Integrated Rice-Snail-Crayfish Farming System Shapes Soil Microbial Community by Enhancing pH and Microbial Biomass in South Subtropical China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Experimental Design
2.2. Soil Sampling and Analysis
2.3. Statistical Analysis
3. Results
3.1. Changes in Soil Chemical Properties in Different Farming Systems
3.2. Changes in Soil Microbial Biomass in Different Farming Systems
3.3. Changes in Soil Enzyme Activity in Different Farming Systems
3.4. PLFAs in Different Farming Systems
3.4.1. Abundance of PLFAs
3.4.2. Soil Microbial Diversity Indices
3.5. Relationship Between Biotic and Abiotic Factors and Soil Microbial Community Composition
3.5.1. Factors Driving Microbial Community Changes
3.5.2. Regulatory Pathway of Soil Microbial Community Composition Induced by Integrated Farming
4. Discussion
4.1. Effects and Ecological Implications of R-S-C on Soil Properties and Microbial Biomass
4.2. R-S-C Increased the Abundance of Soil Bacteria and AMF but Reduced Microbial Diversity
4.3. Key Factors and Pathways Affecting Soil Microbial Community Structure in the R-S-C System
4.4. Whether the R-S-C System Boosts Economic Benefits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, D.; Feng, Q.; Zhang, J.; Zhang, K.; Tian, J.; Xie, J. Ecosystem services analysis for sustainable agriculture expansion: Rice-fish co-culture system breaking through the Hu line. Ecol. Indic. 2021, 133, 108385. [Google Scholar] [CrossRef]
- Zhang, K.; Peng, H.; Xia, Y.; Gong, W.; Li, Z.; Yu, E.; Tian, J.; Wang, G.; Xie, J. Evaluating ecological mechanisms and optimization strategy of rice-fish co-culture system by ecosystem approach. Aquaculture 2022, 560, 738561. [Google Scholar] [CrossRef]
- Xie, J.; Hu, L.; Tang, J.; Wu, X.; Li, N.; Yuan, Y.; Yang, H.; Zhang, J.; Luo, S.; Chen, X. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system. Proc. Natl. Acad. Sci. USA 2011, 108, E1381–E1387. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Tang, R.; Xie, J.; Tian, J.; Shi, R.; Zhang, K. Valuation of ecosystem services of rice-fish coculture systems in Ruyuan County, China. Ecosyst. Serv. 2020, 41, 101054. [Google Scholar] [CrossRef]
- Sun, G.; Sun, M.; Du, L.; Zhang, Z.; Wang, Z.; Zhang, G.; Nie, S.; Xu, H.; Wang, H. Ecological rice-cropping systems mitigate global warming—A meta-analysis. Sci. Total Environ. 2021, 789, 147900. [Google Scholar] [CrossRef]
- Chen, R.Z.; Wong, M. Integrated wetlands for food production. Environ. Res. 2016, 148, 429–442. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, G.; Shen, N.; Nie, Z.; Li, H.; Zhang, L.; Gong, Y.; He, Y.; Ma, X.; Zhang, H.; et al. Valuation of ecosystem services for the sustainable development of Hani terraces: A rice-fish-duck integrated farming model. Int. J. Environ. Res. Public Health 2022, 19, 8549. [Google Scholar] [CrossRef]
- Zhou, K.; Qin, J.; Pang, H.; Chen, Z.; Huang, Y.; Li, W.; Du, X.; Wen, L.; Pan, X.; Lin, Y. Comparison of the composition and function of gut microbes between adult and juvenile cipangopaludina chinensis in the rice snail system. PeerJ 2022, 10, e13042. [Google Scholar] [CrossRef]
- Luo, H.; Chen, L.; Jin, T.; Sun, W.; Li, Z.; Zhou, M.; Qin, J.; Du, X.; Wen, L.; Pan, X.; et al. Muscle main nutrients of four species of snails in Viviparidae. J. Fish. China 2021, 46, 1–8. [Google Scholar]
- Pan, X.; Qin, J.; Pang, H.; Liang, Z.; Lin, Y.; Li, W.; Huang, Y.; Chen, Z.; Du, X.; Zhou, K. Microbiota comparison of cipangopaludina chinensis intestine and sediment under a rice-snail system. Freshw. Fish. 2024, 54, 15–24. [Google Scholar]
