] |
---|---|---|---|---|---|---|
1 | 2.III–8.III | 4.8 | 33 | 25.0 | 0.0022 | 1372 |
2 | 9.III–15.III | 4.8 | 29 | 21.5 | 0.0019 | 1147 |
3 | 16.III–22.III | 4.8 | 25 | 17.9 | 0.0015 | 960 |
4 | 23.III–29.III | 4.8 | 22 | 15.2 | 0.0013 | 785 |
5 | 30.III–5.IV | 11.3 | 20 | 10 | 0.0009 | 549 |
6 | 6.IV–12.IV | 11.3 | 18 | 5.9 | 0.0005 | 302 |
7 | 13.IV–19.IV | 11.3 | 18 | 5.9 | 0.0005 | 302 |
8 | 20.IV–26.IV | 11.3 | 18 | 5.9 | 0.0005 | 302 |
- | 27.IV–30.IV | 11.3 | 18 | 5.9 | 0.0005 | 172 |
Total | BII = 5891 kg |
Week | Annual Period | [°C] | [°C] | Volumetric Mass Loading [kg/m3] | The Ventilation Coefficient [m3/h/kg] | [kW] | [kg] |
---|---|---|---|---|---|---|---|
1 | 2.III–8.III | 4.8 | 33 | 2 | 0.6 | 8.56 | 470 |
2 | 9.III–15.III | 4.8 | 29 | 3 | 0.7 | 13.04 | 715 |
3 | 16.III–22.III | 4.8 | 25 | 4 | 0.8 | 19.87 | 1091 |
4 | 23.III–29.III | 4.8 | 22 | 5 | 0.9 | 19.86 | 1091 |
5 | 30.III–5.IV | 11.3 | 20 | 5 | 1.0 | 13.39 | 735 |
6 | 6.IV–12.IV | 11.3 | 18 | 7 | 1.1 | 13.24 | 730 |
7 | 13.IV–19.IV | 11.3 | 18 | 8 | 1.2 | 16.50 | 906 |
8 | 20.IV–26.IV | 11.3 | 18 | 8.5 | 1.3 | 18.66 | 1024 |
Cleaning | 27.IV–30.IV | 16.7 | 18 | - | - | 18.66 | 732 |
Total | 7494 |
Week | Annual Period | [°C] | [°C] | Heat for Heating Q [kW] | Fuel Consumption Per Unit of Time [kg/s] | Fuel Consumption Per Week [kg] |
---|---|---|---|---|---|---|
1 | 1.V–7.V | 16.7 | 33 | 14.48 | 0.0013 | 795 |
2 | 8.V–14.V | 16.7 | 29 | 10.93 | 0.0001 | 600 |
3 | 15.V–21.V | 16.7 | 25 | 7.37 | 0.0006 | 362 |
4 | 22.V–28.V | 16.7 | 22 | 4.71 | 0.0004 | 241 |
5 | 29.V–4.VI | 20.2 | 20 | 0 | 0 | 0 |
6 | 5.VI–11.VI | 20.2 | 18 | 0 | 0 | 0 |
7 | 12.VI–18.VI | 20.2 | 18 | 0 | 0 | 0 |
8 | 19.VI–25.VI | 20.2 | 18 | 0 | 0 | 0 |
Cleaning | 26.VI–30.VI | 22 | 18 | 0 | 0 | 0 |
Total | BIII = 1998 kg |
Week | Annual Period | [°C] | [°C] | Volumetric Mass Loading [kg/m3] | The Ventilation Coefficient [m3/h/kg] | [kW] | [kg] |
---|---|---|---|---|---|---|---|
1 | 1.V–7.V | 16.7 | 33 | 2 | 0.6 | 5.02 | 275 |
2 | 8.V–14.V | 16.7 | 29 | 3 | 0.7 | 6.62 | 363 |
3 | 15.V–21.V | 16.7 | 25 | 4 | 0.8 | 6.81 | 373 |
4 | 22.V–28.V | 16.7 | 22 | 5 | 0.9 | 6.12 | 336 |
5 | 29.V–4.VI | 20.2 | 20 | 6 | 3 | 0 | 0 |
6 | 5.VI–11.VI | 20.2 | 18 | 7 | 3 | 0 | 0 |
7 | 12.VI–18.VI | 20.2 | 18 | 8 | 3 | 0 | 0 |
8 | 19.VI–25.VI | 20.3 | 18 | 8.5 | 3 | 0 | 0 |
Cleaning | 26.VI–30.VI | 20.3 | 18 | - | - | 0 | 0 |
Total | 1347 |
Week | Annual Period | [°C] | [°C] | Heat for Heating Q [kW] | Fuel Consumption Per Unit of Time [kg/s] | Fuel Consumption Per Week [kg] |
---|---|---|---|---|---|---|
1 | 31.VI–6.VII | 22 | 33 | 9.77 | 0.0008 | 483 |
