Effect of Crop Protection Intensity and Nitrogen Fertilisation on the Quality Parameters of Spelt Wheat Grain cv. ‘Rokosz’ Grown in South-Eastern Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Experiment and Soil and Climatic Conditions
2.2. Experimental Design and Agronomic Practises
2.3. Chemical Analyses of Grain
2.4. Physical Parameters of the Grain
2.5. Statistical Analysis
3. Results
3.1. Chemical Analyses of Grain
3.2. Physical Parameters of the Grain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Petrenko, V.; Spychaj, R.; Prysiazhniuk, O.; Sheiko, T.; Khudolii, L. Evaluation of three wheat species (Triticum aestivum L., T. spelta L., T. dicoccum (Schrank) Schuebl) commonly used in organic cropping systems, considering selected parameters of technological quality. Romanian Agric. Res. 2018, 35, 255–264. [Google Scholar]
- Haliniarz, M.; Gawęda, D.; Nowakowicz-Dębek, B.; Najda, A.; Chojnacka, S.; Łukasz, J.; Wlazło, Ł.; Różańska-Boczula, M. Evaluation of the weed infestation, grain health, and productivity parameters of two spelt wheat cultivars depending on crop protection intensification and seeding densities. Agriculture 2020, 10, 229. [Google Scholar] [CrossRef]
- Andruszczak, S.; Kwiecińska-Poppe, E.; Kraska, P.; Pałys, E. Yield of winter cultivars of spelt wheat (Triticum aestivum ssp. spelta L.) cultivated under diversified conditions of mineral fertilization and chemical protection. Acta Sci. Pol. Agric. 2011, 10, 5–14. [Google Scholar]
- Gawlik-Dziki, U.; Świeca, M.; Dziki, D. Comparison of phenolic acids profile and antioxidant potential of six varieties of spelt Triticum spelta L. J. Agric. Food Chem. 2012, 60, 4603–4612. [Google Scholar] [CrossRef]
- Winnicki, T.; Zuk-Gołaszewska, K. Agronomic and economic characteristics of common wheat and spelt production in an organic farming system. Acta Sci. Pol. Agric. 2017, 16, 247–254. [Google Scholar]
- Ratajczak, K.; Sulewska, H.; Szymańska, G.; Matysik, P. Agronomic traits and grain quality of selected spelt wheat varieties versus common wheat. J. Crop Improv. 2020, 34, 654–675. [Google Scholar] [CrossRef]
- Janković, S.; Ikanović, J.; Popović, V.; Rakić, S.; Pavlović, S.; Ugrenović, V.; Simić, D.; Dončić, D. Morphological and Productive Traits of Spelt Wheat (Triticum spelta L.). Agric. For. 2015, 61, 173–182. [Google Scholar] [CrossRef]
- Packa, D.; Załuski, D.; Graban, Ł.; Lajszner, W. An evaluation of spelt crosses for breeding new varieties of spring spelt. Agronomy 2019, 9, 167. [Google Scholar] [CrossRef]
- Longin, C.F.H.; Ziegler, J.; Schweiggert, R.; Koehler, P.; Carle, R.; Würschum, T. Comparative Study of Hulled (Einkorn, Emmer, and Spelt) and Naked Wheats (Durum and Bread Wheat): Agronomic Performance and Quality Traits. Crop Sci. 2016, 56, 302–311. [Google Scholar] [CrossRef]
- Wiwart, M.; Szafranska, A.; Wachowska, U.; Suchowilska, E. Quality parameters and rheological dough properties of 15 spelt (Triticum spelta L.) varieties cultivated today. Cereal Chem. 2017, 94, 1037–1044. [Google Scholar] [CrossRef]
- Gulyas, G.; Rakszegi, M.; Bognar, Z.; Lang, L.; Bedö, Z. Evaluation of genetic diversity of spelt breeding materials based on AFLP and quality analyses. Cereal Res. Commun. 2012, 40, 185–193. [Google Scholar] [CrossRef]
- Okoń, S.; Paczos-Grzęda, E.; Kraska, P.; Kwiecińska-Poppe, E.; Pałys, E. Assessment of genetic similarity of spelt (Triticum aestivum ssp. spelta L.) cultivars based on RAPD markers. Biuletyn IHAR 2009, 252, 35–41. [Google Scholar]
- EUPVP—Common Catalogue Information System. Available online: https://ec.europa.eu/food/plant-variety-portal (accessed on 23 September 2024).
- Plant Breeding Strzelce Sp. z o.o. IHAR Group. Available online: https://hr-strzelce.pl/odmiany/pszenica/pszenica-ozima-orkisz/ (accessed on 30 September 2024).