- National Fisheries Technology Extension Center; China Society of Fisheries. Report on the development of china’s crayfish industry. China Fish. 2024, 14–20. [Google Scholar]
- Horgan, F.G. The ecophysiology of apple snails in rice: Implications for crop management and policy. Ann. Appl. Biol. 2018, 172, 245–267. [Google Scholar] [CrossRef]
- Fu, X.; Huang, B.; Yin, X.; Wang, H.; Xia, Q.; Jin, W.; Li, Y.; Ma, B.; Zhang, H.; Chen, S. Research on integrated rice-snail farming technology. Sci. Fish Farming 2022, 3, 41–42. [Google Scholar]
- Jiang, C.; Jiao, Y.; Chen, X.; Li, X.; Yan, W.; Yu, B.; Xiong, Q. Preliminary characterization and potential hepatoprotective effect of polysaccharides from cipangopaludina chinensis. Food. Chem. Toxicol. 2013, 59, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhou, K.; Zou, X.; Lin, Y.; Ye, H.; Luo, H.; Qin, J.; Chen, Z.; Huang, Y.; Du, X.; et al. Analysis of feature and marker development of microsatellites for cipangopaludina chinensis based on full-length transcriptome data. J. Hydroecology 2023, 45, 1–9. [Google Scholar]
- Xu, Y.; Song, Q.; Wang, H.; Yi, J.; Bi, Y.; Mi, W.; Song, G. Integrated rice-crayfish farming on soil fertility and microbial community. Acta Hydrobiol. Sin. 2024, 1–11. [Google Scholar]
- Wang, B.; Zhang, H.; Chen, G.; Cheng, W.; Shen, Y. Effects of long-term rice-crayfish coculture systems on soil nutrients, carbon pools, and rice yields in northern Zhejiang province, China. Agronomy 2024, 14, 1014. [Google Scholar] [CrossRef]
- Feng, J.; Pan, R.; Hu, H.W.; Huang, Q.; Zheng, J.; Tan, W.; Liu, Y.R.; Delgado-Baquerizo, M. Effects of integrated rice-crayfish farming on soil biodiversity and functions. Sci. Bull. 2023, 68, 2311–2315. [Google Scholar] [CrossRef]
- Nakanishi, K.; Takakura, K.I.; Kanai, R.; Tawa, K.; Murakami, D.; Sawada, H. Impacts of environmental factors in rice paddy fields on abundance of the mud snail (cipangopaludina chinensis laeta). J. Molluscan Stud. 2014, 80, 460–463. [Google Scholar] [CrossRef]
- Bahram, M.; Hildebrand, F.; Forslund, S.K.; Anderson, J.L.; Soudzilovskaia, N.A.; Bodegom, P.M.; Bengtsson-Palme, J.; Anslan, S.; Coelho, L.P.; Harend, H.; et al. Structure and function of the global topsoil microbiome. Nature 2018, 560, 233–237. [Google Scholar] [CrossRef]
- Trivedi, P.; Delgado-Baquerizo, M.; Anderson, I.C.; Singh, B.K. Response of soil properties and microbial communities to agriculture: Implications for primary productivity and soil health indicators. Front. Plant Sci. 2016, 7, 990. [Google Scholar] [CrossRef] [PubMed]
- Brockett, B.F.T.; Prescott, C.E.; Grayston, S.J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 2012, 44, 9–20. [Google Scholar] [CrossRef]
- Hu, J.; Du, M.; Chen, J.; Tie, L.; Zhou, S.; Buckeridge, K.M.; Cornelissen, J.; Huang, C.; Kuzyakov, Y. Microbial necromass under global change and implications for soil organic matter. Glob. Change Biol. 2023, 29, 3503–3515. [Google Scholar] [CrossRef] [PubMed]
- Schimel, J.P.; Schaeffer, S.M. Microbial control over carbon cycling in soil. Front. Microbiol. 2012, 3, 348. [Google Scholar] [CrossRef]
- Philippot, L.; Chenu, C.; Kappler, A.; Rillig, M.C.; Fierer, N. The interplay between microbial communities and soil properties. Nat. Rev. Microbiol. 2024, 22, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Nayak, P.K.; Nayak, A.K.; Panda, B.B.; Senapati, A.; Panneerselvam, P.; Kumar, A.; Tripathi, R.; Poonam, A.; Shahid, M.; Mohapatra, S.D.; et al. Rice-based integrated farming system improves the soil quality, bacterial community structure and system productivity under sub-humid tropical condition. Environ. Geochem. Health 2024, 46, 65. [Google Scholar] [CrossRef]
