YOLO-IAPs: A Rapid Detection Method for Invasive Alien Plants in the Wild Based on Improved YOLOv9
Abstract
1. Introduction
2. Materials and Methods
2.1. Image Acquisition
2.2. Data Annotation
2.3. Image Detection Model
2.3.1. YOLO Series Model
2.3.2. Proposed Network Architecture for YOLO-IAPs
Dynamic Conv Module
Triplet Attention Mechanism
Loss Function Improvement
2.4. Experimental Settings
2.5. Evaluation Metrics
3. Result and Discussion
3.1. Training Results of the YOLO-IAPs Network
3.2. Results from Different Detection Models
3.2.1. Comparisons with Other YOLO Versions
3.2.2. Comparative Analysis Between YOLO-IAPs and Other Non-YOLO Networks
3.3. Ablation Experiment
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.-J.; Müller-Schärer, H.; van Kleunen, M.; Cai, A.-M.; Zhang, P.; Yan, R.; Dong, B.-C.; Yu, F.-H. Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives. New Phytol. 2017, 216, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Knapp, L.S.P.; Coyle, D.R.; Dey, D.C.; Fraser, J.S.; Hutchinson, T.; Jenkins, M.A.; Kern, C.C.; Knapp, B.O.; Maddox, D.; Pinchot, C.; et al. Invasive plant management in eastern North American Forests: A systematic review. For. Ecol. Manag. 2023, 550, 121517. [Google Scholar] [CrossRef]
- Sun, J.; Khattak, W.A.; Abbas, A.; Nawaz, M.; Hameed, R.; Javed, Q.; Bo, Y.; Khan, K.A.; Du, D. Ecological adaptability of invasive weeds under environmental pollutants: A review. Environ. Exp. Bot. 2023, 215, 105492. [Google Scholar] [CrossRef]
- Lake, T.A.; Briscoe Runquist, R.D.; Moeller, D.A. Deep learning detects invasive plant species across complex landscapes using Worldview-2 and Planetscope satellite imagery. Remote Sens. Ecol. Conserv. 2022, 8, 875–889. [Google Scholar] [CrossRef]
- Diagne, C.; Leroy, B.; Vaissiere, A.-C.; Gozlan, R.E.; Roiz, D.; Jaric, I.; Salles, J.-M.; Bradshaw, C.J.A.; Courchamp, F. High and rising economic costs of biological invasions worldwide. Nature 2022, 608, E35. [Google Scholar] [CrossRef]
- Qian, W.; Huang, Y.; Liu, Q.; Fan, W.; Sun, Z.; Dong, H.; Wan, F.; Qiao, X. UAV and a deep convolutional neural network for monitoring invasive alien plants in the wild. Comput. Electron. Agric. 2020, 174, 105519. [Google Scholar] [CrossRef]
- Khanna, S.; Santos, M.J.; Boyer, J.D.; Shapiro, K.D.; Bellvert, J.; Ustin, S.L. Water primrose invasion changes successional pathways in an estuarine ecosystem. Ecosphere 2018, 9, e02418. [Google Scholar] [CrossRef]
- Liu, M.; Mao, D.; Wang, Z.; Li, L.; Man, W.; Jia, M.; Ren, C.; Zhang, Y. Rapid invasion of Spartina alterniflora in the coastal zone of mainland china: New observations from landsat OLI images. Remote Sens. 2018, 10, 1933. [Google Scholar] [CrossRef]
- Singh Yadav, S.P.; Mehata, D.K.; Pokhrel, S.; Ghimire, N.P.; Gyawali, P.; Katel, S.; Timilsina, U. Invasive alien plant species (Banmara): Investigating its invasive potential, ecological consequences on biodiversity, and management strategies. J. Agric. Food Res. 2024, 15, 101031. [Google Scholar] [CrossRef]
- Takaya, K.; Sasaki, Y.; Ise, T. Automatic detection of alien plant species in action camera images using the chopped picture method and the potential of citizen science. Breed. Sci. 2022, 72, 96–106. [Google Scholar] [CrossRef]
