The Influence of Sowing Rate and Foliar Fertilization on the Yield of Some Triticale Varieties in the Context of Climate Change in Northwest Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites, Soil and Climate
2.2. Biological Material
2.3. Experimental Design
- A1-Negoiu
- A2-Utrifun
- A3-Zvelt
- A4-Tulnic
- B1-chemical fertilization in autumn and spring
- B2-chemical fertilization + foliar fertilization
- B3-chemical fertilization + foliar fertilization + biostimulator
- C1-450 seeds/m2
- C2-550 seeds/m2
- C3-650 seeds/m2
2.4. Technology and Materials Used
- The B2 variants of each variety were foliar fertilized with the product Solar 10-10-10 + Me in a dose of 3 l/ha. The product used has a nitrogen content of 10%, phosphorus 10%, potassium 10%, and trace elements such as zinc 0.15%, copper 0.03%, manganese 0.025%, and boron 0.02%. It ensures the necessary nutrients for the plants, controlling the imbalances produced, especially in the phenophases such as twinning before flowering and formation of the grain [30].
- The B3 variants of each variety were foliarly fertilized with the Solar 10-10-10 + Me product at a dose of 3 L/ha and with the Cropmax biostimulator at a dose of 0.5 L/ha. The biostimulator is also approved for use in organic farming; it contains growth stimulants such as auxins, cytokinins, gibberellins, organic amino acids, vitamins, and vegetable enzymes. In addition to these, it also contains macro and microelements: 0.2% nitrogen, 0.4% phosphorus, 0.02% potassium, iron 220 mg/L, magnesium 550 mg/L, manganese 54 mg/L, zinc 49 mg/L, cuprin 35 mg/L, boron 70 mg/L, etc. [31].
2.5. Data Statistics and Analysis
3. Results
3.1. Influence of Factor A (Variety) on Production
3.2. Influence of Factor B (Fertilization) on Production
3.3. Influence of Factor C (Density) on Production
3.4. Influence of Factors A × B (Variety × Fertilization) on Production
3.5. Influence of Factors A × C (Variety × Density) on Production
3.6. Influence of Factors B × C (Fertilization × Density) on Production
3.7. Influence of Factors A × B × C (Variety × Fertilization × Density) on Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fraś, A.; Gołębiewska, K.; Gołębiewski, D.; Wiśniewska, M.; Gzowska, M.; Mańkowski, D.R. Utilisation of triticale (X Triticosecale Wittmack) and residual oat flour in breadmaking. Czech J. Food Sci. 2021, 39, 226–233. [Google Scholar] [CrossRef]
- Fraś, A.; Gołębiewska, K.; Gołębiewski, D.; Mańkowski, D.R.; Boros, D.; Szecówka, P. Variability in the chemical composition of triticale grain, flour and bread. J. Cereal Sci. 2016, 71, 66–72. [Google Scholar] [CrossRef]
- Hulse, J.H.; Spurgeon, D. Triticale. Sci. Am. 1974, 231, 72–81. [Google Scholar] [CrossRef]
- Heger, J.; Eggum, B.O. The nutritional values of some high-yielding cultivars of triticale. J. Cereal Sci. 1991, 14, 63–71. [Google Scholar] [CrossRef]
- Sehgal, K.L.; Bajaj, S.; Sekhon, K.S. Studies on the composition, quality and processing of triticale Part I. Physico-chemical characteristics. Mol. Nutr. Food Res. 1983, 27, 31–37. [Google Scholar] [CrossRef]
- Peña, R.J. Food Uses of Triticale, Triticale Improvement and Production; FAO Plant Production and Protection Paper 179; FAO: Rome, Italy, 2004; pp. 37–48. ISBN 92-5-105182-8. [Google Scholar]
- Martinek, P.; Vinterová, M.; Burešová, I.; Vyhnánek, T. Agronomic and quality characteristics of triticale (X Triticosecale Wittmack) with HMW glutenin subunits 5+10. J. Cereal Sci. 2008, 47, 68–78. [Google Scholar] [CrossRef]
- Glamočlija, N.; Starčević, M.; Ćirić, J.; Šefer, D.; Glišić, M.; Baltić, M.Z.; Marković, R.; Spasić, M.; Glamočlija, D. The importance of triticale in animal nutrition. Vet. J. Repub. Srp. 2018, 18, 73–94. [Google Scholar] [CrossRef]
- Baron, V.S.; Juskiw, P.E.; Aljarrah, M. Triticale as a Forage. In Triticale; Springer Nature: Berlin/Heidelberg, Germany, 2015; pp. 189–212. [Google Scholar]
- Mupondwa, E.; Li, X.; Tabil, L. Integrated bioethanol production from triticale grain and lignocellulosic straw in Western Canada. Ind. Crops Prod. 2018, 117, 75–87. [Google Scholar] [CrossRef]
- Nakurte, I.; Klavins, K.; Kirhnere, I.; Namniece, J.; Adlere, L.; Matvejevs, J.; Kronberga, A.; Kokare, A.; Strazdina, V.; Legzdina, L.; et al. Discovery of lunasin peptide in triticale (X Triticosecale Wittmack). J. Cereal Sci. 2012, 56, 510–514. [Google Scholar] [CrossRef]