- Gawęda, D.; Haliniarz, M.; Chojnacka, S.; Sobolewska, M.; Łukasz, J.; Hury, G.; Wesołowska-Trojanowska, M. Evaluation of the Technological Quality of Grain and Flour of Two Spelt Wheat (Triticum aestivum ssp. spelta L.) Cultivars Grown under Different Conditions of Crop Protection and Seeding Rate. Appl. Ecol. Environ. Res. 2019, 17, 4377–4395. [Google Scholar] [CrossRef]
- Barański, M.; Lacko-Bartošová, M.; Rembiałkowska, E.; Lacko-Bartošová, L. The effect of species and cultivation year on phenolic acids content in ancient wheat. Agronomy 2020, 10, 673. [Google Scholar] [CrossRef]
- Kohajdová, Z.; Karovičová, J. Nutritional value and baking applications of spelt wheat. Acta Sci. Pol. Technol. Aliment. 2008, 7, 5–14. [Google Scholar]
- Wójtowicz, A.; Oniszczuk, A.; Kasprzak, K.; Olech, M.; Mitrus, M.; Oniszczuk, T. Chemical composition and selected quality characteristics of new types of precooked wheat and spelt pasta products. Food Chem. 2019, 309, 125673. [Google Scholar] [CrossRef]
- Podolska, G.; Aleksandrowicz, E.; Szafrańska, A. Bread making potential of Triticum aestivum and Triticum spelta species. Open Life Sci. 2020, 15, 30–40. [Google Scholar] [CrossRef]
- Dvorak, J.; Deal, K.R.; Luo, M.C.; You, F.M.; Von Borstel, K.; Dehghani, H. The origin of spelt and free-threshing hexaploid wheat. J. Hered. 2012, 103, 426–441. [Google Scholar] [CrossRef] [PubMed]
- Mankevičienė, A.; Jablonskytė-Raščė, D.; Maikštėnienė, S. Occurrence of mycotoxins in spelt and common wheat grain and their products. Food Addit. Contam. Part A 2014, 31, 132–138. [Google Scholar] [CrossRef]
- Cotuna, O.; Paraschivu, M.; Sărățeanu, V.; Horablagă, M.N.; Durău, C.C. Research regarding the contamination with Fusarium spp. of the wheat grains from the variety Triticum aestivum ssp. spelta before and after the treatment with bio-fungicide—Case study. Sci. Pap. Ser. A Agron. 2022, 65, 266–273. [Google Scholar]
- Christa, K. Spelt—The miraculous grain. Przegląd Zbożowo-Młynarski 2010, 2, 11. [Google Scholar]
- Kliuchevych, M.M.; Nykytiuk, Y.A.; Stoliar, S.H.; Retman, S.V.; Vygera, S.M. Protection of winter spelt against fungal diseases under organic production of phyto-products in the Ukrainian Polissia. Ukr. J. Ecol. 2020, 10, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Kraska, P.; Andruszczak, S.; Gawlik-Dziki, U.; Dziki, D.; Kwiecińska-Poppe, E. Whole meal spelt bread enriched with green spelt as a source of valuable nutrients. Processes 2020, 8, 389. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Wesołowski, M.; Pałys, E.; Kraska, P.; Haliniarz, M.; Nowak, A.; Andruszczak, S.; Kwiecińska-Poppe, E. Pro-Ecological Aspects of Management in Agroecosystems; Perfekta Info: Lublin, Poland, 2014. [Google Scholar]
- Krochmal-Marczak, B.; Sawicka, B. Nutritional value of spelt wheat (Triticum spelta L.) cultivated in Podkarpacie. Herbalism 2016, 1, 146–159. [Google Scholar] [CrossRef]
- Escarnot, E.; Jacquemin, J.; Agneessens, R.; Paquot, M. Comparative study of the content and profiles of macronutrients in spelt and wheat: A review. Biotechnol. Agron. Soc. Environ. 2012, 16, 243–256. [Google Scholar]
- Lacko-Bartošová, M.; Kováčik, P. Nutritional quality of wheat and spelt grain in sustainable farming systems. Acta Fytotech. Zootech. 2013, 16, 93–95. [Google Scholar]