- Leung, B.; Lodge, D.M.; Finnoff, D.; Shogren, J.F.; Lewis, M.A.; Lamberti, G. An ounce of prevention or a pound of cure: Bioeconomic risk analysis of invasive species. Proc. R. Soc. B-Biol. Sci. 2002, 269, 2407–2413. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cheng, M.; Huang, S.; Cai, Z.; Zhang, J.; Yuan, H. A deep learning approach incorporating YOLO v5 and attention mechanisms for field real-time detection of the invasive weed Solanum rostratum Dunal seedlings. Comput. Electron. Agric. 2022, 199, 107194. [Google Scholar] [CrossRef]
- Hao, Q.; Ma, J.-S. Invasive alien plants in China: An update. Plant Divers. 2023, 45, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Reaser, J.K.; Burgiel, S.W.; Kirkey, J.; Brantley, K.A.; Veatch, S.D.; Burgos-Rodriguez, J. The early detection of and rapid response (EDRR) to invasive species: A conceptual framework and federal capacities assessment. Biol. Invasions 2020, 22, 1–19. [Google Scholar] [CrossRef]
- De Sa, N.C.; Carvalho, S.; Castro, P.; Marchante, E.; Marchante, H. Using Landsat Time Series to Understand How Management and Disturbances Influence the Expansion of an Invasive Tree. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3243–3253. [Google Scholar] [CrossRef]
- Mukherjee, A.; Velankar, A.D.; Kumara, H.N. Invasive prosopis juliflora replacing the native floral community over three decades: A case study of a world heritage Site, Keoladeo National Park, India. Biodivers. Conserv. 2017, 26, 2839–2856. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Z.; Shuang, F.; Zhang, M.; Li, X. Key technologies of machine vision for weeding robots: A review and benchmark. Comput. Electron. Agric. 2022, 196, 106880. [Google Scholar] [CrossRef]
- Razfar, N.; True, J.; Bassiouny, R.; Venkatesh, V.; Kashef, R. Weed detection in soybean crops using custom lightweight deep learning models. J. Agric. Food Res. 2022, 8, 100308. [Google Scholar] [CrossRef]
- Ma, J.S. Alien Invasive Flora of China; Shanghai Jiaotong University Press: Shanghai, China, 2020. (In Chinese) [Google Scholar]
- Tang, J.; Wang, D.; Zhang, Z.; He, L.; Xin, J.; Xu, Y. Weed identification based on K-means feature learning combined with convolutional neural network. Comput. Electron. Agric. 2017, 135, 63–70. [Google Scholar] [CrossRef]
- Aláez, F.M.B.; Palenzuela, J.M.T.; Spyrakos, E.; Vilas, L.G. Machine Learning Methods Applied to the Prediction of Pseudo-nitzschia spp. Blooms in the Galician Rias Baixas (NW Spain). ISPRS Int. J. Geo-Inf. 2021, 10, 199. [Google Scholar] [CrossRef]
- Dyrmann, M.; Mortensen, A.K.; Linneberg, L.; Hoye, T.T.; Bjerge, K. Camera Assisted Roadside Monitoring for Invasive Alien Plant Species Using Deep Learning. Sensors 2021, 21, 6126. [Google Scholar] [CrossRef] [PubMed]
- Bradley, B.A. Remote detection of invasive plants: A review of spectral, textural and phenological approaches. Biol. Invasions 2014, 16, 1411–1425. [Google Scholar] [CrossRef]
- Huang, C.; Asner, G.P. Applications of Remote Sensing to Alien Invasive Plant Studies. Sensors 2009, 9, 4869–4889. [Google Scholar] [CrossRef] [PubMed]
- Saranya, K.R.L.; Satish, K.V.; Reddy, C.S. Remote sensing enabled essential biodiversity variables for invasive alien species management: Towards the development of spatial decision support system. Biol. Invasions 2024, 26, 943–951. [Google Scholar] [CrossRef]