- Jańczak-Pieniążek, M.; Horvat, D.; Viljevac Vuletić, M.; Kovačević Babić, M.; Buczek, J.; Szpunar-Krok, E. Antioxidant Potential and Phenolic Acid Profiles in Triticale Grain under Integrated and Conventional Cropping Systems. Agriculture 2023, 13, 1078. [Google Scholar] [CrossRef]
- Galoburda, R.; Straumite, E.; Sabovics, M.; Kruma, Z. Dynamics of Volatile Compounds in Triticale Bread with Sourdough: From Flour to Bread. Foods 2020, 9, 1837. [Google Scholar] [CrossRef]
- Ambriz-Vidal, T.N.; Mariezcurrena-Berasain, M.D.; Heredia-Olea, E.; Martinez DL, P.; Gutierrez-Ibañez, A.T. Potential of Triticale (X Triticosecale Wittmack) Malts for Beer Wort Production. J. Am. Soc. Brew. Chem. 2019, 77, 282–286. [Google Scholar] [CrossRef]
- Biel, W.; Kazimierska, K.; Bashutska, U. Nutritional value of wheat, triticale, barley and oat grains. Acta Sci. Pol. Zootech. 2020, 19, 19–28. [Google Scholar] [CrossRef]
- Cionca, I.; Lupuț, I.; Rusu, T. Triticale review: Navigating past achievements, current realities and future horizons in agricultural innovation. Agricultura 2024, 129–130, 28–35. [Google Scholar]
- Salvucci, E.; Rossi, M.; Colombo, A.; Pérez, G.; Borneo, R.; Aguirre, A. Triticale flour films added with bacteriocin-like substance (BLIS) for active food packaging applications. Food Packag. Shelf Life 2019, 19, 193–199. [Google Scholar] [CrossRef]
- Bates, I.; Plazonić, I.; Seleš, V.R.; Barbarić-Mikočević, Ž. Determining the quality of paper substrates containing triticale pulp for printing industry. Nord. Pulp Pap. Res. J. 2020, 35, 272–278. [Google Scholar] [CrossRef]
- Tarrés, Q.; Ehman, N.V.; Vallejos, M.E.; Area, M.C.; Delgado-Aguilar, M.; Mutjé, P. Lignocellulosic nanofibers from triticale straw: The influence of hemicelluloses and lignin in their production and properties. Carbohydr. Polym. 2017, 163, 20–27. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Amer, A.A.; Elbialy, Z.I.; Gouda, A.H. Effects of including triticale on growth performance, digestive enzyme activity, and growthrelated genes of Nile tilapia (Oreochromis niloticus). Aquaculture 2020, 528, 735568. [Google Scholar] [CrossRef]
- Marković, G.; Ćirković, M.; Lujić, J.; Pantović, J. Comparison of the Nutritive Value of Wheat and Triticale in Fish Diet. In Proceedings of the VI International Conference “Water & Fish” Faculty of Agriculture, Belgrade-Zemun, Serbia, 12–14 June 2013; pp. 233–237. [Google Scholar]
- Hughes, S.G. Use of triticale as a replacement for wheat middlings in diets for Atlantic salmon. Aquaculture 1990, 90, 173–178. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 11 August 2024).
- National Agricultural Research and Development Institute Fundulea. Available online: https://www.incda-fundulea.ro/index_en.html (accessed on 11 August 2024).
- Ministry of Agricuture and Rural Development, State Institute for Testing and Registration of Varieties, SITRV Catalog. Available online: https://istis.ro/catalog-oficial/ (accessed on 11 August 2024).
- Agromax Grains. Products. Fertilizers. DAP 18-46-0. Available online: https://www.agromaxgrains.ro/produse/ingrasaminte/dap-18-46-0 (accessed on 21 August 2024).
- eDepo Construct. Online Store for Construction Materials and Chemical Fertilizers. Nitrolimestone 50 kg. Available online: https://edepo-construct.ro/produs/nitrocalcar-50kg (accessed on 21 August 2024).
- Agro Bayer Romania. Products. Crop Protection. Herbicides. Sekator Progress OD. Available online: https://www.cropscience.bayer.ro/cpd/erbicide-bcs-sekator-progress-od-ro-ro (accessed on 21 August 2024).
- Agro Bayer Romania. Products. Crop Protection. Fungicides. Natico Pro 325 SC. Available online: https://www.cropscience.bayer.ro/cpd/fungicide-bcs-nativo-pro-325-sc-ro-ro (accessed on 21 August 2024).
- Plant Master. The Master of Your Culture. Products. Fertilizers. Solar 10-10-10 + ME (3 l). Available online: https://www.plantmaster.ro/ingrasamant-solar-10-10-10me-3l/?srsltid=AfmBOoqT8kJzbwnoReVj46VlQxkmHZ3-NEzyGOxBKmdSnGAyHLqHPbqlzaI (accessed on 21 August 2024).
- Pesticide.ro. Products. Liquid Fertilizers. Cropmax Biostimulator. Available online: https://www.pesticid.ro/biostimulator-cropmax?srsltid=AfmBOoqoGDYFGGcL06iSSmtnPB0YoNBxeZxDQ_uAqoP5yVg7ZFnyp8Bf (accessed on 21 August 2024).