- Lv, X.; Ma, B.; Sun, L.; Cai, Y.; Chang, S.X. Long-term nitrogen fertilization, but not short-term tillage reversal, affects bacterial community structure and function in a no-till soil. J. Soils Sediments 2022, 22, 630–639. [Google Scholar] [CrossRef]
- Bossio, D.A.; Girvan, M.S.; Verchot, L.; Bullimore, J.; Borelli, T.; Albrecht, A.; Scow, K.M.; Ball, A.S.; Pretty, J.N.; Osborn, A.M. Soil microbial community response to land use change in an agricultural landscape of western Kenya. Microb. Ecol. 2005, 49, 50–62. [Google Scholar] [CrossRef]
- Cai, S.; Xu, S.; Zhang, D.; Geisen, S.; Zhu, H. Soil microbial biomass and bacterial diversity enhanced through fallow cover cropping in rice-fish coculture. Agronomy 2024, 14, 456. [Google Scholar] [CrossRef]
- Arunrat, N.; Sansupa, C.; Kongsurakan, P.; Sereenonchai, S.; Hatano, R. Soil microbial diversity and community composition in rice-fish co-culture and rice monoculture farming system. Biology 2022, 11, 1242. [Google Scholar] [CrossRef]
- Wang, S.; Wang, M.; Gao, X.; Zhao, W.; Miao, P.; Liu, Y.; Zhang, R.; Wang, X.; Sui, X.; Li, M. The diversity and composition of soil microbial communities differ in three land use types of the Sanjiang plain, northeastern China. Microorganisms 2024, 12, 780. [Google Scholar] [CrossRef] [PubMed]
- Szejgis, J.; Carrillo, Y.; Jeffries, T.C.; Dijkstra, F.A.; Chieppa, J.; Horn, S.; Bristol, D.; Maisnam, P.; Eldridge, D.; Nielsen, U.N. Altered rainfall greatly affects enzyme activity but has limited effect on microbial biomass in Australian dryland soils. Soil Biol. Biochem. 2024, 189, 109277. [Google Scholar] [CrossRef]
- Bo, L.; Shukla, M.K.; Mao, X. Long-term plastic film mulching altered soil physicochemical properties and microbial community composition in Shiyang River Basin, Northwest China. Appl. Soil Ecol. A Sect. Agric. Ecosyst. Environ. 2024, 193, 105108. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Li, W.F.; Zheng, B.Y.; Wang, Z.Q.; Luo, F.G.; Jiang, M.; Li, Y.H. Effects of bio-fertilizer on the yield of freshwater snails in rice-field aquaculture, water quality, and soil fertility. Hubei Agric. Sci. 2022, 61, 35–40. [Google Scholar]
- Zhao, J.; Ni, T.; Li, J.; Lu, Q.; Fang, Z.; Huang, Q.; Zhang, R.; Li, R.; Shen, B.; Shen, Q. Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice–wheat cropping system. Appl. Soil Ecol. A Sect. Agric. Ecosyst. Environ. 2016, 99, 1–12. [Google Scholar] [CrossRef]
- Wu, W.; Zhou, X.; Wen, Y.; Zhu, H.; You, Y.; Qin, Z.; Li, Y.; Huang, X.; Yan, L.; Li, H.; et al. Coniferous-broadleaf mixture increases soil microbial biomass and functions accompanied by improved stand biomass and litter production in subtropical China. Forests 2019, 10, 879. [Google Scholar] [CrossRef]
- Brookes, P.C.; Powlson, D.S.; Jenkinson, D.S. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 1982, 14, 319–329. [Google Scholar] [CrossRef]
- Gómez, D.S.; Miguel, V.S.; Calviño, D.F. Study of microbial communities in Lusitanian organic and conventional agricultural soils by phospholipid fatty acid analysis. J. Agrar. Sci. 2022, 45, 71–80. [Google Scholar]
- Joergensen, R.G. Phospholipid fatty acids in soil—Drawbacks and future prospects. Biol. Fertil. Soils 2022, 58, 1–6. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, X.; Li, Y.; Jiao, Y.; Fan, L.; Jiang, Y.; Qu, C.; Filimonenko, E.; Jiang, Y.; Tian, X.; et al. Nitrogen fertilizer builds soil organic carbon under straw return mainly via microbial necromass formation. Soil Biol. Biochem. 2024, 188, 109223. [Google Scholar] [CrossRef]