2 | 7.VII–13.VII | 22 | 29 | 6.22 | 0.0005 | 302 |
3 | 14.VII–20.VII | 22 | 25 | 2.66 | 0.0002 | 120 |
4 | 21.VII–27.VII | 22 | 22 | 0 | 0 | 0 |
5 | 28.VII–3.VIII | 21.2 | 20 | 0 | 0 | 0 |
6 | 4.VIII–10.VIII | 21.2 | 18 | 0 | 0 | 0 |
7 | 11.VIII–17.VIII | 21.2 | 18 | 0 | 0 | 0 |
8 | 18.VIII–24.VIII | 21.2 | 18 | 0 | 0 | 0 |
Cleaning | 25.VIII–28.VIII | 21.2 | 18 | 0 | 0 | 0 |
Total | BIV = 905 kg |
Week | Annual Period | [°C] | [°C] | Volumetric Mass Loading [kg/m3] | The Ventilation Coefficient [m3/h/kg] | [kW] | Average Fuel Consumption [kg] |
---|---|---|---|---|---|---|---|
1 | 31.VI–6.VII | 22 | 33 | 2 | 0.6 | 2.56 | 140 |
2 | 7.VII–13.VII | 22 | 29 | 3 | 0.7 | 2.85 | 156 |
3 | 14.VII–20.VII | 22 | 25 | 4 | 0.8 | 1.86 | 102 |
4 | 21.VII–27.VII | 22 | 22 | 5 | 0.9 | 0 | 0 |
5 | 28.VII–3.VIII | 21.2 | 20 | 6 | 3 | 0 | 0 |
6 | 4.VIII–10.VIII | 21.2 | 18 | 7 | 3 | 0 | 0 |
7 | 11.VIII–17.VIII | 21.2 | 18 | 8 | 3 | 0 | 0 |
8 | 18.VIII–24.VIII | 21.2 | 18 | 8.5 | 3 | 0 | 0 |
Cleaning | 25.VIII–28.VIII | 21.2 | 18 | - | - | 0 | 0 |
Total | 398 |
Week | Annual Period | [°C] | [°C] | Heat for Heating Q [kW] | Fuel Consumption Per Unit of Time [kg/s] | Fuel Consumption Per Week [kg] |
---|---|---|---|---|---|---|
1 | 29.VIII–4.IX | 16.9 | 33 | 14.31 | 0.001 | 600 |
2 | 5.IX–11.IX | 16.9 | 29 | 10.75 | 0.0009 | 543 |
3 | 12.IX–18.IX | 16.9 | 25 | 8.08 | 0.0007 | 422 |
4 | 19.IX–25.IX | 16.9 | 22 | 4.53 | 0.0004 | 241 |
5 | 26.IX–2.X | 10.8 | 20 | 8.17 | 0.0007 | 543 |
6 | 3.X–9.X | 10.8 | 18 | 6.4 | 0.0005 | 300 |
7 | 10.X–16.X | 10.8 | 18 | 6.4 | 0.0005 | 300 |
8 | 17.X–23.X | 10.8 | 18 | 6.4 | 0.0005 | 300 |
Cleaning | 24.X–28.X | 10.8 | 18 | 6.4 | 0.0005 | 216 |
Total | BV = 3465 kg |
Week | Annual Period | [°C] | [°C] | Volumetric Mass Loading [kg/m3] | The Ventilation Coefficient [m3/h/kg] | [kW] | Average Fuel Consumption [kg] |
---|---|---|---|---|---|---|---|
1 | 29.VIII–4.IX | 16.9 | 33 | 2 | 0.6 | 3.75 | 181 |
2 | 5.IX–11.IX | 16.9 | 29 | 3 | 0.7 | 6.51 | 357 |
3 | 12.IX–18.IX | 16.9 | 25 | 4 | 0.8 | 6.64 | 364 |
4 | 19.IX–25.IX | 16.9 | 22 | 5 | 0.9 | 5.89 | 323 |
5 | 26.IX–2.X | 10.8 | 20 | 6 | 1.0 | 10.73 | 589 |
6 | 3.X–9.X | 10.8 | 18 | 7 | 1.1 | 14.22 | 780 |
7 | 10.X–16.X | 10.8 | 18 | 8 | 1.2 | 17.74 | 974 |
8 | 17.X–23.X | 10.8 | 18 | 8.5 | 1.3 | 20.42 | 1121 |
Cleaning | 24.X–28.X | 10.8 | 18 | - | - | 20.42 | 641 |
Total | 5330 |
Week | Annual Period | [°C] | [°C] | Heat for Heating Q [kW] | Fuel Consumption Per Unit of Time [kg/s] | Fuel Consumption Per Week [kg] |
---|---|---|---|---|---|---|
1 | 29.X–4.XI | 5.2 | 33 | 24.71 | 0.0020 | 1200 |
2 | 5.XI–11.XI | 5.2 | 29 | 21.15 | 0.0019 | 1176 |