- Thürkow, F.; Lorenz, C.G.; Pause, M.; Birger, J. Advanced Detection of Invasive Neophytes in Agricultural Landscapes: A Multisensory and Multiscale Remote Sensing Approach. Remote Sens. 2024, 16, 500. [Google Scholar] [CrossRef]
- Sidike, P.; Sagan, V.; Maimaitijiang, M.; Maimaitiyiming, M.; Shakoor, N.; Burken, J.; Mockler, T.; Fritschi, F.B. dPEN: Deep Progressively Expanded Network for mapping heterogeneous agricultural landscape using WorldView-3 satellite imagery. Remote Sens. Environ. 2019, 221, 756–772. [Google Scholar] [CrossRef]
- Vaz, A.S.; Alcaraz-Segura, D.; Campos, J.C.; Vicente, J.R.; Honrado, J.P. Managing plant invasions through the lens of remote sensing: A review of progress and the way forward. Sci. Total Environ. 2018, 642, 1328–1339. [Google Scholar] [CrossRef]
- Qiu, Y.; Lu, J. Dynamic simulation of Spartina alterniflora based on CA-Markov model—A case study of Xiangshan bay of Ningbo City, China. Aquat. Invasions 2018, 13, 299–309. [Google Scholar] [CrossRef]
- Grosse-Stoltenberg, A.; Hellmann, C.; Thiele, J.; Werner, C.; Oldeland, J. Early detection of GPP-related regime shifts after plant invasion by integrating imaging spectroscopy with airborne LiDAR. Remote Sens. Environ. 2018, 209, 780–792. [Google Scholar] [CrossRef]
- Tarantino, C.; Casella, F.; Adamo, M.; Lucas, R.; Beierkuhnlein, C.; Blonda, P. Ailanthus altissima mapping from multi-temporal very high resolution satellite images. ISPRS J. Photogramm. Remote Sens. 2019, 147, 90–103. [Google Scholar] [CrossRef]
- Kganyago, M.; Odindi, J.; Adjorlolo, C.; Mhangara, P. Evaluating the capability of Landsat 8 OLI and SPOT 6 for discriminating invasive alien species in the African Savanna landscape. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 10–19. [Google Scholar] [CrossRef]
- Bakacsy, L.; Tobak, Z.; van Leeuwen, B.; Szilassi, P.; Biró, C.; Szatmári, J. Drone-Based Identification and Monitoring of Two Invasive Alien Plant Species in Open Sand Grasslands by Six RGB Vegetation Indices. Drones 2023, 7, 207. [Google Scholar] [CrossRef]
- Cruz, C.; McGuinness, K.; Perrin, P.M.; O’Connell, J.; Martin, J.R.; Connolly, J. Improving the mapping of coastal invasive species using UAV imagery and deep learning. Int. J. Remote Sens. 2023, 44, 5713–5735. [Google Scholar] [CrossRef]
- Ajayi, O.G.; Ashi, J.; Guda, B. Performance evaluation of YOLO v5 model for automatic crop and weed classification on UAV images. Smart Agric. Technol. 2023, 5, 100231. [Google Scholar] [CrossRef]
- Chen, X.; Chen, T.; Meng, H.; Zhang, Z.; Wang, D.; Sun, J.; Wang, J. An improved algorithm based on YOLOv5 for detecting Ambrosia trifida in UAV images. Front. Plant Sci. 2024, 15, 1360419. [Google Scholar] [CrossRef]
- Chaudhuri, G.; Mishra, N.B. Detection of Aquatic Invasive Plants in Wetlands of the Upper Mississippi River from UAV Imagery Using Transfer Learning. Remote Sens. 2023, 15, 734. [Google Scholar] [CrossRef]
- Costello, B.; Osunkoya, O.O.; Sandino, J.; Marinic, W.; Trotter, P.; Shi, B.; Gonzalez, F.; Dhileepan, K. Detection of parthenium weed (Parthenium hysterophorus L.) and its growth stages using artificial intelligence. Agriculture 2022, 12, 1838. [Google Scholar] [CrossRef]