- Dobreva, S. Triticale—Past and future. Agric. Sci. Technol. 2016, 8, 271–275. [Google Scholar] [CrossRef]
- Alaru, M.; Mǿller, B.; Hansen, Ă. Triticale yield formation and quality influenced by different N fertilisation regimes. Agron. Res. 2004, 2, 3–12. [Google Scholar]
- Derejko, A.; Studnicki, M. Effect of cultivar, crop management, location and growing season on the grain yield of triticale. Biom. Lett. 2019, 56, 239–252. [Google Scholar] [CrossRef]
- Wójcik-Gront, E.; Studnicki, M. Long-Term Yield Variability of Triticale (× Triticosecale Wittmack) Tested Using a CART Model. Agriculture 2021, 11, 92. [Google Scholar] [CrossRef]
- Dobreva, S.; Kirchev, H.; Muhova, A. Grain yield of triticale varieties depending on the foliar fertilization in the conditions of increasing norms of fertilization of the soil with nitrogen. Res. J. Agric. Sci. 2018, 50, 122–126. [Google Scholar]
- Muhova, A.; Kirchev, H. Agronomic performance of triticale varieties (x Triticosecale Wittm.) grown under fertilization with organic manure from red Californian Worms. Sci. Pap. Ser. A Agron. 2020, 63, 428–436. [Google Scholar]
- Kinaci, E.; Gulmezoglu, N. Grain yield and yield components of triticale upon application of different foliar fertilizers. Interciencia 2007, 32, 624–628. [Google Scholar]
- Dumbravă, M.; Ion, V.; Epure, L.I.; Bășa, A.G.; Ion, N.; Dușa, E.M. Grain Yield and Yield Components at Triticale under Different Technological Conditions. Agric. Agric. Sci. Procedia 2016, 10, 94–103. [Google Scholar] [CrossRef]
- Cionca, I.; Lupuț, I.; Rusu, T. Exploring the pretability potential of triticale cultivation in the Lăpuș depression, Romania: A scientific analysis. Agricultura 2024, 129–130, 190–198. [Google Scholar]
- Jaśkiewicz, B. The influence of sowing density and nitrogen application method on yielding and morphological characters of winter triticale cv. Woltario. Biul. Inst. Hod. I Aklim. Roślin 2009, 252, 169–177. [Google Scholar]
- Saglam, N.; Ustunalp, G. Efectul diferitelor densități de semănat și al dozelor de azot asupra randamentului și componentelor randamentului în Triticale (X Triticosecale Wittmack). APCBEE Procedia 2014, 8, 354–358. [Google Scholar] [CrossRef]
- Bassu, S.; Asseng, S.; Giunta, F.; Motzo, R. Optimizing triticale sowing densities across the Mediterranean Basin. Filed Crops Res. 2013, 144, 167–178. [Google Scholar] [CrossRef]
- Mesaros, D.; Duda, M.; Moldovan, C.; Muntean, S. Internet of things applied in grin reception base. Sci. Bull. Electr. Eng. Fac. 2022, 22, 2. [Google Scholar]
Crt. No. | The Region | Area (ha) | Total Production (t) | Yield (kg/ha) |
---|---|---|---|---|
1 | Mondial | 3,616,655 | 14,157,880 | 3914 |
2 | Europa | 3,152,094 | 13,008,741 | 4127 |
3 | Asia | 300,155 | 707,688,63 | 2357 |
4 | Oceania | 61,900 | 117,200 | 1893 |
5 | Americas | 92,183 | 300,690 | 3261 |
6 | Africa | 10,323 | 23,560 | 2282 |
Crt. No. | Country | Area (ha) | Total Production (t) | Yield (kg/ha) |
---|---|---|---|---|
1 | Poland | 1,232,710 | 5,440,270 | 4413 |
2 | Belarus | 406,000 | 1,192,880 | 2938 |
3 | France | 339,700 | 1,613,730 | 4750 |
4 | Germany | 324,400 | 1,929,700 | 5948 |
5 | Spain | 280,350 | 634,890 | 2264 |
6 | China | 199,671 | 386,071 | 1933 |
7 | Russian Federation | 108,810 | 306,874 | 2820 |
8 | Turkiye | 99,930 | 320,000 | 3211 |
9 | Lithuania | 63,100 | 204,560 | 3241 |
10 | Australia | 61,900 | 117,200 | 1893 |
11 | Romania | 56,900 | 192,410 | 3376 |
12 | Hungary | 55,340 | 186,480 | 3369 |
13 | Austria | 51,500 | 292,870 | 5686 |
14 | Czechia | 40,570 | 207,620 | 5117 |
UM cm cm | Ap 0–18 0.15 | Ao 18–40 | AB 40–55 40–55 | Bt1w 55–70 55–70 | Bt2w 70–110 80–95 | ||
---|---|---|---|---|---|---|---|
20–30 | 30–40 | ||||||
Humus (C × 1.72) | % | 2.82 | 1.44 | 0.90 | 0.90 | 0.84 | 3.24 |
N total | % | 0.168 | 0.102 | 0.072 | 0.068 | 0.064 | - |
C:N | - | 8.21 | 9.15 | 10.14 | 10.34 | 10.57 | - |
pH in water | - | 5.19 | 6.24 | 6.65 | 6.53 | 5.62 | 5.28 |
Clay (<0.002 mm) | %g/g | 20.9 | 21.1 | 23.1 | 27.0 | 32.4 | 33.1 |
Apparent density | g/cm3 | 1.35 | 1.54 | 1.49 | 1.48 | - | 1.48 |
Hydraulic Conductivity | mm/h | 31.27 | 5.87 | 3.11 | 0.35 | - | 1.04 |
Year | Climatic Factor | Month | Mean Temp. (°C) | The Amount (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | Jun. | ||||
