Spatial Correlations between Nitrogen Budgets and Surface Water and Groundwater Quality in Watersheds with Varied Land Covers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Geographically Weighted Regression
2.3. Nitrogen Budget
2.4. Data Sources
2.4.1. Groundwater Quality
2.4.2. Surface Water Quality
2.5. Sensitivity Analysis of Data Resolution
3. Results and Discussion
3.1. Nitrogen Budget
3.2. Spatial Correlation between NB and Groundwater and Surface Water Quality
3.3. Sensitivity Analysis of Data Resolution in Spatial Correlation
3.4. Agricultural Area Sensitivity Analysis in Spatial Correlation
3.4.1. Groundwater Quality
3.4.2. Surface Water Quality
3.4.3. Evaluation of Applicability of NB in Mixed-Land-Cover Watersheds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, P.; Baiocchi, G.; Feng, K.; Hubacek, K.; Yu, Y. Environmental impacts of dietary quality improvement in China. J. Environ. Manag. 2019, 240, 518–526. [Google Scholar] [CrossRef]
- Lu, C.; Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 2017, 9, 181–192. [Google Scholar] [CrossRef]
- Castillo, A.; Gayme, D.F. Grid-scale energy storage applications in renewable energy integration: A survey. Energy Convers. Manag. 2014, 87, 885–894. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Cui, G.; Cao, Y. Water quality attribution and simulation of non-point source pollution load flux in the Hulan River basin. Nature 2020, 10, 3012. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, F.; Olesen, J.E.; Dalgaard, T.; Borgesen, C.D. Review of scenario analyses to reduce agricultural nitrogen and phosphorus loading to the aquatic environment. Sci. Total Environ. 2016, 573, 608–626. [Google Scholar] [CrossRef] [PubMed]
- Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M. Impacts of Waste from Concentrated Animal Feeding Operations on Water Quality. Environ. Health Perspect. 2007, 115, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.; Dabert, P.; Barrington, S.; Burton, C. Livestock Waste Treatment Systems for Environmental Quality, Food Safety, and Sustainability. Bioresour. Technol. 2009, 100, 5527–5536. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Tian, H.; Li, X.; Ren, W.; Zhang, B.; Zhang, X.; Wolf, J. Spatiotemporal Patterns of Livestock Manure Nutrient Production in the Conterminous United States from 1930 to 2012. Sci. Total Environ. 2016, 541, 1592–1602. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.E.; Ornelas, I.; Taylor, J.E. Agricultural Labor Supply. Annu. Rev. Resour. Econ. 2021, 13, 39–64. [Google Scholar] [CrossRef]
- Muurinen, J.; Stedtfeld, R.; Karkman, A.; Parnanen, K.; Tiedje, J.; Virta, M. Influence of manure application on the environmental resistome under finnish agricultural practice with restricted antibiotic use. Environ. Sci. Technol. 2017, 51, 5989–5999. [Google Scholar] [CrossRef]
- Chadwick, D.; Sommer, S.; Thorman, R.; Fangueiro, D.; Cardenas, L.; Amon, B.; Misselbrook, T. Manure Management: Implications for Greenhouse Gas Emissions. Anim. Feed Sci. Technol. 2011, 166–167, 514–531. [Google Scholar] [CrossRef]
- Lu, Y.; Chadwick, D.; Norse, D.; Powlson, D.; Shi, W. Sustainable Intensification of China’s Agriculture: The Key Role of Nutrient Management and Climate Change Mitigation and Adaptation. Agric. Ecosyst. Environ. 2015, 209, 1–4. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, H.; Wang, G.; Sun, W. Evaluating the Risks of Spatial and Temporal Changes in Nonpoint Source Pollution in a Chinese River Basin. Sci. Total Environ. 2022, 807, 151726. [Google Scholar] [CrossRef]
- Abler, D. Economic Evaluation of Agricultural Pollution Control Options for China. J. Integr. Agric. 2015, 14, 1045–1056. [Google Scholar] [CrossRef]
