Characterization of In Situ Ruminal Degradation of Crude Protein and Individual Amino Acids from Ryegrass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval and Study Site
2.2. Animals, Housing, and Diet
2.3. Ryegrass Sampling, In Situ Incubation, and Laboratory Post-Incubation Residue Analysis
2.4. Amino Acid Corrections
2.5. Calculation of Ruminal Degradation Kinetics
2.6. Adjustment for Microbial Contamination in Incubation Residues
2.7. Statistical Analysis
3. Results
3.1. Crude Protein and Amino Acid Profile in Ryegrass
3.2. Kinetic Parameters of In Situ Degradation of Crude Protein and Amino Acids in Ryegrass
3.3. Extent of Degradation of Crude Protein and Amino Acids in Ryegrass
3.4. Comparison of Crude Protein and Amino Acid Degradation Kinetics in Ryegrass
4. Discussion
4.1. Factors Affecting Crude Protein and Amino Acid Profiles in Ryegrass
4.2. Variability in Ruminal Degradation Kinetic Parameters of Crude Protein and Amino Acids in Ryegrass
4.3. Effective Degradability of Crude Protein and Amino Acids in Ryegrass
4.4. Comparison of Ruminal Degradation Kinetics Between Crude Protein and Amino Acids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ryan, W.; Hennessy, D.; Murphy, J.J.; Boland, T.M.; Shalloo, L. A model of nitrogen efficiency in contrasting grass-based dairy systems. J. Dairy Sci. 2011, 94, 1032–1044. [Google Scholar] [CrossRef] [PubMed]
- Keim, J.P.; Valderrama, X.; Alomar, D.; López, I.F. In situ rumen degradation kinetics as affected by type of pasture and date of harvest. Sci. Agric. 2013, 70, 405–414. [Google Scholar] [CrossRef]
- Beltran, I.E.; Calvache, I.; Cofre, R.; Salazar, F.; Keim, J.P.; Morales, A.; Pulido, R.G.; Alfaro, M. Nitrogen intake and its partition on urine, dung and products of dairy and beef cattle in Chile. Agronomy 2022, 12, 15. [Google Scholar] [CrossRef]
- Kolver, E.; Carruthers, V.; Neil, P.; de Veth, M.; Jansen, E.; Phipps, D. Amino acid supply to the small intestine of dairy cows fed pasture. Proc. N. Z. Soc. Anim. Prod. 1999, 59, 180–183. [Google Scholar]
- Rulquin, H.; Guinard, J.; Vérité, R. Variation of amino acid content in the small intestine digesta of cattle: Development of a prediction model. Livest. Prod. Sci. 1998, 53, 1–13. [Google Scholar] [CrossRef]
- Van Amburgh, M.E.; Collao-Saenz, E.A.; Higgs, R.J.; Ross, D.A.; Recktenwald, E.B.; Raffrenato, E.; Chase, L.E.; Overton, T.R.; Mills, J.K.; Foskolos, A. The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. J. Dairy Sci. 2015, 98, 6361–6380. [Google Scholar] [CrossRef]
- Van Duinkerken, G.; Blok, M.C.; Bannink, A.; Cone, J.W.; Dijkstra, J.; Van Vuuren, A.M.; Tamminga, S. Update of the Dutch protein evaluation system for ruminants: The DVE/OEB2010 system. J. Agric. Sci. 2011, 149, 351–367. [Google Scholar] [CrossRef]
- NASEM. Nutrient Requirements of Dairy Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2021; p. 502. [Google Scholar]