- Wang, J.; Hasanalieva, G.; Wood, L.; Markellou, E.; Ole Iversen, P.; Bernhoft, A.; Rempelos, L. Effect of Wheat Species (Triticum aestivum vs. T. spelta), Farming System (Organic vs. Conventional) and Flour Type (Wholegrain vs. White) on Composition of Wheat Flour; Results of a Retail Survey in the UK and Germany—1. Mycotoxin Content. Food Chem. 2020, 327, 127011. [Google Scholar] [CrossRef]
- Wang, J.; Barański, M.; Hasanaliyeva, G.; Korkut, R.; Kalee, H.A.; Leifert, A.; Winter, S.; Janovska, D.; Willson, A.; Barkla, B.; et al. Effect of Irrigation, Fertiliser Type and Variety on Grain Yield and Nutritional Quality of Spelt Wheat (Triticum spelta) Grown Under Semi-Arid Conditions. Food Chem. 2021, 358, 129826. [Google Scholar] [CrossRef]
- Kraska, P.; Andruszczak, S.; Kwiecińska-Poppe, E.; Gawlik-Dziki, U.; Pałys, E.; Zawiślak, K.; Skowrońska, M. An Analysis of the Potential Use of Green Spelt for Bread Production. Agronomy 2019, 9, 417. [Google Scholar] [CrossRef]
- Geisslitz, S.; Longin, C.F.; Scherf, K.A.; Koehler, P. Comparative Study on Gluten Protein Composition of Ancient (Einkorn, Emmer, and Spelt) and Modern Wheat Species (Durum and Common Wheat). Foods 2019, 8, 409. [Google Scholar] [CrossRef]
- Bonafaccia, G.; Galli, V.; Francisci, R.; Mairi, V.; Skarabanja, V.; Kreft, I. Characteristics of spelt wheat products and nutritional value of spelt wheat-based bread. Food Chem. 2000, 68, 437–441. [Google Scholar] [CrossRef]
- Csapó, J.; Albert, C.; Lóki, K.; Csapó-Kiss, Z. Separation and determination of the amino acids by ion exchange column chromatography applying postcolumn derivatization. Acta Univ. Sapientiae Aliment. 2008, 1, 5–29. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolyb-dic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. Available online: http://www.ajevonline.org/content/16/3/144.full.pdf+html (accessed on 23 September 2024). [CrossRef]
- AB 1375; Scope of accreditation for testing laboratory. Polish Centre for Accreditation: Warszawa, Poland, 2022.
- PN-EN ISO/IEC 17025:2005; General requirements for the competence of testing and calibration laboratories. Polish Committee for Standardization: Warszawa, Poland, 2005.
- Polish Committee for Standardization. Available online: https://www.pkn.pl/informacje/2011/11/e-dostep-do-polskich-norm (accessed on 20 June 2024).
- Andruszczak, S. Reaction of winter spelt cultivars to reduced tillage system and chemical plant protection. Zemdirb. Agric. 2017, 104, 15–22. [Google Scholar] [CrossRef]
- Babenko, L.M.; Hospodarenko, H.M.; Rozhkov, R.V.; Pariy, Y.F.; Pariy, M.F.; Babenko, A.V.; Kosakivska, I.V. Triticum spelta: Origin, biological characteristics and perspectives for use in breeding and agriculture. Regul. Mech. Biosyst. 2018, 9, 250–257. [Google Scholar] [CrossRef]
- Capouchová, I. Technological Quality of Spelt (Triticum spelta L.) from Ecological Growing System. Sci. Agric. Bohem. 2001, 32, 307–322. [Google Scholar]
- Mikos, M.; Podolska, G. Bread-Making Quality of Old Common Bread (Triticum aestivum ssp. vulgare L.) and Spelt (Triticum aestivum ssp. spelta L.) Wheat Cultivars. J. Food Agric. Environ. 2012, 10, 221–224. [Google Scholar]