- Wu, W.; Ma, B. Integrated Nutrient Management (INM) for Sustaining Crop Productivity and Reducing Environmental Impact: A Review. Sci. Total Environ. 2015, 512–513, 415–427. [Google Scholar] [CrossRef]
- Lim, D.Y.; Ryu, H.-D.; Chung, E.G.; Shin, D.; Lee, J.K. Sensitivity Analysis of a Regional Nutrient Budget Model for Two Regions with Intensive Livestock Farming in Korea. Sustainability 2019, 11, 3676. [Google Scholar] [CrossRef]
- Oenema, O.; Kros, H.; de Vries, W. Approaches and Uncertainties in Nutrient Budgets: Implications for Nutrient Management and Environmental Policies. Eur. J. Agron. 2003, 20, 3–16. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Zou, T.; Lassaletta, L.; Quan, Z.; Li, T.; Zhang, W. Quantifying Nutrient Budgets for Sustainable Nutrient Management. Glob. Biogeochem. Cycles 2020, 34, e2018. [Google Scholar] [CrossRef]
- Leip, A.; Brits, W.; Weiss, F.; de Vries, W. Farm, land, and soil nitrogen budgets for agriculture in Europe calculated with Capri. Environ. Pollut. 2011, 159, 3243–3253. [Google Scholar] [CrossRef]
- Beegle, D.B.; Carton, O.T.; Bailey, J.S. Nutrient Management Planning: Justification, Theory, Practice. J. Environ. Qual. 2000, 29, 72–79. [Google Scholar] [CrossRef]
- Heathwaite, L.; Sharpley, A.; Gburek, W. A Conceptual Approach for Integrating Phosphorus and Nitrogen Management at Watershed Scales. J. Environ. Qual. 2000, 29, 158–166. [Google Scholar] [CrossRef]
- Rao, N.S.; Easton, Z.M.; Schneiderman, E.M.; Zion, M.S.; Lee, D.R.; Steenhuis, T.S. Modeling watershed-scale effectiveness of agricultural best management practices to reduce phosphorus loading. J. Environ. Manag. 2019, 90, 1385–1395. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ward, B.B.; Sigman, D.M. Global Nitrogen Cycle: Critical Enzymes, Organisms, and Processes for Nitrogen Budgets and Dynamics. Chem. Rev. 2020, 120, 5308–5351. [Google Scholar] [CrossRef]
- Conley, D.J. Biogeochemical Nutrient Cycles and Nutrient Management Strategies. In Man and River Systems: The Functioning of River Systems at the Basin Scale; Garnier, J., Mouchel, J.-M., Eds.; Springer: Cham, Switzerland, 1999; pp. 87–96. [Google Scholar]
- Purvaja, R.; Ramesh, R.; Ray, A.K.; Rixen, T. Nitrogen Cycling: A Review of the Processes, Transformations and Fluxes in Coastal Ecosystems. Curr. Sci. 2008, 94, 1419–1438. [Google Scholar]
- Huang, Z.; Han, L.; Zeng, L.; Xiao, W.; Tian, Y. Effects of Land Use Patterns on Stream Water Quality: A Case Study of a Small-Scale Watershed in the Three Gorges Reservoir Area, China. Environ. Sci. Pollut. Res. Int. 2016, 23, 3943–3955. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhang, P.; Wang, X.; Chen, Y.; Shen, Z. Assessment of Effects of Best Management Practices on Agricultural Non-Point Source Pollution in Xiangxi River Watershed. Agric. Water Manag. 2013, 117, 9–18. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, G.; Xu, Y.J.; Zhang, J.; Wu, Y.; Ju, H. Determining Water Allocation Scheme to Attain Nutrient Management Objective for a Large Lake Receiving Irrigation Discharge. J. Hydrol. 2021, 603, 126900. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, Z.; Xiao, W. Reductions in Non-point Source Pollution through Different Management Practices for an Agricultural Watershed in the Three Gorges Reservoir Area. J. Environ. Sci. 2010, 22, 184–191. [Google Scholar] [CrossRef]
- Berka, C.; Schreier, H.; Hall, K. Linking Water Quality with Agricultural Intensification in a Rural Watershed. Water Air Soil Pollut. 2001, 127, 389–401. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Finlay, J.C.; Janke, B.D.; Nidzgorski, D.A.; Millet, D.B.; Baker, L.A. Contrasting Nitrogen and Phosphorus Budgets in Urban Watersheds and Implications for Managing Urban Water Pollution. Proc. Natl. Acad. Sci. USA 2017, 114, 4177–4182. [Google Scholar] [CrossRef]