- Hanigan, M.D. Lessons from the development of the NASEM 2021 dairy protein model. In Proceedings of the 10th Workshop on Modelling Nutrient Digestion and Utilization in Farm Animals, Alghero, Italy, 18–21 September 2022; pp. 511–512. [Google Scholar]
- Tedeschi, L.O. Models of protein and amino acid requirements for cattle. Rev. Bras. Zootec. 2015, 44, 109–132. [Google Scholar] [CrossRef]
- Tamminga, S. Protein degradation in the forestomachs of ruminants. J. Anim. Sci. 1979, 49, 1615–1630. [Google Scholar] [CrossRef]
- Chalupa, W. Degradation of amino acids by the mixed rumen microbial population. J. Anim. Sci. 1976, 43, 828–834. [Google Scholar] [CrossRef]
- O’Mara, F.P.; Murphy, J.J.; Rath, M. The amino acid composition of protein feedstuffs before and after ruminal incubation and after subsequent passage through the intestines of dairy cows. J. Anim. Sci. 1997, 75, 1941–1949. [Google Scholar] [CrossRef] [PubMed]
- Susmel, P.; Stefanon, B.; Mills, C.R.; Candido, M. Change in amino acid composition of different protein sources after rumen incubation. Anim. Sci. 1989, 49, 375–383. [Google Scholar] [CrossRef]
- van Straalen, W.M.; Odinga, J.J.; Mostert, W. Digestion of feed amino acids in the rumen and small intestine of dairy cows measured with nylon-bag techniques. Br. J. Nutr. 1997, 77, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Erasmus, L.J.; Botha, P.M.; Cruywagen, C.W.; Meissner, H.H. Amino acid profile and intestinal digestibility in dairy cows of rumen-undegradable protein from various feedstuffs. J. Dairy Sci. 1994, 77, 541–551. [Google Scholar] [CrossRef]
- Morales, A.G.; Vibart, R.E.; Li, M.M.; Jonker, A.; Pacheco, D.; Hanigan, M.D. Evaluation of Molly model predictions of ruminal fermentation, nutrient digestion, and performance by dairy cows consuming ryegrass-based diets. J. Dairy Sci. 2021, 104, 9676–9702. [Google Scholar] [CrossRef]
- Morales, A.G.; Cockrum, R.R.; Teixeira, I.; Ferreira, G.; Hanigan, M.D. Graduate Student Literature Review: System, plant, and animal factors controlling dietary pasture inclusion and its impact on ration formulation for dairy cows. J. Dairy Sci. 2024, 107, 870–882. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Lee, M.R.F.; Rivero, M.J.; Chamberlain, A.T. Some challenges and opportunities for grazing dairy cows on temperate pastures. Grass Forage Sci. 2020, 75, 1–17. [Google Scholar] [CrossRef]
- Ferguson, J.D.; Galligan, D.T.; Thomsen, N. Principal descriptors of body condition score in Holstein cows. J. Dairy Sci. 1994, 77, 2695–2703. [Google Scholar] [CrossRef]
- Vanzant, E.S.; Cochran, R.C.; Titgemeyer, E.C.; Stafford, S.D.; Olson, K.C.; Johnson, D.E.; Jean, G. In vivo and in situ measurements of forage protein degradation in beef cattle. J. Anim. Sci. 1996, 74, 2773–2784. [Google Scholar] [CrossRef]
- Piña, L.F.; Balocchi, O.A.; Keim, J.P.; Pulido, R.G.; Rosas, F. Pre-grazing herbage mass affects grazing behavior, herbage disappearance, and the residual nutritive value of a pasture during the first grazing session. Animals 2020, 10, 212. [Google Scholar] [CrossRef]