- Agnihotri, R.; Gujre, N.; Mitra, S.; Sharma, M.P. Decoding the PLFA profiling of microbial community structure in soils contaminated with municipal solid wastes. Environ. Res. 2023, 219, 114993. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Yang, L.; Harbo, L.S.; Yan, X.; Chen, J.; Zhao, C.; Xiao, Y.; Liu, H.; Wang, S.; Miao, Y.; et al. Effects of land use on soil microbial community structure and diversity in the yellow river floodplain. J. Plant Ecol. 2023, 16, rtac075. [Google Scholar] [CrossRef]
- You, Y.; Wang, J.; Huang, X.; Tang, Z.; Liu, S.; Sun, O.J. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover. Ecol. Evol. 2014, 4, 633–647. [Google Scholar] [CrossRef] [PubMed]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1967, 15, 177. [Google Scholar] [CrossRef]
- Deng, P.; Zhou, Y.; Chen, W.; Tang, F.; Wang, Y. Microbial mechanisms for improved soil phosphorus mobilization in monoculture conifer plantations by mixing with broadleaved trees. J. Environ. Manag. 2024, 359, 120955. [Google Scholar] [CrossRef]
- Chen, Y.; Tao, S.; Ma, J.; Qu, Y.; Sun, Y.; Wang, M.; Cai, Y. New insights into assembly processes and driving factors of urban soil microbial community under environmental stress in Beijing. Sci. Total Environ. 2024, 947, 174551. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Henseler, J.; Hubona, G.; Ray, P.A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Zeng, W.; Zhang, Y.; Luo, W.; Zhu, Y.; Yin, H.; Lan, X.; Ye, S. Soil-microbial interactions in rice-loach-shrimp integrated farming: Multivariate analysis of ecological intensification. Water 2024, 16, 2083. [Google Scholar] [CrossRef]
- Nayak, P.K.; Nayak, A.K.; Panda, B.B.; Lal, B.; Gautam, P.; Poonam, A.; Shahid, M.; Tripathi, R.; Kumar, U.; Mohapatra, S.D.; et al. Ecological mechanism and diversity in rice based integrated farming system. Ecol. Indic. 2018, 91, 359–375. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Q.; Zhang, C.; Li, X.; Chen, J.; Zhang, X.; Chen, J.; Liu, K. Rice-fish-duck system regulation of soil phosphorus fraction conversion and availability through organic carbon and phosphatase activity. Front. Environ. Sci. 2022, 10, 979234. [Google Scholar] [CrossRef]
- Nath, A.; Bhattacharyya, T.; Ray, S.; Deka, J.; Das, A.; Devi, H. Assessment of rice farming management practices based on soil organic carbon pool analysis. Trop. Ecol. 2016, 57, 607–611. [Google Scholar]
- Bosatta, E.; Ågren, G.I. Theoretical analysis of microbial biomass dynamics in soils. Soil Biol. Biochem. 1994, 26, 143–148. [Google Scholar] [CrossRef]
- Anderson, T.; Domsch, K.H. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol. Biochem. 1989, 21, 471–479. [Google Scholar] [CrossRef]
- Insam, H.; Domsch, K.H. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microb. Ecol. 1988, 15, 177–188. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Liptzin, D. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 2007, 85, 235–252. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Hill, B.H.; Follstad, S.J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 2009, 462, 795–798. [Google Scholar] [CrossRef]
- Si, G.-H.; Yuan, J.-F.; Peng, C.-L.; Zhao, S.-J.; Xu, D.-B.; Yu, Y.-B.; Xie, Y.-Y.; Zhou, J.-X. Mechanism of long-term integrated rice-crayfish farming increasing soil biological fertility of paddy fields. J. Plant Nutr. Fertil. 2020, 26, 2168–2176. [Google Scholar]
- Zhan, M.; Cao, C.; Wang, J.; Jiang, Y.; Cai, M.; Yue, L.; Shahrear, A. Dynamics of methane emission, active soil organic carbon and their relationships in wetland integrated rice-duck systems in southern China. Nutr. Cycl. Agroecosyst. 2011, 89, 1–13. [Google Scholar] [CrossRef]