- Shober, A.L.; Hochmuth, G.; Wiese, C. Overview of Nutrient Budgets for Use in Nutrient Management Planning. EDIS 2011, SL361/SS562. [Google Scholar] [CrossRef]
- Koh, E.H.; Lee, E.; Lee, K.K. Application of Geographically Weighted Regression Models to Predict Spatial Characteristics of Nitrate Contamination: Implications for an Effective Groundwater Management Strategy. J. Environ. Manag. 2020, 268, 110646. [Google Scholar] [CrossRef] [PubMed]
- Mei, K.; Liao, L.; Zhu, Y.; Lu, P.; Wang, Z.; Dahlgren, R.A.; Zhang, M. Evaluation of Spatial-Temporal Variations and Trends in Surface Water Quality Across a Rural-Suburban-Urban Interface. Environ. Sci. Pollut. Res. Int. 2014, 21, 8036–8051. [Google Scholar] [CrossRef]
- Chen, Q.; Mei, K.; Dahlgren, R.A.; Wang, T.; Gong, J.; Zhang, M. Impacts of Land Use and Population Density on Seasonal Surface Water Quality Using a Modified Geographically Weighted Regression. Sci. Total Environ. 2016, 572, 450–466. [Google Scholar] [CrossRef]
- Ding, L. Exploring the Linkage Between Land Use Type and Stream Water Quality of an Estuarine Island Applying GWR Model: A Case Study of Chongming, Shanghai. J. Geosci. Environ. Prot. 2022, 10, 279–304. [Google Scholar] [CrossRef]
- Ullah, K.A.; Jiang, J.; Wang, P. Land Use Impacts on Surface Water Quality by Statistical Approaches. Glob. J. Environ. Sci. Manag. 2018, 4, 231–250. [Google Scholar] [CrossRef]
- Brown, S.; Versace, V.L.; Laurenson, L.; Ierodiaconou, D.; Fawcett, J.; Salzman, S. Assessment of Spatiotemporal Varying Relationships between Rainfall, Land Cover and Surface Water Area Using Geographically Weighted Regression. Environ. Model. Assess. 2012, 17, 241–254. [Google Scholar] [CrossRef]
- Fotheringham, A.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Tu, J.; Xia, Z.G. Examining Spatially Varying Relationships Between Land Use and Water Quality Using Geographically Weighted Regression I: Model Design and Evaluation. Sci. Total Environ. 2008, 407, 358–378. [Google Scholar] [CrossRef]
- Lee, J.H.; Febrisiantosa, A. Improvement of Nitrogen Balance (Land Budget) in South Korea in Terms of Livestock Manure: A Review. IOP Conf. Ser. Earth Environ. Sci. 2020, 462, 012011. [Google Scholar] [CrossRef]
- Park, S.R.; Lee, S.W. Spatially Varying and Scale-Dependent Relationships of Land Use Types with Stream Water Quality. Int. J. Environ. Res. Public Health 2020, 17, 1673. [Google Scholar] [CrossRef]
- Ogneva-Himmelberger, Y.; Pearsall, H.; Rakshit, R. Concrete Evidence & Geographically Weighted Regression: A Regional Analysis of Wealth and the Land Cover in Massachusetts. Appl. Geogr. 2009, 29, 478–487. [Google Scholar] [CrossRef]
- O’Sullivan, D.; Unwin, D. Geographic Information Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Fotheringham, A.S.; Charlton, M.E.; Brunsdon, C. Geographically Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis. Environ. Plan. A 1998, 30, 1905–1927. [Google Scholar] [CrossRef]
- Pogson, M.; Smith, P. Effect of Spatial Data Resolution on Uncertainty. Environ. Modell. Softw. 2015, 63, 87–96. [Google Scholar] [CrossRef]
- Lim, J.Y.; Islam Bhuiyan, M.S.; Lee, S.B.; Lee, J.G.; Kim, P.J. Agricultural Nitrogen and Phosphorus Balances of Korea and Japan: Highest Nutrient Surplus Among OECD Member Countries. Environ. Pollut. 2021, 286, 117353. [Google Scholar] [CrossRef] [PubMed]
- Statistics of Livestock Manure Production and Treatment; Ministry of the Environment: Sejong, Republic of Korea, 2020; Available online: http://www.index.go.kr/potal/main/EachDtlPageDetail/do?idx_cd=1475 (accessed on 1 November 2022).