2021/ 2022 | Temp. (°C) | 9.0 | 5.3 | 1.1 | −1.8 | 2.8 | 4.4 | 8.9 | 16.3 | 22.1 | 7.6 | |
Multi-year average | 9.8 | 4.8 | 0.1 | −2.1 | 0.1 | 4.7 | 10.5 | 15.8 | 19.0 | 7.0 | ||
Difference ± | −0.8 | 0.5 | 1.0 | 0.3 | 2.7 | −0.3 | −1.6 | 0.5 | 3.1 | 0.6 | ||
Rainfall (mm) | 13.5 | 65.4 | 119.3 | 76.6 | 46.1 | 1.3 | 86.9 | 17.9 | 10.3 | 437.3 | ||
Multi-year sum | 54.6 | 55.8 | 61.0 | 49.0 | 43.9 | 45.7 | 50.5 | 76.4 | 91.1 | 528.0 | ||
Difference ± | −41.0 | 9.6 | 58.3 | 27.6 | 2.2 | −44.0 | 36.4 | −59.0 | −81.0 | −90.7 | ||
2022 /2023 | Temp. (°C) | 11.8 | 6.2 | 3.1 | 4.8 | 1.5 | 6.4 | 9.6 | 16.3 | 19.7 | 8.8 | |
Multi-year average | 9.8 | 4.8 | 0.1 | −2.0 | 0.1 | 4.7 | 10.5 | 15.8 | 19.0 | 7.0 | ||
Difference ± | 2 | 1.4 | 3 | 6.8 | 1.4 | 1.7 | −0.9 | 0.5 | 0.7 | 1.8 | ||
Rainfall (mm) | 29.2 | 78.8 | 111.3 | 69.1 | 66.0 | 45.8 | 73.3 | 19.7 | 70.2 | 563.4 | ||
Multi-year sum | 54.2 | 56.2 | 61.8 | 49.3 | 44.2 | 45.7 | 50.9 | 75.5 | 90.8 | 528.6 | ||
Difference ± | −25 | 22.6 | 49.5 | 19.8 | 21.8 | 0.1 | 22.4 | −55.8 | −20.6 | 34.8 |
Variant | Symbol | Sum of Square | Degrees of Freedom | Mean Square | Sample F | Theoretical F | Significance |
---|---|---|---|---|---|---|---|
Variety | A | 7,514,889.00 | 3 | 2,504,963.00 | 7.662 | 4.76; 9.78 | X |
Fertilization | B | 1,860,164.00 | 2 | 930,082.10 | 2.586 | 3.63; 6.23 | - |
Density | C | 56,385.16 | 2 | 28,192.58 | 0.228 | 3.18 | - |
Variety × Fertilization | AB | 8,582,245.00 | 6 | 1,430,374.00 | 3.977 | 2.74; 4.20; | X |
Variety × Density | AC | 1,050,622.00 | 6 | 175,103.60 | 1.419 | 2.29 | - |
Fertilization × Density | BC | 844,106.00 | 4 | 211,026.50 | 1.710 | 2.56 | - |
Variety × Density × Fertilization | ABC | 1,823,710.00 | 12 | 151,975.80 | 1.232 | 1.95 | - |
Variety error | A error | 2,002,939.00 | 6 | 333,823.20 | - | - | - |
Density error | B error | 4,490,939.00 | 16 | 280,683.70 | - | - | - |
Fertilization error | C error | 5,962,956.00 | 48 | 124,228.20 | - | - | - |
Total | - | 42,327,090.00 | 107 | - | - | - |
Variant | Symbol | Sum of Square | Degrees of Freedom | Mean Square | Sample F | Theoretical F | Significance |
---|---|---|---|---|---|---|---|
Variety | A | 189,024,500.00 | 3 | 63,008,160.00 | 32.697 | 4.76; 9.78; 23.70 | XXX |
Fertilization | B | 17,857,010.00 | 2 | 8,928,506.00 | 31.408 | 3.63; 6.23; 10.97 | XXX |
Density | C | 1,436,056.00 | 2 | 718,028.20 | 3.729 | 3.18; | X |
Variety × Fertilization | AB | 49,507,840.00 | 6 | 8,251,308.00 | 29.026 | 2.74; 4.20; 6.80 | XXX |
Variety × Density | AC | 2,787,522.00 | 6 | 464,586.90 | 2.412 | 2.29 | X |
Fertilization × Density | BC | 972,472.40 | 4 | 243,118.10 | 1.263 | 2.56 | - |
Variety × Density × Fertilization | ABC | 1,143,120.00 | 12 | 95,259.98 | 0.495 | 1.95 | - |
Variety error | A error | 11,562,260.00 | 6 | 1,927,044.00 | - | - | - |
Density error | B error | 4,548,401.00 | 16 | 284,275.10 | - | - | - |
Fertilization error | C error | 9,241,658.00 | 48 | 192,534.50 | - | - | - |
Total | - | 293,316,300.00 | 107 | - | - | - | - |
Year | Variant | Symbol | Production (kg/ha) | % | The Difference | Significance |
---|---|---|---|---|---|---|
2022 | Negoiu | A1 (Ck) | 8202.07 | 100.0 | 0.00 | Ck |
2023 | Negoiu | A1 (Ck) | 7434.41 | 100.0 | 0.00 | Ck |
2022 | Utrifun | A2 | 8385.30 | 102.2 | 184.22 | Ns |
2023 | Utrifun | A2 | 10,845.07 | 145.9 | 3410.67 | *** |
2022 | Zvelt | A3 | 8130.89 | 99.1 | −71.19 | Ns |
2023 | Zvelt | A3 | 8604.00 | 115.7 | 1169.59 | * |
2022 | Tulnic | A4 | 7559.93 | 92.2 | −642.15 | 00 |
2023 | Tulnic | A4 | 7810.37 | 105.1 | 375.96 | Ns |
Year | Variant | Symbol | Production (kg/ha) | % | The Difference | Significance |
---|---|---|---|---|---|---|
2022 | Chemical fertilization | B1 (Ck) | 8197.42 | 100.0 | 0.00 | Ck |
2023 | Chemical fertilization | B1 (Ck) | 8099.03 | 100.0 | 0.00 | Ck |
2022 | Chemical fertilization + foliar fertilization | B2 | 8027.44 | 97.9 | −169.97 | 0 |
2023 | Chemical fertilization + foliar fertilization | B2 | 8983.75 | 110.9 | 884.72 | *** |
2022 | Chemical fertilization + foliar fertilization + biostimulator | B3 | 7984.53 | 97.4 | −212.89 | 0 |
2023 | Chemical fertilization + foliar fertilization + biostimulator | B3 | 8937.61 | 110.4 | 838.58 | *** |
Year | Variant (Seeds/m2) | Symbol | Production (kg/ha) | % | The Difference | Significance |