- Wang, K.; Ren, T.; Yan, J.; Zhu, D.; Liao, S.; Zhang, Y.; Lu, Z.; Cong, R.; Li, X.; Lu, J. Straw returning mediates soil microbial biomass carbon and phosphorus turnover to enhance soil phosphorus availability in a rice-oilseed rape rotation with different soil phosphorus levels. Agric. Ecosyst. Environ. 2022, 335, 107991. [Google Scholar] [CrossRef]
- Kumari, M.; Sheoran, S.; Prakash, D.; Yadav, D.B.; Yadav, P.K.; Jat, M.K.; Apurva, A. Long-term application of organic manures and chemical fertilizers improve the organic carbon and microbiological properties of soil under pearl millet-wheat cropping system in North-Western India. Heliyon 2024, 10, e25333. [Google Scholar] [CrossRef] [PubMed]
- Atere, C.T.; Ge, T.; Zhu, Z.; Liu, S.; Huang, X.; Shibsitova, O.; Guggenberger, G.; Wu, J. Assimilate allocation by rice and carbon stabilisation in soil: Effect of water management and phosphorus fertilisation. Plant Soil 2019, 445, 153–167. [Google Scholar] [CrossRef]
- Mooshammer, M.; Wanek, W.; Zechmeister-Boltenstern, S.; Richter, A. Stoichiometric imbalances between terrestrial decomposer communities and their resources: Mechanisms and implications of microbial adaptations to their resources. Front. Microbiol. 2014, 5, 22. [Google Scholar] [CrossRef]
- Zhou, W.; Lv, T.; Chen, Y.; Westby, A.P.; Ren, W. Soil physicochemical and biological properties of paddy-upland rotation: A review. Sci. World J. 2014, 2014, 856352. [Google Scholar] [CrossRef]
- Zhu, X.; Peng, C.; Si, G.; Sha, A.; Yuan, J.; Zhao, S.; Xu, D.; Liu, W. Effects of straw returning on soil chemical properties and microbial community diversity under the rice-crayfish integrated system. Sustainability 2022, 14, 13539. [Google Scholar] [CrossRef]
- Bihari, P.; Nayak, A.K.; Gautam, P.; Lal, B.; Shahid, M.; Raja, R.; Tripathi, R.; Bhattacharyya, P.; Panda, B.B.; Mohanty, S.; et al. Long-term effect of rice-based farming systems on soil health. Environ. Monit. Assess. 2015, 187, 296. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Han, T.; Li, W.; Liu, K. Soil enzymatic activities response to long-term fertilization during key growth stages of early rice. Arch. Für Acker Und Pflanzenbau Und Bodenkd. 2022, 68, 1443–1456. [Google Scholar] [CrossRef]
- Lefroy, R.D.B.; Blair, G.J.; Strong, W.M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance. Plant Soil 1993, 155–156, 399–402. [Google Scholar] [CrossRef]
- Mohamed, O.; Said, E.K.; Miloud, S.; Abdellatif, H.; El Hassan, A.; Rachid, B. Effect of agricultural management practices on diversity, abundance, and infectivity of arbuscular mycorrhizal fungi: A review. Symbiosis 2023, 91, 33–44. [Google Scholar] [CrossRef]
- Ujvari, G.; Turrini, A.; Avio, L.; Agnolucci, M. Possible role of arbuscular mycorrhizal fungi and associated bacteria in the recruitment of endophytic bacterial communities by plant roots. Mycorrhiza 2021, 31, 527–544. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Feng, G.; Limpens, E.; Bonfante, P.; Xie, X.; Zhang, L. Cross-kingdom nutrient exchange in the plant-arbuscular mycorrhizal fungus-bacterium continuum. Nat. Rev. Microbiol. 2024, 22, 773–790. [Google Scholar] [CrossRef] [PubMed]
- Cloutier, M.L.; Murrell, E.; Barbercheck, M.; Kaye, J.; Finney, D.; Garcia-Gonzalez, I.; Bruns, M.A. Fungal community shifts in soils with varied cover crop treatments and edaphic properties. Sci. Rep. 2020, 10, 6198. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Kuzyakov, Y. Mechanisms and implications of bacterial-fungal competition for soil resources. ISME J. 2024, 18, wrae073. [Google Scholar] [CrossRef]