- Kim, S.C.; Park, Y.H.; Lee, Y.; Kim, P.Y. Comparison of OECD Nitrogen Balances of Korea and Japan. Korean J. Environ. Agric. 2005, 24, 295–302. [Google Scholar] [CrossRef]
- Park, Y.H.; Lee, Y.; Kim, S.C.; Noh, J.S.; Lee, J.Y. Application Effects and Vision of Bulk Blending Fertilizers in Farming Fields Symposium on Development Bulk Blending Fertilizer (BB); Chonnam National University: Gwangju, Republic of Korea, 2002. [Google Scholar]
- Fleckenstein, J.H.; Krause, S.; Hannah, D.M.; Boano, F. Groundwater-Surface Water Interactions: New Methods and Models to Improve Understanding of Processes and Dynamics. Adv. Water Resour. 2010, 33, 1291–1295. [Google Scholar] [CrossRef]
- Hendrickx, J.M.H. Groundwater Recharge. A Guide to Understanding and Estimating Natural Recharge (Volume 8, International Contributions to Hydrogeology). J. Environ. Qual. 1992, 21, 512. [Google Scholar] [CrossRef]
- Singh, S.; Singh, C.; Mukherjee, S. Impact of Land-Use and Land-Cover Change on Groundwater Quality in the Lower Shiwalik Hills: A Remote Sensing and GIS Based Approach. Open Geosci. 2010, 2, 124–131. [Google Scholar] [CrossRef]
- Lin, L.; St Clair, S.; Gamble, G.D.; Crowther, C.A.; Dixon, L.; Bloomfield, F.H.; Harding, J.E. Nitrate Contamination in Drinking Water and Adverse Reproductive and Birth Outcomes: A Systematic Review and Meta-analysis. Sci. Rep. 2023, 13, 563. [Google Scholar] [CrossRef]
- Navulur, K.C.S.; Engel, B.A. Groundwater Vulnerability Assessment to Non-point Source Nitrate Pollution on a Regional Scale Using GIS. Trans. ASAE 1998, 41, 1671–1678. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Seitzinger, S.P.; Mayorga, E.; Bouwman, A.F.; Kroeze, C.; Beusen, A.H.W.; Billen, G.; Van Drecht, G.; Dumont, E.; Fekete, B.M.; Garnier, J.; et al. Global River Nutrient Export: A Scenario Analysis of past and Future Trends. Glob. Biogeochem. Cycles 2010, 24, GB0A08. [Google Scholar] [CrossRef]
- Motevalli, A.; Naghibi, S.A.; Hashemi, H.; Berndtsson, R.; Pradhan, B.; Gholami, V. Inverse Method Using Boosted Regression Tree and k-Nearest Neighbor to Quantify Effects of Point and Non-point Source Nitrate Pollution in Groundwater. J. Clean. Prod. 2019, 228, 1248–1263. [Google Scholar] [CrossRef]
- Palmer, M.A.; Allan, J.D.; Meyer, J.; Bernhardt, E.S. River Restoration in the Twenty-First Century: Data and Experiential Knowledge to Inform Future Efforts. Restor. Ecol. 2007, 15, 472–481. [Google Scholar] [CrossRef]
- Yi, Q.; Zhang, Y.; Xie, K.; Chen, Q.; Zheng, F.; Tonina, D.; Shi, W.; Chen, C. Tracking Nitrogen Pollution Sources in Plain Watersheds by Combining High-Frequency Water Quality Monitoring with Tracing Dual Nitrate Isotopes. J. Hydrol. 2020, 581, 124439. [Google Scholar] [CrossRef]
- Giri, S.; Qiu, Z.; Zhang, Z. Assessing the Impacts of Land Use on Downstream Water Quality Using a Hydrologically Sensitive Area Concept. J. Environ. Manag. 2018, 213, 309–319. [Google Scholar] [CrossRef]
- Shirmohammadi, A.; Yoon, K.S.; Magette, W.L. Water Quality in Mixed Land-Use Watershed—Piedmont Region in Maryland. Trans. ASAE 1997, 40, 1563–1572. [Google Scholar] [CrossRef]
- Li, J.; Shi, Z.; Wang, G.; Liu, F. Evaluating Spatiotemporal Variations of Groundwater Quality in Northeast Beijing by Self-Organizing Map. Water 2020, 12, 1382. [Google Scholar] [CrossRef]
- Sheikhy Narany, T.; Bittner, D.; Disse, M.; Chiogna, G. Spatial and Temporal Variability in Hydrochemistry of a Small-Scale Dolomite Karst Environment. Environ. Earth Sci. 2019, 78, 273. [Google Scholar] [CrossRef]