- Hao, Z.; Lin, L.; Post, C.J.; Mikhailova, E.A. Monitoring the spatial-temporal distribution of invasive plant in urban water using deep learning and remote sensing technology. Ecol. Indic. 2024, 162, 112061. [Google Scholar] [CrossRef]
- Dash, J.P.; Watt, M.S.; Paul, T.S.H.; Morgenroth, J.; Hartley, R. Taking a closer look at invasive alien plant research: A review of the current state, opportunities, and future directions for UAVs. Methods Ecol. Evol. 2019, 10, 2020–2033. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, S. A High-Precision Detection Method of Apple Leaf Diseases Using Improved Faster R-CNN. Agriculture 2023, 13, 240. [Google Scholar] [CrossRef]
- Peng, H.; Chen, H.; Zhang, X.; Liu, H.; Chen, K.; Xiong, J. Retinanet_G2S: A multi-scale feature fusion-based network for fruit detection of punna navel oranges in complex field environments. Precis. Agric. 2024, 25, 889–913. [Google Scholar] [CrossRef]
- Lin, Z.; Guo, W. Cotton stand counting from unmanned aerial system imagery using MobileNet and CenterNet deep learning models. Remote Sens. 2021, 13, 2822. [Google Scholar] [CrossRef]
- Tetila, E.C.; da Silveira, F.A.G.; da Costa, A.B.; Amorim, W.P.; Astolfi, G.; Pistori, H.; Barbedo, J.G.A. YOLO performance analysis for real-time detection of soybean pests. Smart Agric. Technol. 2024, 7, 100405. [Google Scholar] [CrossRef]
- Gao, G.; Shuai, C.; Wang, S.; Ding, T. Using improved YOLO V5s to recognize tomatoes in a continuous working environment. SIViP 2024, 18, 4019–4028. [Google Scholar] [CrossRef]
- Kaukab, S.; Komal; Ghodki, B.M.; Ray, H.; Kalnar, Y.B.; Narsaiah, K.; Brar, J.S. Improving real-time apple fruit detection: Multi-modal data and depth fusion with non-targeted background removal. Ecol. Inform. 2024, 82, 102691. [Google Scholar] [CrossRef]
- Li, Q.; Ma, W.; Li, H.; Zhang, X.; Zhang, R.; Zhou, W. Cotton-YOLO: Improved YOLOV7 for rapid detection of foreign fibers in seed cotton. Comput. Electron. Agric. 2024, 219, 108752. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, F.; Zheng, Y.; Peng, X.; Chen, C. An efficient method for detecting Camellia oleifera fruit under complex orchard environment. Sci. Hortic. 2024, 330, 113091. [Google Scholar] [CrossRef]
- Chen, X.; Liu, T.; Han, K.; Jin, X.; Wang, J.; Kong, X.; Yu, J. TSP-yolo-based deep learning method for monitoring cabbage seedling emergence. Eur. J. Agron. 2024, 157, 127191. [Google Scholar] [CrossRef]
- Li, R.; He, Y.; Li, Y.; Qin, W.; Abbas, A.; Ji, R.; Li, S.; Wu, Y.; Sun, X.; Yang, J. Identification of cotton pest and disease based on CFNet-VoV-GCSP-LSKNet-YOLOv8s: A new era of precision agriculture. Front. Plant Sci. 2024, 15, 1348402. [Google Scholar] [CrossRef]
- Sekharamantry, P.K.; Melgani, F.; Malacarne, J. Deep Learning-Based Apple Detection with Attention Module and Improved Loss Function in YOLO. Remote Sens. 2023, 15, 1516. [Google Scholar] [CrossRef]
- Fan, X.; Sun, T.; Chai, X.; Zhou, J. YOLO-WDNet: A lightweight and accurate model for weeds detection in cotton field. Comput. Electron. Agric. 2024, 225, 109317. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Jocher, G. YOLOv5 by Ultralytics. 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 26 September 2024).