- Hou, Y.; Diao, W.; Jia, R.; Sun, W.; Feng, W.; Li, B.; Zhu, J. Variations in antibiotic resistomes associated with archaeal, bacterial, and viral communities affected by integrated rice-fish farming in the paddy field ecosystem. Environ. Res. 2024, 251, 118717. [Google Scholar] [CrossRef]
- Yang, Z.; Feng, Y.; Zhang, S.; Hu, Y.; Tang, Y.; Gu, H.; Gu, Z.; Xv, Y.; Cai, Y.; Zhang, H. Effects of rice-prawn (Macrobrachium nipponense) co-culture on the microbial community of soil. Appl. Microbiol. Biotechnol. 2022, 106, 7361–7372. [Google Scholar] [CrossRef]
- Li, P.; Wu, G.; Li, Y.; Hu, C.; Ge, L.; Zheng, X.; Zhang, J.; Chen, J.; Zhang, H.; Bai, N.; et al. Long-term rice-crayfish-turtle co-culture maintains high crop yields by improving soil health and increasing soil microbial community stability. Geoderma 2022, 413, 115745. [Google Scholar] [CrossRef]
- Chanda, P.; Pun, B.; Joshi, S. Microbial diversity for agricultural productivity. In Industrial Microbiology and Biotechnology; Verma, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 519–547. [Google Scholar]
- Lazcano, C.; Gómez-Brandón, M.; Revilla, P.; Domínguez, J. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol. Fertil. Soils 2013, 49, 723–733. [Google Scholar] [CrossRef]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.; Ma, J.; Wang, Y.; Wang, Z.; Liu, Y. Microbial community variation and its relationship with soil carbon accumulation during long-term oasis formation. Appl. Soil Ecol. A Sect. Agric. Ecosyst. Environ. 2021, 168, 104126. [Google Scholar] [CrossRef]
- Zechmeister-Boltenstern, S.; Keiblinger, K.M.; Mooshammer, M.; Peñuelas, J.; Richter, A.; Sardans, J.; Wanek, W. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecol. Monogr. 2015, 85, 133–155. [Google Scholar] [CrossRef]
- Jin, Q.; Kirk, M.F. pH as a primary control in environmental microbiology: 1. Thermodynamic perspective. Front. Environ. Sci. 2018, 6, 21. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, X.; Guo, D.; Zhao, J.; Yan, L.; Feng, G.; Gao, Q.; Yu, H.; Zhao, L. Soil ph is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. Ann. Microbiol. 2019, 69, 1461–1473. [Google Scholar] [CrossRef]
- Bahram, M.; Netherway, T.; Hildebrand, F.; Pritsch, K.; Drenkhan, R.; Loit, K.; Anslan, S.; Bork, P.; Tedersoo, L. Plant nutrient-acquisition strategies drive topsoil microbiome structure and function. New Phytol. 2020, 227, 1189–1199. [Google Scholar] [CrossRef]
- Tao, J.; Liu, X. Does arbuscular mycorrhizal fungi inoculation influence soil carbon sequestration? Biol. Fertil. Soils 2024, 60, 213–225. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, W.; Song, F.; Li, X. Diversity and composition of arbuscular mycorrhizal fungal communities in the cropland black soils of China. Glob. Ecol. Conserv. 2020, 22, e964. [Google Scholar] [CrossRef]
- Du, D.; Zhang, Y.; Wang, H.; Zhu, X. Stochastic processes contribute to arbuscular mycorrhizal fungal community assembly in paddy soils along middle and lower Yangtze River. Appl. Soil Ecol. A Sect. Agric. Ecosyst. Environ. 2023, 183, 104759. [Google Scholar] [CrossRef]
- Gao, D.; Bai, E.; Wang, S.; Zong, S.; Liu, Z.; Fan, X.; Zhao, C.; Hagedorn, F. Three-dimensional mapping of carbon, nitrogen, and phosphorus in soil microbial biomass and their stoichiometry at the global scale. Glob. Change Biol. 2022, 28, 6728–6740. [Google Scholar] [CrossRef]
- Announcement on Early Rice Production Data for 2023 by the National Bureau of Statistics of China. Available online: https://www.gov.cn/lianbo/bumen/202308/content_6899676.htm (accessed on 9 November 2024).
