Effects of Straw Input on the Yield and Water-Use Efficiency of Spring Maize in Film-Mulched Farmland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Experimental Design
2.2. Measurements
2.2.1. Yield and Its Components
2.2.2. Biological Yield of the Population
2.2.3. Soil Moisture Content
2.2.4. Precipitation-Use Efficiency during Growth Period
2.2.5. Crop Water Consumption
2.2.6. Water-Use Efficiency
2.3. Statistical Analysis
3. Results
3.1. Effects of Straw Input on Yield and Harvest Index of Film-Mulched Spring Maize
3.1.1. Effects of Different Treatments on Yield
3.1.2. Influence of Different Treatments on Yield Components
3.1.3. Effects of Different Treatments on Biological Yield and Harvest Index
3.1.4. Correlation Analysis of Yield Components
3.1.5. Path Analysis among Yield Components
3.2. Effects of Combined Straw Input and Continuous Film Mulching on Soil Moisture Content
3.3. Effects of Combined Straw Input and Continuous Film Mulching on Plant Water-Use Efficiency
3.3.1. Precipitation-Use Efficiency
3.3.2. Crop Water-Use Efficiency
3.3.3. Yield and Water-Use Efficiency
4. Discussion
4.1. Effects of Different Treatments on Crop Yield, Yield Composition, and Harvest Index
4.2. Effects of Different Treatments on Soil Water and Water-Use Efficiency
4.3. Relationships between Rainfall, Soil Moisture, and Yield in Different Years
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, W.; Sun, Z.X.; Zhang, L.Z.; Zheng, J.M.; Feng, L.S.; Cai, Q.; Xiang, W.Y.; Feng, C.; Zhang, Z. Furrow loose and ridge compaction plough layer structure optimizing root morphology of spring maize and improving its water use efficiency. Trans. Chin. Soc. Agric. Eng. 2019, 35, 10, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Feng, L.S.; Zhang, Y.Q.; Liu, E.K.; Sun, Z.X. Effects of autumn mulching on water and fertilizer use efficiency and yield of spring maize in Western Liaoning Province. Trans. Chin. Soc. Agric. Eng. 2020, 36, 150–158, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Bai, W.; Sun, Z.X.; Zheng, J.M.; Hou, Z.Y.; Liu, Y.; Feng, L.S.; Yang, N. Effect of Different Planting Patterns on Maize Growth and Yield in Western Liaoning Province. Acta Agron. Sin. 2014, 40, 181–189, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Duan, C.X.; Chen, G.J.; Hu, Y.J.; Wu, S.F.; Feng, H.; Dong, Q.G. Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions. Agric. Water Manag. 2020, 245, 106559. [Google Scholar] [CrossRef]
- Wang, C.J.; Wang, J.D.; Zhang, Y.Q.; Qin, S.S.; Zhang, Y.Y.; Liu, C.Q. Effects of Different Mulching Materials on the Grain Yield and Water Use Efficiency of Maize in the North China Plain. Agriculture 2022, 12, 1112. [Google Scholar] [CrossRef]
- Gao, H.; Liu, H.; Gao, W.; Liu, Q.; Qian, C.; Jin, T.; Yan, C. The suitability of crop plastic film mulching technology and its application on spring maize in Northeast China. Trans. Chin. Soc. Agric. Eng. 2021, 37, 95–107, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Han, Y.L.; Hu, Y.C.; Zhang, N.N.; Li, Y.Z.; Liao, Y.C.; Qin, X.L.; Wen, X.X. Effects of film mulching period and modes on water consumption characteristics and yield of spring maize in the Loess Plateau. Acta Agric. Boreali-Occident. Sin. 2018, 27, 362–371, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Li, J.Q. The mechanism study of the influences of plastics him mulch