- Jocher, G.; Chaurasia, A.; Qiu, J. YOLO by Ultralytics. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 26 September 2024).
- Wang, C.-Y.; Yeh, I.H.; Liao, H.-Y.M. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. arXiv 2024, arXiv:2402.13616. [Google Scholar]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. YOLOv10: Real-Time End-to-End Object Detection. arXiv 2024, arXiv:2405.14458. [Google Scholar]
- Han, K.; Wang, Y.; Guo, J.; Wu, E. ParameterNet: Parameters Are All You Need. arXiv 2024, arXiv:2306.14525. [Google Scholar]
- Misra, D.; Nalamada, T.; Arasanipalai, A.U.; Hou, Q.; IEEE. Rotate to Attend: Convolutional Triplet Attention Module. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision WACV, Waikoloa, HI, USA, 3–8 January 2021. [Google Scholar]
- Ma, S.; Xu, Y. MPDIoU: A Loss for Efficient and Accurate Bounding Box Regression. arXiv 2023, arXiv:2307.07662. [Google Scholar]
- Zhan, W.; Sun, C.; Wang, M.; She, J.; Zhang, Y.; Zhang, Z.; Sun, Y. An improved YOLOv5 real-time detection method for small objects captured by UAV. Soft Comput. 2022, 26, 361–373. [Google Scholar] [CrossRef]
- Wu, H.; Liu, W.; Xian, X.; Zhao, M.; Yao, Q. A lightweight identification model for alien invasive plants based on improved mobilenet. Plant Prot. 2024, 50, 85–96. [Google Scholar] [CrossRef]
Experimental Environment | Model Identity or Designation | Parametric or Version |
---|---|---|
Computer system | Windows Server 2022 Standard | RAM: 64 GB |
CPU | Intel i9-13900 | Frequency: 2.00 GHz |
GPU | NVIDIA RTX 6000 Ada Generation | Video memory: 48 GB |
Deep learning framework | PyTorch | 2.2.2 |
Computational platform | CUDA | 12.1 |
software environment | Python | 3.10 |
Training Parameters | Value |
---|---|
Img size (pixels) | 640 × 640 |
Batch size | 32 |
Epoch | 200 |
Initial learning rate | 0.01 |
Momentum | 0.937 |
Patience | 100 |
Pre-training weights | None |
Model | Precision | Recall | mAP (0.5) | mAP (0.5:0.95) | F1 Score | FPS |
---|---|---|---|---|---|---|
YOLOv5n | 90.5% | 82.7% | 89.3% | 58.3% | 86.4% | 286 |
YOLOv5s | 91.9% | 82.9% | 90.5% | 60.9% | 87.2% | 152 |
YOLOv5m | 86.0% | 85.5% | 89.3% | 63.8% | 85.8% | 167 |
YOLOv5x | 91.5% | 86.4% | 90.7% | 67.4% | 88.9% | 104 |
YOLOv6n | 86.9% | 71.4% | 81.6% | 52.8% | 78.6% | 175 |
YOLOv6s | 90.0% | 74.6% | 85.4% | 58.8% | 81.6% | 164 |
YOLOv6m | 82.5% | 74.3% | 81.7% | 53.7% | 78.2% | 152 |
YOLOv7 | 80.1% | 75.8% | 80.6% | 50.5% | 77.9% | 141 |
YOLOv7-tiny | 76.9% | 73.7% | 76.5% | 42.2% | 75.3% | 98 |
YOLOv7x | 76.0% | 74.7% | 78.5% | 44.8% | 75.4% | 63 |