- China National Aquatic Products Technical Extension Service Center and Chinese Society of Fisheries. Full Release of the Report on the Development of Integrated Rice-Fish Farming Industry in China (2024). China Fish. 2024, 12–17. [Google Scholar]
- Yu, X.J.; Hao, X.J.; Dang, Z.Q.; Yang, L.K. Report on the Development of Integrated Rice-Fish Farming Industry in China (2023). China Fish. 2023, 19–26. [Google Scholar]
- Yu, X.J.; Hao, X.J.; Dang, Z.Q.; Yang, L.K. Report on the Development of Integrated Rice-Fish Farming Industry in China (2022). China Fish. 2023, 39–46. [Google Scholar]
- China National Aquatic Products Technical Extension Service Center and Chinese Society of Fisheries. Report on the Development of Integrated Rice-Fish Farming Industry in China (2020). China Fish. 2020, 12–19. [Google Scholar]
Variables | SOC | TN | TP |
---|---|---|---|
Values | 51.45 ± 0.57 | 3.02 ± 0.02 | 0.76 ± 0.04 |
Microbial | Biomarkers | ||
---|---|---|---|
PLFAs bacteria | Gram-positive | Firmicutes [39] | i14:0, i15:0, i16:0, i17:0, i18, a15:0, a16:0, a17:0, a18:0, a19:0 |
Actinobacterias [39,40,41] | 10Me16:0, 10Me17:0, 10Me18:0, 10Me17:1 ω7c, 10Me18:1 ω7c, 10Me19:1 ω7c | ||
Gram-negative [39,40,41] | cy17:0, cy19:0, 14:1 ω5c, 15:1 ω6c, 16:1 ω7c, 16:1 ω9c, 16:1 ω11c, 17:1 ω8c, 18:1 ω5c, 18:1 ω7c, cy19:0 ω8c, 20:1 ω9c, 15:0 3OH, 16:0 2OH, 16:1 2OH, 18:0 2OH, 18:1 2OH | ||
Other bacteria | Anaerobe [31,42] | DMA15:0, DMA16:2, DMA17:0, DMA16:1 ω7c, DMA18:1 ω9c, DMA18:1 ω7c, DMA18:0 | |
General bacteria [43] | 14:00, 15:00, 16:00, 17:00, 18:00, 20:00, 11:0 3OH, i12:0 3OH, i15:0 3OH, a17:1 ω9c | ||
PLFAs fungi | AMF [39,40,41] | 16:1 ω5c | |
Zygomycetes [39,40,43] | 18:1 ω9c | ||
Ascomycota and Basidiomycota [39,40,41] | 18:2 ω6c | ||
PLFAs protozoa [31,32] | 20:2 ω6c, 20:3 ω6c, 20:4 ω6c, 20:5 ω3c |
Variables | TR | R-S-C | CK |
---|---|---|---|
WC | 0.81 ± 0.06 a | 0.92 ± 0.07 a | 0.94 ± 0.04 a |
pH | 6.54 ± 0.08 b | 6.79 ± 0.05 a | 6.51 ± 0.06 b |
SOC | 52.36 ± 3.27 a | 62.25 ± 5.11 a | 48.94 ± 5.57 a |
TK | 2.40 ± 0.11 a | 2.00 ± 0.06 b | 1.88 ± 0.10 b |
TP | 0.88 ± 0.07 a | 0.87 ± 0.04 a | 0.70 ± 0.05 a |
TN | 3.09 ± 0.23 a | 3.21 ± 0.06 a | 3.02 ± 0.26 a |
AN | 192.72 ± 18.62 a | 227.12 ± 1.41 a | 226.89 ± 23.17 a |
AP | 8.50 ± 0.83 a | 0.93 ± 0.16 b | 2.20 ± 0.38 b |
AK | 288.73 ± 62.18 a | 82.32 ± 4.60 b | 80.61 ± 6.79 b |
Variables | TR | R-S-C | CK |