- Canseco, C.; Demanet, R.; Balocchi, O.; Parga, J.; Anwandter, V.; Abarzúa, A.; Teuber, N.; Lopetegui, J. Determinación de la disponibilidad de materia seca de praderas en pastoreo. In Manejo del Pastoreo; Teuber, N., Balocchi, O., Parga, J., Eds.; Fundación para la Innovación Agraria (FIA): Osorno, Chile, 2007; pp. 23–49. [Google Scholar]
- Vanzant, E.S.; Cochran, R.C.; Titgemeyer, E.C. Standardization of in situ techniques for ruminant feedstuff evaluation. J. Anim. Sci. 1998, 76, 2717–2729. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; Association of Official Analytical Chemists (AOAC) International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analytical Chemists (AOAC) International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 16th ed.; Association of Official Analytical Chemists (AOAC) International: Gaithersburg, MD, USA, 1997. [Google Scholar]
- Lapierre, H.; Ouellet, D.R.; Martineau, R.; Spek, J.W. Key roles of amino acids in cow performance and metabolism—Considerations for defining amino acid requirements. In Proceedings of the 2016 Cornell Nutrition Conference for Feed Manufactures, East Syracuse, NY, USA, 18–20 October 2016; pp. 205–218. [Google Scholar]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- Nocek, J.E.; Grant, A.L. Characterization of in situ nitrogen and fiber digestion and bacterial nitrogen contamination of hay crop forages preserved at different dry matter percentages. J. Anim. Sci. 1987, 64, 552–564. [Google Scholar] [CrossRef] [PubMed]
- González, J.; Faría-Mármol, J.; Rodríguez, C.A.; Martínez, A. Effects of ensiling on ruminal degradability and intestinal digestibility of Italian rye-grass. Anim. Feed Sci. Technol. 2007, 136, 38–50. [Google Scholar] [CrossRef]
- Sok, M.; Ouellet, D.R.; Firkins, J.L.; Pellerin, D.; Lapierre, H. Amino acid composition of rumen bacteria and protozoa in cattle. J. Dairy Sci. 2017, 100, 5241–5249. [Google Scholar] [CrossRef]
- Edmunds, B.; Südekum, K.H.; Bennett, R.; Schröder, A.; Spiekers, H.; Schwarz, F.J. The amino acid composition of rumen-undegradable protein: A comparison between forages. J. Dairy Sci. 2013, 96, 4568–4577. [Google Scholar] [CrossRef]
- Dineen, M.; McCarthy, B.; Ross, D.; Ortega, A.; Dillon, P.; Van Amburgh, M.E. Characterization of the nutritive value of perennial ryegrass (Lolium perenne L.) dominated pastures using updated chemical methods with application for the Cornell Net Carbohydrate and Protein System. Anim. Feed Sci. Technol. 2020, 272, 114752. [Google Scholar] [CrossRef]
- Eppendorfer, W.H. Amino acid composition and nutritional value of italian ryegrass, red clover and lucerne as influenced by application and content of nitrogen. J. Sci. Food Agric. 1977, 28, 607–614. [Google Scholar] [CrossRef]
- Wilson, R.F.; Tilley, J.M.A. Amino-acid composition of lucerne and of lucerne and grass protein preparations. J. Sci. Food Agric. 1965, 16, 173–178. [Google Scholar] [CrossRef]
- González, J.; Centeno, C.; Lamrani, F.; Rodríguez, C.A. In situ rumen degradation of amino acids from different feeds corrected for microbial contamination. Anim. Res. 2001, 50, 253–264. [Google Scholar] [CrossRef]