- Gu, Q.; Hu, H.; Ma, L.; Sheng, L.; Yang, S.; Zhang, X.; Zhang, M.; Zheng, K.; Chen, L. Characterizing the Spatial Variations of the Relationship Between Land Use and Surface Water Quality Using Self-Organizing Map Approach. Ecol. Indic. 2019, 102, 633–643. [Google Scholar] [CrossRef]
- Kleinman, P.J.A.; Sharpley, A.N.; McDowell, R.W.; Flaten, D.N.; Buda, A.R.; Tao, L.; Bergstrom, L.; Zhu, Q. Managing Agricultural Phosphorus for Water Quality Protection: Principles for Progress. Plant Soil 2011, 349, 169–182. [Google Scholar] [CrossRef]
- Li, X.; Tang, C.; Cao, Y.; Li, D. A Multiple Isotope (H, O, N, C and S) Approach to Elucidate the Hydrochemical Evolution of Shallow Groundwater in a Rapidly Urbanized Area of the Pearl River Delta, China. Sci. Total Environ. 2020, 724, 137930. [Google Scholar] [CrossRef]
- Riseng, C.M.; Wiley, M.J.; Black, R.W.; Munn, M.D. Impacts of Agricultural Land Use on Biological Integrity: A Causal Analysis. Ecol. Appl. 2011, 21, 3128–3146. [Google Scholar] [CrossRef]
- Yu, S.; Xu, Z.; Wu, W.; Zuo, D. Effect of Land Use Types on Stream Water Quality under Seasonal Variation and Topographic Characteristics in the Wei River Basin, China. Ecol. Indic. 2016, 60, 202–212. [Google Scholar] [CrossRef]
- Love, B.J.; Nejadhashemi, A.P. Water Quality Impact Assessment of Large-Scale Biofuel Crops Expansion in Agricultural Regions of Michigan. Biomass Bioenergy 2011, 35, 2200–2216. [Google Scholar] [CrossRef]
- Waller, D.M.; Meyer, A.G.; Raff, Z.; Apfelbaum, S.I. Shifts in Precipitation and Agricultural Intensity Increase Phosphorus Concentrations and Loads in an Agricultural Watershed. J. Environ. Manag. 2021, 284, 112019. [Google Scholar] [CrossRef] [PubMed]
- Asnake, K.; Worku, H.; Argaw, M. Assessing the Impact of Watershed Land Use on Kebena River Water Quality in Addis Ababa, Ethiopia. Environ. Syst. Res. 2021, 10, 3. [Google Scholar] [CrossRef]
- Meyer, K. The Impact of Agricultural Land Use Change on Lake Water Quality: Evidence from Iowa. Stud. Agric. Econ. 2018, 120, 105–111. [Google Scholar] [CrossRef]
- Rural Development Administration (RDA). The Study to Re-Establish the Amount and Major Compositions of Manure from Livestock; 11-13190000-002309-01; National Institute of Animal Science, RDA: Jeju, Republic of Korea, 2009; pp. 1–109. [Google Scholar]
- Kremer, A.M. Nutrient Budgets–Methodology and Handbook, Version 1.0.2; Eurostat and Organization for Economic Cooperation and Development: Luxembourg, 2013; pp. 1–112. [Google Scholar]
- Ahn, H.K.; Lee, S.D.; Han, J.S.; Choi, J.S.; Sung, M.Y.; Park, J.H.; Son, J.S.; Hong, Y.D. Study on the Characteristics of Regional Scale Wet and Dry Acid Deposition (I); NIER-RP2014-269; National Institute of Environmental research: Incheon, Republic of Korea, 2014; pp. 22–24. [Google Scholar]
- National Institute of Environmental Research (NIER). Study on the Inventory Development and Estimate Ammonia Gas Emission (II); NIER: Incheon, Republic of Korea, 2008; p. 147. [Google Scholar]
- Rural Development Administration (RDA). A Manual for Technical Use of Livestock Compost and Liquid Fertilizer; RDA: Jeju, Republic of Korea, 2010; pp. 1–228. [Google Scholar]
- Kim, D.-W.; Chung, E.G.; Kim, K. Impact assessment of on-site swine wastewater treatment facilities on spatiotemporal variations of nitrogen loading in an intensive livestock farming watershed. Env. Sci. Poll. Res. 2022, 29, 39994–40011. [Google Scholar] [CrossRef]