- Suchowilska, E.; Wiwart, M.; Grabowska, G. Antifungal Activity of Methanol Extracts from Spikes of Triticum spelta and Triticum aestivum Genotypes Differing in Their Response to Fusarium culmorum Inoculation. Biologia 2008, 63, 471–476. [Google Scholar] [CrossRef]
- Gomez-Becerra, H.F.; Erdem, H.; Yazici, A.; Tutus, Y.; Torun, B.; Ozturk, L.; Cakmak, I. Grain concentrations of protein and mineral nutrients in large collection of spelt wheat grown under different environments. J. Cereal Sci. 2010, 52, 342–349. [Google Scholar] [CrossRef]
- Rachoń, L.; Bobryk-Mamczarz, A.; Kiełtyka-Dadasiewicz, A. Hulled Wheat Productivity and Quality in Modern Agriculture Against Conventional Wheat Species. Agriculture 2020, 10, 275. [Google Scholar] [CrossRef]
- Škrbić, B.; Onija, A. Multivariate analyses of microelement contents in wheat cultivated in Serbia (2002). Food Control 2007, 18, 338–345. [Google Scholar] [CrossRef]
- Kraska, P.; Andruszczak, S.; Kwiecińska-Poppe, E.; Pałys, E. Effect of chemical crop protection on the content of some elements in grain of spelt wheat (Triticum aestivum ssp. spelta). J. Elem. 2013, 1, 79–90. [Google Scholar] [CrossRef]
- Jablonskyte-Rasce, D.; Maiksteniene, S.; Mankeviciene, A. Evaluation of productivity and quality of common wheat (Triticum aestivum L.) and spelt (Triticum spelta L.) in relation to nutrition conditions. Zemdirbyste-Agriculture 2013, 100, 45–56. [Google Scholar] [CrossRef]
- Kwiecińska-Poppe, E.; Andruszczak, S.; Kraska, P.; Pałys, E. The influence of chemical protection levels on quality of spelt wheat (Triticum spelta L.) grain. Prog. Plant Prot. 2011, 51, 986–989. (In Polish) [Google Scholar]
- Biel, W.; Stankowski, S.; Jaroszewska, A.; Pużyński, S.; Bośko, P. The Influence of Selected Agronomic Factors on the Chemical Composition of Spelt Wheat (Triticum aestivum ssp. Spelta L.). Grain. J. Integr. Agric. 2016, 15, 1763–1769. [Google Scholar] [CrossRef]
- Lacko-Bartošová, M. Nutritional quality and antioxidant capacity of Triticum spelta varieties. J. Ecol. Health 2010, 14, 290–294. [Google Scholar]
- Bojňanská, T.; Frančáková, H. The use of spelt wheat (Triticum spelta L.) for baking applications. Rostlinná výroba 2002, 48, 141–147. [Google Scholar] [CrossRef]
- Lacko-Bartošová, M.; Korczyk-Szabó, J.; Ražn, R. Triticum spelta—A speciality grain for ecological farming systems. Res. J. Agric. Sci. 2010, 42, 143–147. [Google Scholar]
- Andruszczak, S. Spelt wheat grain yield and nutritional value response to sowing rate and nitrogen fertilization. J. Anim. Plant Sci. 2018, 28, 1476–1484. [Google Scholar]
- Pospišil, A.; Pospišil, M.; Svečnjak, Z.; Matotan, S. Influence of crop management upon the agronomic traits of spelt (Triticum spelta L.). Plant Soil Environ. 2011, 57, 435–440. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Haliniarz, M.; Tomczyńska-Mleko, M.; Mleko, S.; Kawecka-Radomska, M. The content of dietary fiber, amino acids, dihydroxyphenols and some macro- and micronutrients in grain of conventionally and organically grown common wheat, spelt wheat and proso millet. Agric. Food Sci. 2015, 24, 195–205. [Google Scholar] [CrossRef]
- Kowalska, I.; Pawelec, S.; Pecio, Ł.; Feledyn-Szewczyk, B. The Effects of a Cultivar and Production System on the Qualitative and Quantitative Composition of Bioactive Compounds in Spring Wheat (Triticum sp.). Molecules 2024, 29, 4106. [Google Scholar] [CrossRef] [PubMed]