- Von Keyserlingk, M.A.G.; Shelford, J.A.; Puchala, R.; Swift, M.L.; Fisher, L.J. In situ disappearance of amino acids from grass silages in the rumen and intestine of cattle. J. Dairy Sci. 1998, 81, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Varvikko, T. Microbially corrected amino acid composition of rumen-undegraded feed protein and amino acid degradability in the rumen of feeds enclosed in nylon bags. Br. J. Nutr. 1986, 56, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh, A.; Danesh Mesgaran, M.; Valizadeh, R.; Shahroodi, F.E.; Stanford, K. Digestion of feed amino acids in the rumen and intestine of steers measured using a mobile nylon bag technique. J. Dairy Sci. 2005, 88, 1807–1814. [Google Scholar] [CrossRef] [PubMed]
- Stuczynski, E.; Naleczynska, A.; Stuczynska, J.I. Effect of nitrogen fertilization on the content of soluble proteins in hybrids of Lolium and their parent forms. Genet. Pol. 1974, 15, 201–207. [Google Scholar]
- Raboisson, D.; Albaaj, A.; Nonne, G.; Foucras, G. High urea and pregnancy or conception in dairy cows: A meta-analysis to define the appropriate urea threshold. J. Dairy Sci. 2017, 100, 7581–7587. [Google Scholar] [CrossRef]
- Schwab, C.G.; Broderick, G.A. A 100-Year Review: Protein and amino acid nutrition in dairy cows. J. Dairy Sci. 2017, 100, 10094–10112. [Google Scholar] [CrossRef]
- Melendez, P.; Möller, J.; Arevalo, A.; Stevens, C.; Pinedo, P. An evaluation of the supplementation of rumen-protected lysine and methionine on the lactation performance of fall parturition grazing Holstein cows in Southern Chile. Animals 2023, 13, 3118. [Google Scholar] [CrossRef]
- Gargallo, S.; Ferret, A.; Calsamiglia, S. Ruminal microbial degradation of individual amino acids from heat-treated soyabean meal and corn gluten meal in continuous culture. Animals 2022, 12, 688. [Google Scholar] [CrossRef]
- Paz, H.A.; Klopfenstein, T.J.; Hostetler, D.; Fernando, S.C.; Castillo-Lopez, E.; Kononoff, P.J. Ruminal degradation and intestinal digestibility of protein and amino acids in high-protein feedstuffs commonly used in dairy diets. J. Dairy Sci. 2014, 97, 6485–6498. [Google Scholar] [CrossRef]
- Volden, H.; Velle, W.; Harstad, O.M.; Aulie, A.; Sjaastad, O.V. Apparent ruminal degradation and rumen escape of lysine, methionine, and threonine administered intraruminally in mixtures to high-yielding cows. J. Anim. Sci. 1998, 76, 1232–1240. [Google Scholar] [CrossRef]
- Xue, M.-Y.; Sun, H.-Z.; Wu, X.-H.; Liu, J.-X.; Guan, L.L. Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance. Microbiome 2020, 8, 64. [Google Scholar] [CrossRef]
Commercial Pellet | Soybean Meal | Dry Beet Pulp | Fresh Ryegrass | Pasture Silage | Total Diet | |
---|---|---|---|---|---|---|
Intake, kg DM/cow/d | 2.5 | 1.0 | 5.0 | 6.5 | 2.0 | 17.0 |
Chemical composition 1 | ||||||
DM (%) | 91.5 | 89.3 | 28.9 | 19.3 | 35.0 | 28.1 |
DE, Mcal/kg DM | 3.24 | 3.88 | 2.93 | 2.86 | 2.56 | 2.64 2 |
CP (%) | 21.7 | 48.0 | 12.8 | 21 | 14.1 | 19.5 |