- Cooperband, L. The Art and Science of Compositing: A Resource for Farmers and Compost Producers; University of Wisconsin–Madison: Madison, WI, USA, 2002; pp. 1–17. [Google Scholar]
- Kader, N.A.E.; Robin, P.; Pallat, J.-M.; Leterme, P. Turning, compacting and the addition of water as factors affecting gasous emissions in farm manure composting. Bioresour. Technol. 2007, 98, 2619–2628. [Google Scholar] [CrossRef]
- Larney, F.J.; Buckley, K.E.; Hao, X.; McCaughey, W.P. Fresh, stockpiled, and composted beef cattle feedlot manure: Nutrient levels and mass balance estimates in Alberta and Manitoba. J. Environ. Qual. 2006, 35, 1844–1854. [Google Scholar] [CrossRef] [PubMed]
- Tiqua, S.M.; Richard, T.L.; Honeyman, M.S. Carbon, nutrient, and mass loss during composting. Nutr. Cycl. Agroecosyst. 2002, 62, 15–24. [Google Scholar] [CrossRef]
- You, B.G. Investigation of Nutrient Loading Amount and Coefficient from Livestock Manure. Master’s Thesis, Kangwon National University, Chuncheon, Republic of Korea, February 2016. [Google Scholar]
- Lee, J.H.; Go, W.; Kunhikrishnan, A.; Yoo, J.-H.; Kim, J.Y.; Kim, W.-I. Chemical composition and heavy metal contents in commercial liquid pig manures. Kor. J. Soil Sci. Fert. 2011, 44, 1085–1088. [Google Scholar] [CrossRef]
- Choi, D.Y.; Song, J.I.; Park, K.H.; Khan, M.A.; Ahn, H.W. Nitrogen losses during animal manure management: A review. J. Anim. Environ. Sci. 2012, 18, 73–80. [Google Scholar]
Contents | Groundwater | Surface Water | |||
---|---|---|---|---|---|
10% Cropland | 20% Cropland | 10% Cropland | 20% Cropland | ||
Range of spatial correlation | 0.0–0.88 | 0.0–0.89 | 0.0–0.88 | 0.0–0.88 | |
Increase in spatial correlation (ISC) * | Number of subwatersheds | 411 | 180 | 623 | 385 |
Average rate of increase | 76.3% | 77.0% | 501.5% | 468.5% | |
Decrease in spatial correlation (DSC) * | Number of subwatersheds | 170 | 190 | 16 | 84 |
Average rate of increase | 28.1% | 43.0% | 58.9% | 53.6% | |
Nitrogen budget (kg N) | ISC | 48.6–188.7 ** (448.2) *** | 49.8–213.1 (448.2) | 32.2–117.4 (378.2) | 43.3–188.7 (448.2) |
DSC | 44.5–196.0 (351.2) | 33.9–119.1 (378.2) | 25.1–86.0 (120.7) | 81.5–192.1 (299.8) | |
Quantity of livestock excreta (kg N) | ISC | 205.3–652.9 (3340.7) | 164.7–858.3 (2986.3) | 74.3–473.2 (2986.3) | 118.7–595.2 (2986.3) |
DSC | 85.4–412.5 (1518.0) | 112.6–474.3 (1429.2) | 75.9–173.2 (292.0) | 49.4–348.2 (968.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-W.; Chung, E.G.; Na, E.H.; Kim, Y. Spatial Correlations between Nitrogen Budgets and Surface Water and Groundwater Quality in Watersheds with Varied Land Covers. Agriculture 2024, 14, 429. https://doi.org/10.3390/agriculture14030429
Kim D-W, Chung EG, Na EH, Kim Y. Spatial Correlations between Nitrogen Budgets and Surface Water and Groundwater Quality in Watersheds with Varied Land Covers. Agriculture. 2024; 14(3):429. https://doi.org/10.3390/agriculture14030429
Chicago/Turabian StyleKim, Deok-Woo, Eu Gene Chung, Eun Hye Na, and Youngseok Kim. 2024. "Spatial Correlations between Nitrogen Budgets and Surface Water and Groundwater Quality in Watersheds with Varied Land Covers" Agriculture 14, no. 3: 429. https://doi.org/10.3390/agriculture14030429
APA StyleKim, D.-W., Chung, E. G., Na, E. H., & Kim, Y. (2024). Spatial Correlations between Nitrogen Budgets and Surface Water and Groundwater Quality in Watersheds with Varied Land Covers. Agriculture, 14(3), 429. https://doi.org/10.3390/agriculture14030429