---|---|---|---|---|---|---|
2022 | 550 | C2 (Ck) | 8128.22 | 100.0 | 0.00 | Ck |
2023 | 550 | C2 (Ck) | 8683.53 | 100.0 | 0.00 | Ck |
2022 | 450 | C1 | 8071.42 | 99.3 | −56.81 | Ns |
2023 | 450 | C1 | 8809.39 | 101.4 | 125.86 | Ns |
2022 | 650 | C3 | 8009.75 | 95,5 | −118.47 | Ns |
2023 | 650 | C3 | 8527.47 | 98.2 | −156.05 | Ns |
Year | Variant | Symbol | Production (kg/ha) | % | The Difference | Significance |
---|---|---|---|---|---|---|
2022 | Negoiu × Chemical fertilization | A1 × B1 | 7943.00 | 100.0 | 0.00 | Ck |
2023 | Negoiu × Chemical fertilization | A1 × B1 | 7555.11 | 100.0 | 0.00 | Ck |
2022 | Utrifun × Chemical fertilization | A2 × B1 | 8779.44 | 110.5 | 836.44 | * |
2023 | Utrifun × Chemical fertilization | A2 × B1 | 9590.89 | 126.9 | 2035.78 | ** |
2022 | Zvelt × Chemical fertilization | A3 × B1 | 8156.44 | 102.7 | 213.44 | Ns |
2023 | Zvelt × Chemical fertilization | A3 × B1 | 9114.44 | 120.6 | 1559.33 | ** |
2022 | Tulnic × Chemical fertilization | A4 × B1 | 8244.11 | 103.8 | 301.11 | Ns |
2023 | Tulnic × Chemical fertilization | A4 × B1 | 6135.67 | 81.2 | −1419.45 | 0 |
2022 | Negoiu × Chemical fertilization + foliar fertilization | A1 × B2 | 8244.67 | 100.00 | 0.00 | Ck |
2023 | Negoiu × Chemical fertilization + foliar fertilization | A1 × B2 | 7186.44 | 100.0 | 0.00 | Ck |
2022 | Utrifun × Chemical fertilization + foliar fertilization | A2 × B2 | 7997.22 | 97.0 | −247.44 | Ns |
2023 | Utrifun × Chemical fertilization + foliar fertilization | A2 × B2 | 11,244.78 | 156.5 | 4058.33 | *** |
2022 | Zvelt × Chemical fertilization + foliar fertilization | A3 × B2 | 8136.00 | 98.7 | −108.67 | Ns |
2023 | Zvelt × Chemical fertilization + foliar fertilization | A3 × B2 | 8739.11 | 121.6 | 1552.67 | ** |
2022 | Tulnic × Chemical fertilization + foliar fertilization | A4 × B2 | 7728.89 | 93.7 | −515.78 | Ns |
2023 | Tulnic × Chemical fertilization + foliar fertilization | A4 × B2 | 8764.67 | 122.0 | 1578.22 | ** |
2022 | Negoiu × Chemical fertilization + foliar fertilization + biostimulator | A1 × B3 | 8418.56 | 100.0 | 0.00 | Ck |
2023 | Negoiu × Chemical fertilization + foliar fertilization + biostimulator | A1 × B3 | 7561.67 | 100.0 | 0.00 | Ck |
2022 | Utrifun × Chemical fertilization + foliar fertilization + biostimulator | A2 × B3 | 8379.22 | 99.5 | −39.33 | Ns |
2023 | Utrifun × Chemical fertilization + foliar fertilization + biostimulator | A2 × B3 | 11,699.56 | 154.7 | 4137.89 | *** |
2022 | Zvelt × Chemical fertilization + foliar fertilization + biostimulator | A3 × B3 | 8100.22 | 96.2 | −318.33 | Ns |
2023 | Zvelt × Chemical fertilization + foliar fertilization + biostimulator | A3 × B3 | 7958.44 | 105.2 | 396.78 | Ns |
2022 | Tulnic × Chemical fertilization + foliar fertilization + biostimulator | A4 × B3 | 7034.56 | 83.6 | −1384.00 | 000 |
2023 | Tulnic × Chemical fertilization + foliar fertilization + biostimulator | A4 × B3 | 8530.78 | 112.8 | 969.11 | Ns |
Year | Variant | Symbol | Production (kg/ha) | % | The Difference | Significance |
---|---|---|---|---|---|---|
2022 | Negoiu × 450 seeds/m2 | A1 × C1 | 8095.89 | 100.0 | 0.00 | Ck |
2023 | Negoiu × 450 seeds/m2 | A1 × C1 | 7624.89 | 100.0 | 0.00 | Ck |
2022 | Utrifun × 450 seeds/m2 | A2 × C1 | 8385.67 | 103.6 | 289.78 | Ns |
2023 | Utrifun × 450 seeds/m2 | A2 × C1 | 10,728.56 | 140.7 | 3103.67 | *** |
2022 | Zvelt × 450 seeds/m2 | A3 × C1 | 7960.11 | 98.3 | −135.78 | Ns |
2023 | Zvelt × 450 seeds/m2 | A3 × C1 | 8856.44 | 116.2 | 1231.56 | * |
2022 | Tulnic × 450 seeds/m2 | A4 × C1 | 7844.00 | 96.9 | −251.89 | Ns |
2023 | Tulnic × 450 seeds/m2 | A4 × C1 | 8027.67 | 105.3 | 402.78 | Ns |
2022 | Negoiu × 550 seeds/m2 | A1 × C2 | 8213.33 | 100.0 | 0.00 | Ck |
2023 | Negoiu × 550 seeds/m2 | A1 × C2 | 7300.22 | 100.0 | 0.00 | Ck |
2022 | Utrifun × 550 seeds/m2 | A2 × C2 | 8408.89 | 102.4 | 195.56 | Ns |
2023 | Utrifun × 550 seeds/m2 | A2 × C2 | 11,010.44 | 150.8 | 3710.22 | *** |
2022 | Zvelt × 550 seeds/m2 | A3 × C2 | 8292.56 | 101.0 | 79.22 | Ns |
2023 | Zvelt × 550 seeds/m2 | A3 × C2 | 8788.56 | 120.4 | 1488.33 | ** |
2022 | Tulnic × 550 seeds/m2 | A4 × C2 | 7592.56 | 92.4 | −620.78 | 0 |
2023 | Tulnic × 550 seeds/m2 | A4 × C2 | 7634.89 | 104.6 | 334.67 | Ns |
2022 | Negoiu × 650 seeds/m2 | A1 × C3 | 8297.00 | 100.0 | 0.00 | Ck |