3 | 12.XI–18.XI | 5.2 | 25 | 17.60 | 0.0016 | 966 |
4 | 19.XI–25.XI | 5.2 | 22 | 14.93 | 0.0013 | 785 |
5 | 26.XI–2.XII | 0.2 | 20 | 13.15 | 0.0011 | 664 |
6 | 3.XII–9.XII | 0.2 | 18 | 15.82 | 0.001 | 604 |
7 | 10.XII–16.XII | 0.2 | 18 | 15.82 | 0.001 | 604 |
8 | 17.XII–23.XII | 0.2 | 18 | 15.82 | 0.001 | 604 |
Cleaning | 24.XII–31.XII | 0.2 | 18 | 15.82 | 0.001 | 172 |
Total | BV = 6775 kg |
Week | Annual Period | [°C] | [°C] | Volumetric Mass Loading [kg/m3] | The Ventilation Coefficient [m3/h/kg] | [kW] | Average Fuel Consumption [kg] |
---|---|---|---|---|---|---|---|
1 | 29.X–4.XI | 5.2 | 33 | 2 | 0.5 | 7.13 | 391 |
2 | 5.XI–11.XI | 5.2 | 29 | 3 | 0.6 | 11.00 | 604 |
3 | 12.XI–18.XI | 5.2 | 25 | 4 | 0.7 | 10.78 | 591 |
4 | 19.XI–25.XI | 5.2 | 22 | 5 | 0.7 | 17.24 | 946 |
5 | 26.XI–2.XII | 0.2 | 20 | 5.5 | 0.7 | 19.56 | 1074 |
6 | 3.XII–9.XII | 0.2 | 18 | 6 | 0.7 | 19.18 | 1053 |
7 | 10.XII–16.XII | 0.2 | 18 | 6.5 | 0.7 | 20.78 | 1141 |
8 | 17.XII–23.XII | 0.2 | 18 | 7 | 0.7 | 22.38 | 1228 |
Cleaning | 24.XII–31.XII | 0.2 | 18 | - | - | 22.38 | 350 |
Total | 7378 |
Production Type | Manure with Straw Bedding | Manure with Wood Chip Litter | Manure with Peat or Sawdust Bedding | |||
---|---|---|---|---|---|---|
m3 | t | m3 | t | m3 | t | |
Laying hens | 103.0 | 67.0 | 90.0 | 68.0 | 90.0 | 72.0 |
Chicks | 29.0 | 15.0 | 17.0 | 9.0 | 17.0 | 9.5 |
Broilers | 10.0 | 3.0 * | 7.0 | 3.0 * | 7.0 | 3.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazaroiu, G.; Mihaescu, L.; Grigoriu, R.-M.; Negreanu, G.-P.; Stoica, D. Possibilities of Climate Control of Poultry Complexes through Co-Combustion of Poultry Waste–Solid Biomass for Agriculture in Romania. Agriculture 2024, 14, 428. https://doi.org/10.3390/agriculture14030428
Lazaroiu G, Mihaescu L, Grigoriu R-M, Negreanu G-P, Stoica D. Possibilities of Climate Control of Poultry Complexes through Co-Combustion of Poultry Waste–Solid Biomass for Agriculture in Romania. Agriculture. 2024; 14(3):428. https://doi.org/10.3390/agriculture14030428
Chicago/Turabian StyleLazaroiu, Gheorghe, Lucian Mihaescu, Rodica-Manuela Grigoriu, Gabriel-Paul Negreanu, and Dorel Stoica. 2024. "Possibilities of Climate Control of Poultry Complexes through Co-Combustion of Poultry Waste–Solid Biomass for Agriculture in Romania" Agriculture 14, no. 3: 428. https://doi.org/10.3390/agriculture14030428
APA StyleLazaroiu, G., Mihaescu, L., Grigoriu, R.-M., Negreanu, G.-P., & Stoica, D. (2024). Possibilities of Climate Control of Poultry Complexes through Co-Combustion of Poultry Waste–Solid Biomass for Agriculture in Romania. Agriculture, 14(3), 428. https://doi.org/10.3390/agriculture14030428