- Rachoń, L.; Szumiło, G.; Brodowska, M.; Woźniak, A. Nutritional value and mineral composition of grain of selected wheat species depending on the intensity of a production technology. J. Elem. 2015, 20, 705–715. [Google Scholar]
- Praczyk, T.; Kardasz, P.; Jakubiak, E.; Syguda, A.; Materna, K.; Pernak, J. Herbicidal ionic liquids with 2,4-D. Weed Sci. 2012, 60, 189–192. [Google Scholar] [CrossRef]
- Jakubiak, E. Phytotoxicity evaluation of 4-chloro-2-methylphenoxyacetic acid based on ionic liquids and their residues in winter wheat. Prog. Plant Prot. 2017, 57, 272–277. [Google Scholar] [CrossRef]
- El-Nahhal, Y.; Hamdona, N. Phytotoxicity of Alachlor, Bromacil and Diuron as single or mixed herbicides applied to wheat, melon, and molokhia. Springer Plus 2015, 4, 367. [Google Scholar] [CrossRef]
- Labuschagne, M.T.; Meintjes, G.; Groenewald, F.P.C. The influence of different nitrogen treatments on the size distribution of protein fractions in hard and soft wheat. J. Cereal Sci. 2006, 43, 315–321. [Google Scholar] [CrossRef]
- Johansson, E.; Prieto-Linde, M.L.; Svensson, G. Influence of nitrogen application rate and timing on grain protein composition and gluten strength in Swedish wheat cultivars. J. Plant Nutr. Soil Sci. 2004, 167, 345–350. [Google Scholar] [CrossRef]
- Suchowilska, E.; Wiwart, M.; Krska, R.; Kandler, W. Do Triticum aestivum L. and Triticum spelta L. Hybrids Constitute a Promising Source Material for Quality Breeding of New Wheat Varieties? Agronomy 2020, 10, 43. [Google Scholar] [CrossRef]
- Podolska, G.; Wyka, J.; Ignatowicz, S.; Aleksandrowicz, E.; Goluchowska, J. Chemical composition and biological value of the protein of Triticum spelta and Triticum polonicum. Fragm. Agron. 2015, 32, 82–92. [Google Scholar]
- Stępień, A.; Wojtkowiak, K.; Orzech, K.; Wiktorski, A. Nutritional and technological characteristics of common and spelt wheats are affected by mineral fertilizer and organic stimulator Nano-Gro®. Acta Sci. Pol. Agric. 2016, 15, 49–63. [Google Scholar]
- Hury, G.; Stankowski, S.; Makarewicz, A.; Sobolewska, M.; Biel, W.; Opatowicz, N. The effect of soil tillage system and nitrogen fertilization on baking quality of winter spelt cultivars. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Piscaria Zootech. 2016, 3304, 91–100. [Google Scholar] [CrossRef]
- Biel, W.; Hury, G.; Maciorowski, R.; Kotlarz, A.; Jaskowska, I. The effect of varied nitrogen fertilization on the chemical composition of grain from two spelt varieties (Triticum aestivum ssp. spelta L.). Acta Sci. Pol. Zootech. 2010, 9, 5–14. [Google Scholar]
- Wanic, M.; Jastrzębska, M.; Kostrzewska, M.K.; Parzonka, M. Spelt in Diversified and Spelt-Based Crop Rotations: Grain Yield and Technological and Nutritional Quality. Agriculture 2024, 14, 1123. [Google Scholar] [CrossRef]
Years | Months | Sum/ Mean | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IX | X | XI | XII | I | II | III | IV | V | VI | VII | VIII | ||
Rainfalls (mm) | |||||||||||||
2018/ 2019 | 54.7 | 41.3 | 15.2 | 70.8 | 31.5 | 14.6 | 27.1 | 39.0 | 87.0 | 11.2 | 46.3 | 52.0 | 490.7 |
2019/ 2020 | 33.5 | 37.0 | 56.3 | 46.3 | 14.1 | 76.5 | 26.0 | 19.0 | 111.4 | 170.3 | 67.8 | 59.3 | 717.5 |