2023 | Negoiu × 650 seeds/m2 | A1 × C3 | 7378.11 | 100.0 | 0.00 | Ck |
2022 | Utrifun × 650 seeds/m2 | A2 × C3 | 8361.33 | 100.8 | 64.33 | Ns |
2023 | Utrifun × 650 seeds/m2 | A2 × C3 | 10,796.22 | 146.3 | 3418.11 | *** |
2022 | Zvelt × 650 seeds/m2 | A3 × C3 | 8140.00 | 98.1 | −157.00 | Ns |
2023 | Zvelt × 650 seeds/m2 | A3 × C3 | 8167.00 | 110.7 | 788.89 | Ns |
2022 | Tulnic × 650 seeds/m2 | A4 × C3 | 7571.00 | 91.2 | −726.00 | 00 |
2023 | Tulnic × 650 seeds/m2 | A4 × C3 | 7768.56 | 105.3 | 390.44 | Ns |
Year | Variant | Symbol | Production (kg/ha) | % | The Difference | Significance |
---|---|---|---|---|---|---|
2022 | Chemical fertilization × 450 seeds/m2 | B1 ×x C1 | 8176.42 | 100.0 | 0.00 | Ck |
2023 | Chemical fertilization × 450 seeds/m2 | B1 × C1 | 8342.08 | 100.0 | 0.00 | Ck |
2022 | Chemical fertilization + foliar fertilization × 450 seeds/m2 | B2 × C1 | 7983.58 | 97.6 | −192.83 | Ns |
2023 | Chemical fertilization + foliar fertilization × 450 seeds/m2 | B2 × C1 | 9029.17 | 108.2 | 687.08 | ** |
2022 | Chemical fertilization + foliar fertilization + biostimulator × 450 seeds/m2 | B3 × C1 | 8054.25 | 98.5 | −122.17 | Ns |
2023 | Chemical fertilization + foliar fertilization + biostimulator × 450 seeds/m2 | B3 × C1 | 9056.92 | 108.6 | 714.83 | ** |
2022 | Chemical fertilization × 550 seeds/m2 | B1 × C2 | 8227.17 | 100.0 | 0.00 | Ck |
2023 | Chemical fertilization × 550 seeds/m2 | B1 × C2 | 8098.08 | 100.0 | 0.00 | Ck |
2022 | Chemical fertilization + foliar fertilization × 550 seeds/m2 | B2 × C2 | 8109.92 | 98.6 | −117.25 | Ns |
2023 | Chemical fertilization + foliar fertilization × 550 seeds/m2 | B2 × C2 | 9124.67 | 112.7 | 1026.58 | *** |
2022 | Chemical fertilization + foliar fertilization + biostimulator × 550 seeds/m2 | B3 × C2 | 8043.42 | 97.8 | −183.75 | Ns |
2023 | Chemical fertilization + foliar fertilization + biostimulator × 550 seeds/m2 | B3 × C2 | 8827.83 | 109.0 | 729.75 | *** |
2022 | Chemical fertilization × 650 seeds/m2 | B1 × C3 | 8438.67 | 100.0 | 0.00 | Ck |
2023 | Chemical fertilization × 650 seeds/m2 | B1 × C3 | 7859.92 | 100.0 | 0.00 | Ck |
2022 | Chemical fertilization + foliar fertilization × 650 seeds/m2 | B2 × C3 | 7986.58 | 94.6 | −452.08 | 0 |
2023 | Chemical fertilization + foliar fertilization × 650 seeds/m2 | B2 × C3 | 8797.42 | 112.0 | 940.50 | *** |
2022 | Chemical fertilization + foliar fertilization + biostimulator × 650 seeds/m2 | B3 × C3 | 7851.75 | 93.0 | −586.92 | 00 |
2023 | Chemical fertilization + foliar fertilization + biostimulator × 650 seeds/m2 | B3 × C3 | 8928.08 | 113.6 | 1071.17 | *** |
Year | Variant | Symbol | Production (kg/ha) | % | The Difference | Significance |
---|---|---|---|---|---|---|
2022 | Negoiu × Chemical fertilization × 450 seeds/m2 | A1 × B1× C1 | 7746.33 | 100.0 | 0.00 | Ck |
2023 | Negoiu × Chemical fertilization × 450 seeds/m2 | A1 × B1 × C1 | 7693.33 | 100.0 | 0.00 | Ck |
2022 | Utrifun × Chemical fertilization × 450 seeds/m2 | A2 × B1 × C1 | 8794.33 | 113.5 | 1048.00 | * |
2023 | Utrifun × Chemical fertilization × 450 seeds/m2 | A2 × B1 × C1 | 9645.00 | 125.4 | 1951.67 | ** |
2022 | Zvelt × Chemical fertilization × 450 seeds/m2 | A3 × B1 × C1 | 7980.33 | 103.0 | 234.00 | Ns |
2023 | Zvelt × Chemical fertilization × 450 seeds/m2 | A3 × B1 × C1 | 9506.67 | 123.6 | 1813.33 | ** |
2022 | Tulnic ×Chemical fertilization × 450 seeds/m2 | A4 × B1 × C1 | 8148.67 | 105.7 | 438.33 | Ns |
2023 | Tulnic × Chemical fertilization × 450 seeds/m2 | A4 × B1 × C1 | 6523.33 | 84.8 | −1170.00 | Ns |
2022 | Negoiu × Chemical fertilization × 550 seeds/m2 | A1 × B1 × C2 | 7840.33 | 100.0 | 0.00 | Ck |
2023 | Negoiu × Chemical fertilization × 550 seeds/m2 | A1 × B1 × C2 | 7476.33 | 100.0 | 0.00 | Ck |
2022 | Utrifun × Chemical fertilization × 550 seeds/m2 | A2 × B1 × C2 | 8742.67 | 111.5 | 902.33 | * |
2023 | Utrifun × Chemical fertilization × 550 seeds/m2 | A2 × B1 × C2 | 9718.00 | 130.0 | 2241.67 | ** |
2022 | Zvelt × Chemical fertilization × 550 seeds/m2 | A3 × B1 × C2 | 8453.00 | 107.8 | 612.67 | Ns |
2023 | Zvelt ×Chemical fertilization × 550 seeds/m2 | A3 × B1 × C2 | 9188.00 | 122.9 | 1712.33 | ** |
2022 | Tulnic × Chemical fertilization × 550 seeds/m2 | A4 × B1 × C2 | 7872.67 | 100.4 | 32.33 | Ns |
2023 | Tulnic × Chemical fertilization × 550 seeds/m2 | A4 × B1 × C2 | 6009.33 | 80.4 | −1467.00 | 0 |