YOLOv8n | 88.9% | 83.5% | 88.4% | 62.1% | 86.1% | 175 |
YOLOv8s | 89.4% | 81.7% | 88.5% | 64.2% | 85.4% | 196 |
YOLOv8m | 92.1% | 83.6% | 90.9% | 66.3% | 87.7% | 141 |
YOLOv8l | 91.5% | 81.7% | 89.8% | 65.4% | 86.3% | 114 |
YOLOv8x | 84.4% | 88.1% | 90.5% | 65.6% | 86.2% | 95 |
YOLOv9 | 90.5% | 80.8% | 90.2% | 65.9% | 85.4% | 85 |
YOLOv10n | 92.7% | 78.5% | 88.7% | 63.1% | 85.1% | 200 |
YOLOv10s | 91.2% | 81.4% | 89.7% | 63.8% | 86.0% | 164 |
YOLO-IAPs (Ours) | 90.7% | 84.3% | 91.2% | 65.1% | 87.4% | 72 |
Model | AaL | LcL | ScP | SrD | XsL |
---|---|---|---|---|---|
FasterRCNN | 83.0% | 63.8% | 66.5% | 64.3% | 74.8% |
SSD | 47.4% | 41.9% | 44.1% | 45.7% | 39.3% |
RetinaNet | 77.8% | 75.1% | 69.8% | 66.6% | 85.6% |
CenterNet | 82.3% | 64.9% | 58.7% | 69.8% | 88.9% |
YOLO-IAPS (Ours) | 90.3% | 86.5% | 90.7% | 91.8% | 96.6% |
Model | Precision | Recall | mAP (0.5) | mAP (0.5:0.95) | GFLOPs | Parameters |
---|---|---|---|---|---|---|
YOLOv9 | 90.5% | 80.8% | 90.2% | 65.9% | 263.9 | 60.5 M |
TA | 89.3% | 84.2% | 90.8% | 66.4% | 264.9 | 60.5 M |
MP | 88.0% | 85.8% | 91.0% | 67.0% | 263.9 | 60.5 M |
DC | 88.9% | 86.0% | 91.2% | 66.5% | 218.6 | 101.7 M |
DC + TA | 90.1% | 82.7% | 89.9% | 64.8% | 244.2 | 76.7 M |
TA + MP | 90.2% | 83.0% | 90.4% | 66.0% | 264.9 | 60.5 M |
DC + MP | 86.5% | 83.0% | 89.5% | 65.3% | 243.2 | 76.7 M |
YOLO-IAPs (Ours) | 90.7% | 84.3% | 91.2% | 65.1 | 244.2 | 76.7 M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Huang, H.; Qin, F.; Chen, Y.; Zou, J.; Liu, B.; Li, Z.; Liu, C.; Wan, F.; Qian, W.; et al. YOLO-IAPs: A Rapid Detection Method for Invasive Alien Plants in the Wild Based on Improved YOLOv9. Agriculture 2024, 14, 2201. https://doi.org/10.3390/agriculture14122201
Huang Y, Huang H, Qin F, Chen Y, Zou J, Liu B, Li Z, Liu C, Wan F, Qian W, et al. YOLO-IAPs: A Rapid Detection Method for Invasive Alien Plants in the Wild Based on Improved YOLOv9. Agriculture. 2024; 14(12):2201. https://doi.org/10.3390/agriculture14122201
Chicago/Turabian StyleHuang, Yiqi, Hongtao Huang, Feng Qin, Ying Chen, Jianghua Zou, Bo Liu, Zaiyuan Li, Conghui Liu, Fanghao Wan, Wanqiang Qian, and et al. 2024. "YOLO-IAPs: A Rapid Detection Method for Invasive Alien Plants in the Wild Based on Improved YOLOv9" Agriculture 14, no. 12: 2201. https://doi.org/10.3390/agriculture14122201
APA StyleHuang, Y., Huang, H., Qin, F., Chen, Y., Zou, J., Liu, B., Li, Z., Liu, C., Wan, F., Qian, W., & Qiao, X. (2024). YOLO-IAPs: A Rapid Detection Method for Invasive Alien Plants in the Wild Based on Improved YOLOv9. Agriculture, 14(12), 2201. https://doi.org/10.3390/agriculture14122201