2020/ 2021 | 128.5 | 93.4 | 17.4 | 16.0 | 31.7 | 42.1 | 14.9 | 58.3 | 68.0 | 68.3 | 82.4 | 197.8 | 818.8 |
LTA 1963–2010 | 59.5 | 45.6 | 41.0 | 36.9 | 30.3 | 29.2 | 31.3 | 42.4 | 63.5 | 72.7 | 80.0 | 69.5 | 601.9 |
Temperature (°C) | |||||||||||||
2018/ 2019 | 14.7 | 9.2 | 3.9 | −0.2 | −3.4 | 2.5 | 5.5 | 10.3 | 14.4 | 22.9 | 20.0 | 21.9 | 10.2 |
2019/ 2020 | 16.3 | 12.6 | 6.6 | 2.6 | 1.2 | 3.2 | 4.6 | 8.6 | 11.2 | 17.4 | 18.8 | 20.4 | 10.3 |
2020/ 2021 | 15.7 | 10.9 | 5.2 | 1.9 | 0.1 | −2.2 | 2.6 | 6.4 | 11.6 | 18.6 | 22.0 | 17.2 | 9.2 |
LTA 1963–2010 | 13.1 | 7.9 | 2.9 | −1.3 | −3.0 | −1.7 | 1.8 | 7.7 | 13.6 | 16.5 | 18.3 | 17.7 | 7.8 |
Feature | Y | CP | NF | CP × NF | Y × CP | Y × NF | Y × CP × NF |
---|---|---|---|---|---|---|---|
Protein | ** | * | ** | * | ns | * | ns |
Gluten | ** | * | ** | * | ns | * | ns |
Zeleny sedimentation index | * | * | * | * | ns | ns | ns |
Starch | ns | * | * | * | ns | ns | ns |
Insoluble dietary fibre | ns | ns | * | * | ns | ns | ns |
Soluble dietary fibre | ns | ns | * | ns | ns | ns | ns |
Fat | ns | ns | * | ns | ns | ns | ns |
O-dihydroxyphenol | ns | ns | ns | ns | ns | ns | ns |
Grain fraction | ns | * | * | * | ns | ns | ns |
Crop Protection | Nitrogen Fertilisation | Mean | |||
---|---|---|---|---|---|
N0** | N1 | N2 | N3 | ||
A* | 12.05 ± 0.23 | 11.59 ± 0.19 | 11.99 ± 0.23 | 12.25 ± 0.21 | 11.97 ± 1.63 |
B | 11.08 ± 0.41 | 11.08 ± 0.31 | 11.06 ± 0.20 | 12.27 ± 0.09 | 11.37 ± 3.96 |
C | 11.35 ± 0.13 | 11.43 ± 0.41 | 12.01 ± 0.23 | 13.54 ± 0.66 | 12.08 ± 2.77 |
D | 12.11 ± 0.23 | 12.23 ± 0.29 | 11.77 ± 0.59 | 12.26 ± 0.22 | 12.09 ± 3.04 |
Mean | 11.65 ± 0.67 | 11.58 ± 2.18 | 11.71 ± 2.38 | 12.58 ± 4.05 | - |
HSD (p ≤ 0.05) | for crop protection | 0.055 | |||
for nitrogen fertilisation | 0.082 | ||||
for interaction crop protection x× nitrogen fertilisation | 0.122 |
Crop Protection | Nitrogen Fertilisation | Mean | |||
---|---|---|---|---|---|
N0 | N1 | N2 | N3 | ||
A | 28.70 ± 2.30 | 27.89 ± 1.54 | 27.94 ± 0.05 | 28.99 ± 1.13 | 28.38 ± 0.55 |
B | 26.55 ± 0.10 | 26.32 ± 0.82 | 26.89 ± 1.41 | 29.49 ± ±0.84 | 27.31 ± 1.47 |
C | 26.57 ± 0.99 | 26.58 ± 0.31 | 28.90 ± 1.48 | 31.85 ± 2.02 | 28.48 ± 2.50 |
D | 27.32 ± 0.77 | 29.43 ± 0.84 | 26.32 ± 0.94 | 30.97 ± 1.85 | 28.51 ± 2.09 |
Mean | 27.29 ± 1.01 | 27.56 ± 1.43 | 27.51 ± 1.14 | 30.33 ± 1.32 | |
HSD (p ≤ 0.05) | for crop protection | 0.186 | |||
for nitrogen fertilisation | 0.274 | ||||
for interaction crop protection × nitrogen fertilisation | 0.412 |
Parameter | Nitrogen Fertilisation | Crop Protection | ||||||
---|---|---|---|---|---|---|---|---|
N0 | N1 | N2 | N3 | A | B | C | D | |
Asp | 5.28 a | 5.74 b | 6.10 c | 6.91 d | 5.78 A | 6.12 B | 6.14 B | 5.99 AB |
Thr | 2.61 a | 2.82 b | 3.02 c | 3.27 d | 2.87 A | 2.96 A | 2.92 A | 2.97 A |
Ser | 4.08 a | 4.46 b | 4.79 c | 5.30 d | 4.54 A | 4.58 A | 4.76 A | 4.75 A |
Glu | 30.90 a | 34.28 b | 37.53 c | 42.65 d | 35.48 A | 35.63 AB | 37.20 B | 37.05 AB |
Pro | 9.40 a | 11.68 b | 12.23 c | 14.65 d | 11.53 B | 10.95 A | 13.31 D | 12.17 C |
Gly | 3.86 a | 4.23 b | 4.46 c | 4.90 d | 4.25 A | 4.35 B | 4.43 B | 4.43 B |
Ala | 3.39 a | 3.66 b | 3.86 c | 4.18 d | 3.66 A | 3.81 A | 3.79 A | 3.82 A |
Cys-A | 3.88 b | 3.30 a | 3.98 b | 3.23 a | 3.64 B | 3.90 C | 3.24 A | 3.62 B |