NDF (%) | 20.0 | 11.1 | 29.0 | 41.8 | 50.0 | 34.0 |
ADF (%) | 7.10 | 7.19 | 19.1 | 21.8 | 30.1 | 19.0 |
Starch (%) | 32.2 | 1.88 | 8.20 | 2.10 | 1.94 | 8.30 |
WSC (%) | 16.9 | 13.0 | 2.98 | 14.6 | 7.29 | 10.6 |
Total fatty acids (%) | 3.84 | 1.08 | 0.64 | 2.32 | 1.84 | 1.92 |
CP and Individual AAs (% of CP) | Non-Corrected | Hydration-Corrected | Hydration + Recovery Corrected | Literature Values 4 | ||
---|---|---|---|---|---|---|
a | b | c | ||||
CP, % DM | 25.8 ± 1.42 | 10.9 | 16.9 | 27.5 | ||
Essential Amino Acids | ||||||
Arg | 4.57 ± 0.12 | 4.09 ± 0.11 | 4.34 ± 0.11 | 4.74 | 8.30 | 4.10 |
His | 1.89 ± 0.14 | 1.67 ± 0.12 | 1.79 ± 0.13 | 1.74 | 2.60 | 1.94 |
Ile | 3.63 ± 0.21 | 3.13 ± 0.18 | 3.51 ± 0.21 | 3.71 | 2.20 | 3.96 |
Leu | 7.42 ± 0.38 | 6.40 ± 0.32 | 6.82 ± 0.34 | 7.43 | 4.00 | 7.39 |
Lys | 4.42 ± 0.43 | 3.88 ± 0.38 | 4.13 ± 0.40 | 4.42 | 5.10 | 4.85 |
Met | 1.61 ± 0.10 | 1.41 ± 0.08 | 1.49 ± 0.09 | 1.74 | 1.00 | 1.64 |
Phe | 5.20 ± 0.32 | 4.64 ± 0.29 | 4.92 ± 0.31 | 4.50 | 2.40 | 4.78 |
Thr | 3.68 ± 0.10 | 3.12 ± 0.09 | 3.33 ± 0.10 | 4.11 | 2.10 | 4.10 |
Trp 2 | — 5 | — | — | — | 1.80 | 2.09 |
Val | 4.88 ± 0.17 | 4.13 ± 0.14 | 4.55 ± 0.16 | 5.14 | 3.10 | 5.22 |
Non-Essential Amino Acids | ||||||
Ala | 5.59 ± 0.06 | 4.47 ± 0.05 | 4.65 ± 0.05 | 6.16 | 4.60 | — |
Asp 3 | 7.64 ± 0.18 | 6.61 ± 0.16 | 6.74 ± 0.16 | 8.22 | 4.40 | — |
Cys | 0.93 ± 0.03 | 0.79 ± 0.02 | 0.91 ± 0.03 | 1.11 | 0.50 | — |
Glu 3 | 10.9 ± 0.17 | 9.55 ± 0.19 | 10.1 ± 0.22 | 9.72 | 4.60 | — |
Gly | 4.53 ± 0.08 | 3.45 ± 0.06 | 3.79 ± 0.07 | 4.90 | 4.20 | — |
Pro | 4.21 ± 0.21 | 3.56 ± 0.18 | 3.69 ± 0.18 | 4.74 | 1.50 | — |
Ser | 3.51 ± 0.13 | 2.91 ± 0.11 | 3.26 ± 0.12 | 3.95 | 2.30 | — |
Tyr | 3.06 ± 0.27 | 2.76 ± 0.24 | 2.89 ± 0.26 | 2.69 | 1.80 | — |
Total AAs, % CP | 77.6 ± 2.76 | 66.5 ± 2.40 | 70.9 ± 2.61 | 79.0 | 56.5 | — |
Nutrient | A Fraction, % 1 | B Fraction, % 2 | C Fraction, % 3 | kd, %/h 4 |
---|---|---|---|---|
CP | 48.3 gh | 51.4 a | 0.44 a | 11.8 a |
Arg | 35.5 a | 65.2 g | 0.13 a | 14.8 bcd |
Met | 36.3 ab | 64.7 fg | 0.08 a | 14.2 abc |
Ile | 37.4 abc | 63.5 efg | 0.09 a | 17.2 de |
Leu | 38.5 abcd | 62.0 defg | 0.16 a | 15.1 bcd |
Gly | 38.7 abcd | 61.8 defg | 0.15 a | 14.5 bc |
Cys | 39.2 abcd | 60.4 cdef | 0.43 a | 15.8 bcd |
Val | 40.3 bcde | 60.2 cdef | 0.14 a | 15.3 bcd |
Ser | 41.3 cde | 58.9 cd | 0.13 a | 15.3 bcd |
Thr | 41.6 cde | 58.9 cd | 0.08 a | 16.8 cde |
Tyr | 41.9 cde | 59.1 cde | 0.03 a | 18.7 e |
Asp | 42.4 def | 58.3 cd | 0.05 a | 16.9 cde |
Pro | 42.5 def | 57.8 bcd | 0.21 a | 14.0 ab |
His | 42.8 def | 57.8 bcd | 0.20 a | 16.0 bcd |
Ala | 44.2 efg | 56.2 bc | 0.11 a | 15.6 bcd |
Lys | 44.4 efg | 56.4 bc | 0.03 a | 19.2 e |
Phe | 47.0 fgh | 53.6 ab | 0.09 a | 15.4 bcd |
Glu | 49.6 h | 50.8 a | 0.08 a | 16.7 bcde |
PD, % 1 | ED2, % 2 | ED5, % 2 | ED8, % 2 | ||||
---|---|---|---|---|---|---|---|
CP | 99.6 a | CP | 91.4 a | CP | 83.2 a | CP | 77.7 ab |
Cys | 99.6 a | Arg | 92.6 b | Met | 83.7 ab | Met | 77.2 a |
Pro | 99.8 a | Gly | 92.6 b | Arg | 83.8 abc | Arg | 77.3 a |