on grain yield and seed quality of spring maize. J. Maize Sci. 2008, 16, 87–97, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Dong, W.J.; Liu, J.F.; Ding, D.Y.; Chen, Z.W.; Li, Y.; Wang, N.J.; Feng, H. Response of maize growth and water utilization under plantic mulching in dryland to climate change. Agicultural Res. Arid. Areas 2020, 38, 1–12, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Gu, X.B.; Cai, H.J.; Fang, H.; Chen, P.P.; Li, Y.P.; Li, Y.N. Soil hydro-thermal characteristics, maize yield and water use efficiency as affected by different biodegradable film mulching patterns in a rain-fed semi-arid area of China. Agric. Water Manag. 2021, 245, 106560. [Google Scholar] [CrossRef]
- Zong, R.; Han, H.F.; Li, Q.Q. Grain yield and water-use efficiency of summer maize in response to mulching with different plastic films in the North China Plain. Exp. Agric. 2021, 57, 33–44. [Google Scholar] [CrossRef]
- Fang, H.; Li, Y.N.; Gu, X.B.; Yu, M.; Du, Y.D.; Chen, P.P.; Li, Y.P. Evapotranspiration partitioning, water use efficiency, and maize yield under different film mulching and nitrogen application in northwest China. Field Crops Res. 2021, 264, 108103. [Google Scholar] [CrossRef]
- Mak-Mensah, E.; Obour, P.; Essel, E.; Wang, Q.; Ahiakpa, K. Influence of plastic film mulch with biochar application on crop yield, evapotranspiration, and water use efficiency in northern China: A meta-analysis. PeerJ 2021, 9, e10967. [Google Scholar] [CrossRef]
- Fu, Y.F.; Si, L.Y.; Jin, Y.; Xia, Z.Q.; Wang, Q.; Lu, H.D. Efficacy of black plastic film mulching as a cultivation strategy to cope with leaf senescence and increase yield of rainfed spring maize (Zea mays L.). Soil Use Manag. 2022, 38, 1044–1053. [Google Scholar] [CrossRef]
- Kong, M.; Jia, Y.; Gu, Y.J.; Han, C.L.; Song, X.; Shi, X.Y.; Siddique, K.; Zdruli, P.; Zhang, F.; Li, F.M. How Film Mulch Increases the Corn Yield by Improving the Soil Moisture and Temperature in the Early Growing Period in a Cool, Semi-Arid Area. Agronomy 2020, 10, 1195. [Google Scholar] [CrossRef]
- Niu, L.; Yan, Y.Y.; Hou, P.; Bai, W.B.; Zhao, R.L.; Wang, Y.H.; Li, S.K.; Du, T.S.; Zhao, M.; Song, J.Q.; et al. Influence of plastic film mulching and planting density on yield, leaf anatomy, and root characteristics of maize on the Loess Plateau. Crop J. 2020, 8, 548–564. [Google Scholar] [CrossRef]
- Jia, Q.M.; Chen, K.Y.; Chen, Y.Y.; Ali, S.; Manzoor Sohail, A.; Fahad, S. Mulch covered ridges affect grain yield of maize through regulating root growth and root bleeding sap under simulated rainfall conditions. Soil Tillage Res. 2018, 175, 101–111. [Google Scholar] [CrossRef]
- Sun, D.B.; Li, H.G.; Wang, E.L.; He, W.Q.; Hao, W.P.; Yan, C.G.; Li, Y.; Mei, X.R.; Zhang, Y.Q.; Sun, Z.X.; et al. An overview of the use of plastic-film mulching in China to increase crop yield and water-use efficiency. Natl. Sci. Rev. 2020, 7, 1523–1526. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Z.; Hu, Y.C.; Song, D.P.; Liang, S.H.; Qin, X.L.; Siddique, K. The effects of straw incorporation with plastic film mulch on soil properties and bacterial community structure on the Loess Plateau. Eur. J. Soil Sci. 2019, 72, 979–994. [Google Scholar] [CrossRef]
- Qi, Y.L.; Ossowicki, A.; Yang, X.M.; Huerta, E.; Dini-Andreot, F.; Geissen, V.; Garbeva, P. Effects of plastic mulch film residues on wheat rhizosphere and soil properties. J. Hazard. Mater. 2020, 387, 121711. [Google Scholar] [CrossRef]