2022 | Negoiu × Chemical fertilization × 650 seeds/m2 | A1 × B1 × C3 | 8242.33 | 100.0 | 0.00 | Ck |
2023 | Negoiu × Chemical fertilization × 650 seeds/m2 | A1 × B1 × C3 | 7495.67 | 100.0 | 0.00 | Ck |
2022 | Utrifun × Chemical fertilization × 650 seeds/m2 | A2 × B1 × C3 | 8801.33 | 106.8 | 559.00 | Ns |
2023 | Utrifun × Chemical fertilization × 650 seeds/m2 | A2 × B1 × C3 | 9409.67 | 125.5 | 1914.00 | ** |
2022 | Zvelt × Chemical fertilization × 650 seeds/m2 | A3 × B1 × C3 | 8036.00 | 97.5 | −206.33 | Ns |
2023 | Zvelt × Chemical fertilization × 650 seeds/m2 | A3 × B1 × C3 | 8648.00 | 115.4 | 1152.33 | Ns |
2022 | Tulnic × Chemical fertilization × 650 seeds/m2 | A4 × B1 × C3 | 8675.00 | 105.2 | 432.67 | Ns |
2023 | Tulnic × Chemical fertilization × 650 seeds/m2 | A4 × B1 × C3 | 5874.33 | 78.4 | −1621.33 | 0 |
2022 | Negoiu × Chemical fertilization + foliar fertilization × 450 seeds/m2 | A1 × B2 × C1 | 8044.67 | 100.0 | 0.00 | Ck |
2023 | Negoiu × Chemical fertilization + foliar fertilization × 450 seeds/m2 | A1 × B2 × C1 | 7508.33 | 100.0 | 0.00 | Ck |
2022 | Utrifun × Chemical fertilization + foliar fertilization × 450 seeds/m2 | A2 × B2 × C1 | 7951.67 | 98.8 | −93.00 | Ns |
2023 | Utrifun × Chemical fertilization + foliar fertilization × 450 seeds/m2 | A2 × B2 × C1 | 10,991.00 | 146.4 | 3482.67 | *** |
2022 | Zvelt × Chemical fertilization + foliar fertilization × 450 seeds/m2 | A3 × B2 × C1 | 7947.33 | 98.8 | −97.33 | Ns |
2023 | Zvelt × Chemical fertilization + foliar fertilization × 450 seeds/m2 | A3 × B2 × C1 | 8776.33 | 116.9 | 1268.0 | * |
2022 | Tulnic × Chemical fertilization + foliar fertilization × 450 seeds/m2 | A4 × B2 × C1 | 7990.67 | 99.3 | −54.00 | Ns |
2023 | Tulnic × Chemical fertilization + foliar fertilization × 450 seeds/m2 | A4 × B2 × C1 | 8841.00 | 117.1 | 1332.67 | * |
2022 | Negoiu × Chemical fertilization + foliar fertilization × 550 seeds/m2 | A1 × B2 × C2 | 8301.33 | 100.0 | 0.00 | Ck |
2023 | Negoiu × Chemical fertilization + foliar fertilization × 550 seeds/m2 | A1 × B2 × C2 | 7086.67 | 100.0 | 0.00 | Ck |
2022 | Utrifun × Chemical fertilization + foliar fertilization × 550 seeds/m2 | A2 × B2 × C2 | 8080.33 | 97.3 | −221.00 | Ns |
2023 | Utrifun × Chemical fertilization + foliar fertilization × 550 seeds/m2 | A2 × B2 × C2 | 11,400.33 | 160.9 | 4313.67 | *** |
2022 | Zvelt × Chemical fertilization + foliar fertilization × 550 seeds/m2 | A3 × B2 × C2 | 8211.00 | 98.9 | −90.33 | Ns |
2023 | Zvelt × Chemical fertilization + foliar fertilization × 550 seeds/m2 | A3 × B2 × C2 | 9206.00 | 129.9 | 2119.33 | ** |
2022 | Tulnic × Chemical fertilization + foliar fertilization × 550 seeds/m2 | A4 × B2 × C2 | 7847.00 | 94.5 | −454.33 | Ns |
2023 | Tulnic × Chemical fertilization + foliar fertilization × 550 seeds/m2 | A4 × B2 × C2 | 8805.67 | 124.3 | 1719.00 | ** |
2022 | Negoiu × Chemical fertilization + foliar fertilization × 650 seeds/m2 | A1 × B2 × C3 | 8388.00 | 100.0 | 0.00 | Ck |
2023 | Negoiu × Chemical fertilization + foliar fertilization × 650 seeds/m2 | A1 × B2 × C3 | 6967.33 | 100.0 | 0.00 | Ck |
2022 | Utrifun × Chemical fertilization + foliar fertilization × 650 seeds/m2 | A2 × B2 × C3 | 7959.67 | 94.9 | −428.33 | Ns |
2023 | Utrifun × Chemical fertilization + foliar fertilization × 650 seeds/m2 | A2 × B2 × C3 | 11,343.00 | 162.9 | 4378.67 | *** |
2022 | Zvelt × Chemical fertilization + foliar fertilization × 650 seeds/m2 | A3 × B2 × C3 | 8249.67 | 94.9 | −138.33 | Ns |
2023 | Zvelt × Chemical fertilization + foliar fertilization × 650 seeds/m2 | A3 × B2 × C3 | 8235.00 | 118.2 | 1270.67 | * |
2022 | Tulnic × Chemical fertilization + foliar fertilization × 650 seeds/m2 | A4 × B2 × C3 | 7349.00 | 87.6 | −1039.00 | 0 |
2023 | Tulnic × Chemical fertilization + foliar fertilization × 650 seeds/m2 | A4 × B2 × C3 | 8647.33 | 124.2 | 1683.0 | * |
2022 | Negoiu × Chemical fertilization + foliar fertilization + biostimulator × 450 seeds/m2 | A1 × B3 × C1 | 8496.67 | 100.0 | 0.00 | Ck |
2023 | Negoiu × Chemical fertilization + foliar fertilization + biostimulator × 450 seeds/m2 | A1 × B3 × C1 | 7673.0 | 100.0 | 0.00 | Ck |
2022 | Utrifun × Chemical fertilization + foliar fertilization + biostimulator × 450 seeds/m2 | A2 × B3 × C1 | 8411.00 | 99.0 | −85.67 | Ns |