---|---|---|---|
MBC | 226.65 ± 48.54 b | 484.06 ± 96.77 a | 299.59 ± 53.43 ab |
MBN | 23.17 ± 2.17 a | 39.13 ± 9.66 a | 23.27 ± 3.19 a |
MBP | 0.90 ± 0.33 a | 0.43 ± 0.16 a | 0.38 ± 0.02 a |
MBC/MBN | 9.77 ± 1.98 a | 15.06 ± 5.52 a | 14.04 ± 4.35 a |
MBC/MBP | 339.64 ± 124.79 b | 1381.47 ± 370.17 a | 783.54 ± 117.61 ab |
MBN/MBP | 39.92 ± 19.62 a | 174.50 ± 120.80 a | 61.90 ± 9.91 a |
MBC/SOC | 4.36 ± 1.01 a | 7.75 ± 1.41 a | 6.57 ± 2.01 a |
MBN/TN | 7.54 ± 0.72 a | 12.10 ± 2.82 a | 7.66 ± 0.58 a |
MBP/TP | 1.08 ± 0.42 a | 0.49 ± 0.17 a | 0.55 ± 0.07 a |
Variables | TR | R-S-C | CK |
---|---|---|---|
ASP | 4.10 ± 0.14 a | 4.36 ± 0.24 a | 4.66 ± 0.26 a |
βG | 0.30 ± 0.05 a | 0.21 ± 0.04 a | 0.25 ± 0.03 a |
NAG | 0.18 ± 0.01 a | 0.24 ± 0.04 a | 0.16 ± 0.03 a |
URE | 36.09 ± 9.48 a | 40.60 ± 11.83 a | 36.63 ± 10.99 a |
PO | 0.06 ± 0.00 b | 0.25 ± 0.04 a | 0.25 ± 0.02 a |
POD | 0.13 ± 0.06 a | 0.08 ± 0.01 a | 0.08 ± 0.02 a |
Diversity Index | TR | R-S-C | CK |
---|---|---|---|
Shannon–Wiener (H) | 3.20 ± 0.04 a | 3.06 ± 0.01 b | 3.26 ± 0.03 a |
Simpson (D) | 0.93 ± 0.003 b | 0.91 ± 0.001 c | 0.94 ± 0.002 a |
Pielon (J) | 0.87 ± 0.01 a | 0.83 ± 0.003 b | 0.89 ± 0.01 a |
Species richness (S) | 76.00 ± 2.31 a | 81.00 ± 1.00 a | 79.67 ± 1.67 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Du, X.; Qin, Z.; Liu, Q.; Pan, F. Integrated Rice-Snail-Crayfish Farming System Shapes Soil Microbial Community by Enhancing pH and Microbial Biomass in South Subtropical China. Agriculture 2024, 14, 2133. https://doi.org/10.3390/agriculture14122133
Wu W, Du X, Qin Z, Liu Q, Pan F. Integrated Rice-Snail-Crayfish Farming System Shapes Soil Microbial Community by Enhancing pH and Microbial Biomass in South Subtropical China. Agriculture. 2024; 14(12):2133. https://doi.org/10.3390/agriculture14122133
Chicago/Turabian StyleWu, Wenxiang, Xuesong Du, Zhiwei Qin, Qingrong Liu, and Fujing Pan. 2024. "Integrated Rice-Snail-Crayfish Farming System Shapes Soil Microbial Community by Enhancing pH and Microbial Biomass in South Subtropical China" Agriculture 14, no. 12: 2133. https://doi.org/10.3390/agriculture14122133
APA StyleWu, W., Du, X., Qin, Z., Liu, Q., & Pan, F. (2024). Integrated Rice-Snail-Crayfish Farming System Shapes Soil Microbial Community by Enhancing pH and Microbial Biomass in South Subtropical China. Agriculture, 14(12), 2133. https://doi.org/10.3390/agriculture14122133