- Qi, Y.L.; Beriot, N.; Gort, G.; Huerta, E.; Gooren, H.P.A.; Yang, X.M.; Geissen, V. Impact of plastic mulch film debris on soil physicochemical and hydrological properties. Environ. Pollut. 2020, 266, 115097. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.Q.; Liu, Y.; Wang, Y.; Gao, F.; Zhao, J.H.; Li, Y.; Li, X.D. Effects of Soil Tillage, Management Practices, and Mulching Film Application on Soil Health and Peanut Yield in a Continuous Cropping System. Front. Microbiol. 2020, 11, 570924. [Google Scholar] [CrossRef]
- Siedt, M.; Schaeffer, A.; Smith, K.; Nabel, M.; Roß-Nickoll, M.; van Dongen, J. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci. Total Environ. 2021, 751, 141607. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Dou, S.; Ma, R.; Zhang, D.D.; Ndzelu, B.; Zhou, J.Y.; Yang, H.J. Effects of returning corn straw incorporated with fungi, and fermented corn straw on soil humic acid structural characteristics. J. Soils Sediments 2023, 23, 2048–2064. [Google Scholar] [CrossRef]
- Zhu, F.N.; Lin, X.X.; Guan, S.; Dou, S. Deep incorporation of corn straw benefits soil organic carbon and microbial community composition in a black soil of Northeast China. Soil Use Manag. 2022, 38, 1266–1279. [Google Scholar] [CrossRef]
- Li, P.P.; Chen, W.J.; Han, Y.L.; Wang, D.C.; Zhang, Y.T.; Wu, C.F. Effects of straw and its biochar applications on the abundance and community structure of CO2-fixing bacteria in a sandy agricultural soil. J. Soils Sediments 2020, 20, 2225–2235. [Google Scholar] [CrossRef]
- Zhao, C.K.; Wang, H.Z.; Zhang, C.; Li, M.S. Effects of Returning Straw to Field on Soil Particle Size and Corn Yield in a Smart City. J. Test. Eval. 2022, 51, 20220127. [Google Scholar] [CrossRef]
- Li, H.D.; Liu, Y.; Jiao, X.Y.; Li, J.; Liu, K.H.; Wu, T.A.; Zhang, Z.Z.; Luo, D.H. Response of soil nutrients retention and rice growth to biochar in straw returning paddy fields. Chemosphere 2022, 312, 137244. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, Z.X.; Zhang, Y.Q.; Zheng, J.M.; Hao, W.P.; Feng, C.; Si, P.F. Effects of straw-incorporation combined with plastic mulching in autumn on spring maize in semi-arid areas. Chin. J. Agrometeorol. 2016, 37, 654–665. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, Z.X.; Zhang, Y.Q.; Zheng, J.M.; Yang, N.; Feng, L.S.; Li, K.Y. Effects of crop residues incorporation and N-fertilizer on yield and water use efficiency of spring maize. Agric. Res. Arid. Areas 2016, 34, 144–152. [Google Scholar] [CrossRef]
- López-Fando, C.; Pardo, M.T. Changes in soil chemical characteristics with different tillage practices in a semi-arid environment. Soil Tillage Res. 2009, 104, 278–284. [Google Scholar] [CrossRef]
- Hemmat, A.; Eskandari, I. Tillage system effects upon productivity of a dryland winter wheat–chickpea rotation in the northwest region of Iran. Soil Tillage Res. 2004, 78, 69–81. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, L.; Fu, B.; Huang, Z.; Gong, J. The wheat yields and water-use efficiency in the loess plateau: Straw mulch and irrigation effects. Agric. Water Manag. 2005, 72, 209–222. [Google Scholar] [CrossRef]
- Hou, X.; Li, R.; Wu, P.; Li, P.; Wang, X. Effects of Straw Returning with Nitrogen Application on Soil Carbon, Nitrogen Content and Maize Growth. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2018, 49, 238–246. [Google Scholar] [CrossRef]