2023 | Utrifun × Chemical fertilization + foliar fertilization + biostimulator × 450 seeds/m2 | A2 × B3 ×C1 | 11,549.67 | 150.5 | 3876.67 | *** |
2022 | Zvelt × Chemical fertilization + foliar fertilization + biostimulator × 450 seeds/m2 | A3 × B3 × C1 | 7952.67 | 93.6 | −544.00 | Ns |
2023 | Zvelt × Chemical fertilization + foliar fertilization + biostimulator × 450 seeds/m2 | A3 × B3 ×C1 | 8286.33 | 108.0 | 613.33 | Ns |
2022 | Tulnic × Chemical fertilization + foliar fertilization + biostimulator × 450 seeds/m2 | A4 × B3 × C1 | 7356.67 | 86.6 | −1140.00 | 00 |
2023 | Tulnic × Chemical fertilization + foliar fertilization + biostimulator × 450 seeds/m2 | A4 × B3 × C1 | 8718.67 | 113.6 | 1045.67 | Ns |
2022 | Negoiu × Chemical fertilization + foliar fertilization + biostimulator × 550 seeds/m2 | A1 × B3 × C2 | 8498.33 | 100.0 | 0.00 | Ck |
2023 | Negoiu × Chemical fertilization + foliar fertilization + biostimulator × 550 seeds/m2 | A1 × B3 × C2 | 7337.67 | 100.0 | 0.00 | Ck |
2022 | Utrifun × Chemical fertilization + foliar fertilization + biostimulator × 550 seeds/m2 | A2 × B3 × C2 | 8403.67 | 98.9 | −94.67 | Ns |
2023 | Utrifun × Chemical fertilization + foliar fertilization + biostimulator × 550 seeds/m2 | A2 × B3 × C2 | 11,913.00 | 162.4 | 4575.33 | *** |
2022 | Zvelt × Chemical fertilization + foliar fertilization + biostimulator × 550 seeds/m2 | A3 × B3 × C2 | 8213.67 | 96.7 | −284.67 | Ns |
2023 | Zvelt × Chemical fertilization + foliar fertilization + biostimulator × 550 seeds/m2 | A3 × B3 × C2 | 7917.00 | 108.6 | 633.33 | Ns |
2022 | Tulnic × Chemical fertilization + foliar fertilization + biostimulator × 550 seeds/m2 | A4 × B3 × C2 | 7058.00 | 83.1 | −1440.33 | 00 |
2023 | Tulnic × Chemical fertilization + foliar fertilization + biostimulator × 550 seeds/m2 | A4 × B3 × C2 | 8089.67 | 110.2 | 752.00 | Ns |
2022 | Negoiu × Chemical fertilization + foliar fertilization + biostimulator × 650 seeds/m2 | A1 × B3 × C3 | 8260.67 | 100.0 | 0.00 | Ck |
2023 | Negoiu × Chemical fertilization + foliar fertilization + biostimulator × 650 seeds/m2 | A1 × B3 × C3 | 7674.33 | 100.0 | 0.00 | Ck |
2022 | Utrifun × Chemical fertilization + foliar fertilization + biostimulator × 650 seeds/m2 | A2 × B3 × C3 | 8323.00 | 100.8 | 62.33 | Ns |
2023 | Utrifun × Chemical fertilization + foliar fertilization + biostimulator × 650 seeds/m2 | A2 × B3 × C3 | 11,636.00 | 151.6 | 3961.67 | *** |
2022 | Zvelt × Chemical fertilization + foliar fertilization + biostimulator × 650 seeds/m2 | A3 × B3 × C3 | 8134.33 | 98.5 | −126.33 | Ns |
2023 | Zvelt × Chemical fertilization + foliar fertilization + biostimulator × 650 seeds/m2 | A3 × B3 × C3 | 7618.00 | 99.3 | −56.33 | Ns |
2022 | Tulnic × Chemical fertilization + foliar fertilization + biostimulator × 650 seeds/m2 | A4 × B3 × C3 | 6689.00 | 81.0 | −1571.67 | 000 |
2023 | Tulnic × Chemical fertilization + foliar fertilization + biostimulator × 650 seeds/m2 | A4 × B3 × C3 | 8784.00 | 114.5 | 1109.67 | Ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andras, B.E.; Fițiu, A.; Acs, P.B.; Horga, V.A.; Racz, I.; Duda, M.M. The Influence of Sowing Rate and Foliar Fertilization on the Yield of Some Triticale Varieties in the Context of Climate Change in Northwest Romania. Agriculture 2024, 14, 2155. https://doi.org/10.3390/agriculture14122155
Andras BE, Fițiu A, Acs PB, Horga VA, Racz I, Duda MM. The Influence of Sowing Rate and Foliar Fertilization on the Yield of Some Triticale Varieties in the Context of Climate Change in Northwest Romania. Agriculture. 2024; 14(12):2155. https://doi.org/10.3390/agriculture14122155
Chicago/Turabian StyleAndras, Beniamin Emanuel, Avram Fițiu, Peter Balazs Acs, Vasile Adrian Horga, Ionut Racz, and Marcel Matei Duda. 2024. "The Influence of Sowing Rate and Foliar Fertilization on the Yield of Some Triticale Varieties in the Context of Climate Change in Northwest Romania" Agriculture 14, no. 12: 2155. https://doi.org/10.3390/agriculture14122155
APA StyleAndras, B. E., Fițiu, A., Acs, P. B., Horga, V. A., Racz, I., & Duda, M. M. (2024). The Influence of Sowing Rate and Foliar Fertilization on the Yield of Some Triticale Varieties in the Context of Climate Change in Northwest Romania. Agriculture, 14(12), 2155. https://doi.org/10.3390/agriculture14122155