Val | 4.02 a | 4.32 b | 4.67 c | 4.99 c | 4.42 A | 4.60 A | 4.37 A | 4.60 A |
Sulf. met. | 2.59 a | 2.25 a | 2.68 a | 2.30 a | 2.52 BC | 2.64 C | 2.18 A | 2.49 B |
Ile | 2.97 a | 3.28 b | 3.56 c | 3.90 d | 3.35 A | 3.43 A | 3.44 A | 3.49 A |
Leu | 6.44 a | 7.00 b | 7.57 c | 8.27 d | 7.17 A | 7.37 A | 7.27 A | 7.46 A |
Tyr | 2.39 a | 2.53 b | 2.83 c | 3.05 d | 2.63 A | 2.71 A | 2.70 A | 2.77 A |
Phe | 4.40 a | 4.72 b | 5.23 c | 5.80 d | 4.95 A | 5.08 AB | 4.99 A | 5.13 B |
His | 2.27 a | 2.51 b | 2.70 c | 2.93 d | 2.56 A | 2.62 A | 2.58 A | 2.66 A |
Lys | 2.77 a | 2.93 b | 3.13 c | 3.32 d | 2.95 A | 3.15 B | 2.99 AB | 3.06 AB |
Arg | 4.43 a | 4.63 b | 5.20 c | 5.50 d | 4.88 B | 5.10 C | 4.70 A | 5.07 C |
Crop Protection | Nitrogen Fertilisation | Mean | |||
---|---|---|---|---|---|
N0 | N1 | N2 | N3 | ||
A | 25.39 ± 1.95 | 21.88 ± 2.83 | 23.15 ± 1.74 | 26.46 ± 3.16 | 24.22 ± 2.10 |
B | 17.17 ± 2.51 | 19.17 ± 0.68 | 21.05 ± 1.29 | 27.50 ± 3.22 | 21.22 ± 4.47 |
C | 20.54 ± 0.88 | 22.57 ± 1.46 | 20.25 ± 0.95 | 29.12 ± 2.33 | 23.12 ± 4.13 |
D | 19.89 ± 1.25 | 19.21 ± 0.79 | 17.49 ± 0.66 | 17.08 ± 1.17 | 18.42 ± 1.35 |
Mean | 20.75 ± 3.42 | 20.71 ± 1.77 | 20.49 ± 2.34 | 25.04 ± 5.41 | |
HSD (p ≤ 0.05) | for crop protection | 0.216 | |||
for nitrogen fertilisation | 0.552 | ||||
for interaction crop protection × nitrogen fertilisation | 0.648 |
Crop Protection | Nitrogen Fertilisation | Mean | |||
---|---|---|---|---|---|
N0 | N1 | N2 | N3 | ||
A | 54.78 ± 0.44 | 55.12 ± 0.45 | 55.35 ± 0.86 | 54.21 ± 0.81 | 54.87 ± 0.50 |
B | 55.63 ± 0.73 | 55.44 ± 0.55 | 55.44 ± 0.37 | 54.42 ± 0.81 | 55.23 ± 0.55 |
C | 55.23 ± 0.88 | 54.99 ± 0.52 | 55.77 ± 0.21 | 54.67 ± 0.95 | 55.17 ± 0.46 |
D | 55.51 ± 0.80 | 55.74 ± 0.12 | 55.94 ± 0.71 | 56.12 ± 0.21 | 55.83 ± 0.26 |
Mean | 55.29 ± 0.38 | 55.32 ± 0.34 | 55.63 ± 0.28 | 54.86 ± 0.86 | |
HSD (p ≤ 0.05) | for crop protection | 0.128 | |||
for nitrogen fertilisation | 0.342 | ||||
for interaction crop protection × nitrogen fertilisation | 0.397 |
Crop Protection | Nitrogen Fertilisation | Mean | |||
---|---|---|---|---|---|
N0 | N1 | N2 | N3 | ||
A | 10.70 ± 0.17 | 10.94 ± 0.52 | 10.96 ± 0.24 | 11.48 ± 0.34 | 11.02 ± 0.28 |
B | 11.20 ± 0.26 | 10.29 ± 0.17 | 11.29 ± 0.31 | 11.09 ± 0.21 | 10.97 ± 0.40 |
C | 10.96 ± 0.19 | 11.10 ± 0.24 | 11.10 ± 0.15 | 11.50 ± 0.31 | 11.16 ± 0.20 |
D | 10.95 ± 0.32 | 11.43 ± 0.41 | 10.47 ± 0.39 | 11.84 ± 0.24 | 11.17 ± 0.51 |
Mean | 10.95 ± 0.20 | 10.94 ± 0.48 | 10.95 ± 0.35 | 11.48 ± 0.31 | |
HSD (p ≤ 0.05) | for crop protection | ns | |||
for nitrogen fertilisation | 0.150 | ||||
for interaction crop protection × nitrogen fertilisation | 0.462 |
Crop Protection | Nitrogen Fertilisation | Mean | |||
---|---|---|---|---|---|
N0 | N1 | N2 | N3 | ||
A | 2.09 ± 0.11 | 1.73 ± 0.09 | 2.02 ± 0.08 | 1.76 ± 0.15 | 1.90 ± 0.16 |
B | 1.98 ± 0.13 | 1.69 ± 0.13 | 1.92 ± 0.17 | 1.63 ± 0.14 | 1.80 ± 0.15 |
C | 2.07 ± 0.25 | 1.46 ± 0.18 | 2.03 ± 0.12 | 1.91 ± 0.19 | 1.87 ± 0.24 |
D | 2.01 ± 0.17 | 2.04 ± 0.21 | 2.11 ± 0.19 | 1.74 ± 0.14 | 1.97 ± 0.14 |
Mean | 2.04 ± 0.05 | 1.73 ± 0.24 | 2.02 ± 0.08 | 1.76 ± 0.12 | - |
HSD (p ≤ 0.05) | for crop protection | ns | |||
for nitrogen fertilisation | 0.153 | ||||
for interaction crop protection × nitrogen fertilisation | ns |