His | 99.8 a | Cys | 92.7 b | Gly | 84.1 abcd | Gly | 78.0 abc |
Leu | 99.8 a | Met | 92.7 b | Pro | 84.6 abcde | Leu | 78.5 abcd |
Gly | 99.9 a | Pro | 92.7 b | Leu | 84.6 abcde | Pro | 78.7 abcd |
Val | 99.9 a | Leu | 92.9 bc | Cys | 84.8 bcde | Cys | 79.0 abcde |
Ser | 99.9 a | Ser | 93.2 bcd | Val | 85.2 cdef | Val | 79.3 bcdef |
Arg | 99.9 a | Val | 93.2 bcd | Ser | 85.4 def | Ser | 79.7 cdefg |
Ala | 99.9 a | Ala | 93.7 cde | Ile | 86.1 efg | Ile | 80.2 defgh |
Ile | 99.9 a | His | 93.9 de | Ala | 86.4 fg | His | 80.9 efgh |
Phe | 99.9 a | Ile | 94.0 de | His | 86.4 fg | Ala | 80.9 efgh |
Glu | 99.9 a | Thr | 94.0 def | Thr | 86.6 fg | Thr | 81.1 fghi |
Met | 99.9 a | Phe | 94.2 efg | Asp | 87.0 gh | Asp | 81.6 ghi |
Thr | 99.9 a | Asp | 94.3 efg | Phe | 87.1 gh | Phe | 81.9 hij |
Asp | 99.9 a | Glu | 94.8 fgh | Tyr | 88.2 hi | Tyr | 82.9 ij |
Tyr | 99.9 a | Tyr | 95.1 gh | Glu | 88.4 hi | Glu | 83.7 j |
Lys | 99.9 a | Lys | 95.2 h | Lys | 88.7 i | Lys | 83.7 j |
CP vs. Aas 1 | p Value | CP vs. EAAs 2 | p Value | CP vs. NEAAs 3 | p Value | EAAs vs. NEAAs | p Value | |
---|---|---|---|---|---|---|---|---|
A fraction, % 4 | 6.92 ± 0.92 | <0.01 | 7.89 ± 0.94 | <0.01 | 5.83 ± 0.95 | <0.01 | −2.06 ± 0.43 | <0.01 |
B fraction, % 5 | −7.77 ± 0.89 | <0.01 | −8.88 ± 0.92 | <0.01 | −6.52 ± 0.92 | <0.01 | 2.37 ± 0.42 | <0.01 |
C fraction, % 6 | 0.31 ± 0.10 | <0.01 | 0.33 ± 0.10 | <0.01 | 0.29 ± 0.10 | <0.01 | −0.04 ± 0.05 | 0.38 |
kd, %/h 7 | −4.21 ± 0.53 | <0.01 | −4.24 ± 0.54 | <0.01 | −4.18 ± 0.54 | <0.01 | 0.01 ± 0.25 | 0.80 |
PD, % 8 | −0.32 ± 0.10 | <0.01 | −0.34 ± 0.10 | <0.01 | −0.30 ± 0.10 | <0.01 | 0.04 ± 0.05 | 0.38 |
ED2, % 9 | −2.27 ± 0.17 | <0.01 | −2.27 ± 0.17 | <0.01 | −2.27 ± 0.17 | <0.01 | −0.01 ± 0.08 | 0.99 |
ED5, % 9 | −2.77 ± 0.30 | <0.01 | −2.62 ± 0.30 | <0.01 | −2.94 ± 0.31 | <0.01 | −0.33 ± 0.14 | 0.02 |
ED8, % 9 | −2.56 ± 0.38 | <0.01 | −2.30 ± 0.39 | <0.01 | −2.85 ± 0.39 | <0.01 | −0.55 ± 0.18 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, Á.G.; Navarro, Á.R.; Pulido, R.G.; Hanigan, M.D. Characterization of In Situ Ruminal Degradation of Crude Protein and Individual Amino Acids from Ryegrass. Agriculture 2024, 14, 2283. https://doi.org/10.3390/agriculture14122283
Morales ÁG, Navarro ÁR, Pulido RG, Hanigan MD. Characterization of In Situ Ruminal Degradation of Crude Protein and Individual Amino Acids from Ryegrass. Agriculture. 2024; 14(12):2283. https://doi.org/10.3390/agriculture14122283
Chicago/Turabian StyleMorales, Álvaro G., Álvaro R. Navarro, Rubén G. Pulido, and Mark D. Hanigan. 2024. "Characterization of In Situ Ruminal Degradation of Crude Protein and Individual Amino Acids from Ryegrass" Agriculture 14, no. 12: 2283. https://doi.org/10.3390/agriculture14122283
APA StyleMorales, Á. G., Navarro, Á. R., Pulido, R. G., & Hanigan, M. D. (2024). Characterization of In Situ Ruminal Degradation of Crude Protein and Individual Amino Acids from Ryegrass. Agriculture, 14(12), 2283. https://doi.org/10.3390/agriculture14122283