Crop Protection | Nitrogen Fertilisation | Mean | |||
---|---|---|---|---|---|
N0 | N1 | N2 | N3 | ||
A | 1.56 ± 0.02 | 1.77 ± 0.05 | 1.81 ± 0.03 | 1.75 ± 0.02 | 1.72 ± 0.10 |
B | 1.69 ± 0.05 | 1.78 ± 0.06 | 1.85 ± 0.05 | 1.86 ± 0.07 | 1.80 ± 0.07 |
C | 1.65 ± 0.05 | 1.76 ± 0.02 | 1.78 ± 0.05 | 1.66 ± 0.02 | 1.71 ± 0.06 |
D | 1.60 ± 0.06 | 1.77 ± 0.08 | 1.80 ± 0.04 | 1.72 ± 0.04 | 1.72 ± 0.08 |
Mean | 1.63 ± 0.06 | 1.77 ± 0.01 | 1.81 ± 0.03 | 1.75 ± 0.08 | |
HSD (p ≤ 0.05) | for crop protection | ns | |||
for nitrogen fertilisation | 0.098 | ||||
for interaction crop protection × nitrogen fertilisation | ns |
Crop Protection | Nitrogen Fertilisation | Mean | |||
---|---|---|---|---|---|
N0 | N1 | N2 | N3 | ||
A | 0.13 ± 0.02 | 0.15 ± 0.05 | 0.11 ± 0.01 | 0.26 ± 0.07 | 0.16 ± 0.06 |
B | 0.18 ± 0.01 | 0.18 ± 0.02 | 0.18 ± 0.01 | 0.19 ± 0.05 | 0.18 ± 0.01 |
C | 0.16 ± 0.02 | 0.13 ± 0.06 | 0.04 ± 0.04 | 0.46 ± 0.02 | 0.20 ± 0.16 |
D | 0.15 ± 0.03 | 0.14 ± 0.01 | 0.12 ± 0.03 | 0.13 ± 0.04 | 0.14 ± 0.01 |
Mean | 0.16 ± 0.02 | 0.15 ± 0.02 | 0.11 ± 0.06 | 0.26 ± 0.014 | |
HSD (p ≤ 0.05) | for crop protection | ns | |||
for nitrogen fertilisation | ns | ||||
for interaction crop protection × nitrogen fertilisation | ns |
Crop Protection | Nitrogen Fertilisation | Mean | |||
---|---|---|---|---|---|
N0 | N1 | N 2 | N3 | ||
A | 64.74 ± 1.88 | 62.51 ± 2.13 | 60.95 ± 2.07 | 63.70 ± 1.54 | 62.97 ± 1.63 |
B | 65.52 ± 1.90 | 63.38 ± 6.38 | 59.85 ± 3.92 | 69.32 ± 2.93 | 64.51 ± 3.96 |
C | 65.85 ± 4.33 | 59.51 ± 4.90 | 64.27 ± 2.41 | 61.89 ± 3.21 | 62.88 ± 2.77 |
D | 64.42 ± 2.43 | 64.63 ± 2.68 | 58.76 ± 3.13 | 59.90 ± 1.62 | 61.92 ± 3.04 |
Mean | 65.13 ± 0.66 | 62.51 ± 2.18 | 60.95 ± 2.38 | 63.70 ± 4.05 | |
HSD (p ≤ 0.05) | for crop protection | 0.896 | |||
for nitrogen fertilisation | 1.402 | ||||
for interaction crop protection × nitrogen fertilisation | 2.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernat, E.; Chojnacka, S.; Wesołowska-Trojanowska, M.; Gawęda, D.; Kwiecińska-Poppe, E.; Haliniarz, M. Effect of Crop Protection Intensity and Nitrogen Fertilisation on the Quality Parameters of Spelt Wheat Grain cv. ‘Rokosz’ Grown in South-Eastern Poland. Agriculture 2024, 14, 1815. https://doi.org/10.3390/agriculture14101815
Bernat E, Chojnacka S, Wesołowska-Trojanowska M, Gawęda D, Kwiecińska-Poppe E, Haliniarz M. Effect of Crop Protection Intensity and Nitrogen Fertilisation on the Quality Parameters of Spelt Wheat Grain cv. ‘Rokosz’ Grown in South-Eastern Poland. Agriculture. 2024; 14(10):1815. https://doi.org/10.3390/agriculture14101815
Chicago/Turabian StyleBernat, Edyta, Sylwia Chojnacka, Marta Wesołowska-Trojanowska, Dorota Gawęda, Ewa Kwiecińska-Poppe, and Małgorzata Haliniarz. 2024. "Effect of Crop Protection Intensity and Nitrogen Fertilisation on the Quality Parameters of Spelt Wheat Grain cv. ‘Rokosz’ Grown in South-Eastern Poland" Agriculture 14, no. 10: 1815. https://doi.org/10.3390/agriculture14101815
APA StyleBernat, E., Chojnacka, S., Wesołowska-Trojanowska, M., Gawęda, D., Kwiecińska-Poppe, E., & Haliniarz, M. (2024). Effect of Crop Protection Intensity and Nitrogen Fertilisation on the Quality Parameters of Spelt Wheat Grain cv. ‘Rokosz’ Grown in South-Eastern Poland. Agriculture, 14(10), 1815. https://doi.org/10.3390/agriculture14101815