- Wang, Y.P.; Li, X.; Fu, T.T.; Lin, W.; Turner, N.; Siddique, K.; Li, F.M. Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agric. For. Meteorol. 2016, 228–229, 42–51. [Google Scholar] [CrossRef]
- Tan, K.M.; Yang, C.G.; Chai, S.X.; Chang, L.; Cheng, H.B.; Huang, C.X.; Wang, Y.P. Effect of mulching film after straw returning on soil temperature and grain yield of dryland winter wheat. Agric. Res. Arid. Areas 2015, 33, 159–164, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Liu, W.G.; Zhao, Q.; Yang, Y.M. Efects of straw returning and decomposing agent on sol physical and chemical properties and maize yield under different mulching modes. Anhui Agric. Sci. 2018, 46, 93–96, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Bai, W.; Pang, H.C.; Niu, S.W.; Cai, Q.; An, J.W. Effects of straw incorporation and nitrogen rate on spring maize yield and soil physicochemical property. J. Maize Sci. 2015, 23, 9–109, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Hao, X.Y.; Wang, X.J.; Gao, H.S.; Mao, M.Y.; Sun, L.; Ma, X.Z.; Zhou, B.K.; Chi, F.Q.; Li, W.Q. Estimation of greenhouse gas emission and carbon footprint of farmland under different straw returning methods in Songnen Plain. Ecol. Environ. Sci. 2022, 31, 318–325, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Yang, Q.N.; Gao, S.J.; Zhang, H.P.; Xu, J.Z. Effects of Straw Mulching on the Soil Moisture and Temperature. Chin. Agric. Sci. Bull. 2024, 40, 80–85, (in Chinese with English abstract). [Google Scholar]
- Yingchen, L.; Cuicui, H.; Yong, L.; Zhijun, G. Effects of no-till and straw mulch on greenhouse gas emission from farmland: Areview. Ecol. Environ. Sci. 2014, 23, 1076–1083, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Liu, K.; Xie, Y.H.; Li, T.L.; Zhang, Q.R.; Dou, L.; Liu, Y.F.; Ji, M.J. Overview of the Effects of Plastic Film Mulching on Soil Temperature and Soil Moisture in Arid and Semi-arid Regions of China. J. Shanxi Agric. Sci. 2019, 7, 1847–1852, (in Chinese with English abstract). [Google Scholar]
- Yin, W.; Yu, A.; Chai, Q.; Hu, F.; Feng, F.; Gan, Y. Wheat and maize relay-planting with straw covering increases water use efficiency up to 46%. Agron. Sustain. Dev. 2015, 35, 815–825. [Google Scholar] [CrossRef]
- Qian, R.; Liu, Y.; Guo, R.; Yang, L.; Liang, X.; Zhang, P.; Ren, X.L.; Jia, Z.K. Effects of straw returning to field and plastic film mulching on soil water, temperature and maize yield in upland fields. Acta Agric. Boreali-Occident. Sin. 2021, 30, 532–544, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Wang, Y.L.; Xu, Z.H.; Li, S.; Liang, Z.M.; Xue, X.R.; Bai, J.; Yang, Z.P. Straw returning and Post-Silking irrigating improve the grain yield and utilization of water and nitrogen of spring maize. Sci. Agric. Sin. 2023, 56, 3599–3614, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Zhang, L.H.; Zhang, J.Y.; Dong, Z.Q.; Hou, W.S.; Zhai, L.C.; Yao, Y.R.; Lv, L.H.; Zhao, Y.A.; Jia, X.L. Effect of water management on yield and its components of winter wheat in different precipitation years. Acta Agron. Sin. 2023, 49, 2539–2551, (in Chinese with English abstract). [Google Scholar]
- Zhang, T.; Sun, W.; Sun, B.G.; Wu, J.M.; Wang, L.J.; Feng, B.; Zhang, F.W. Response of yield of spring maize to changes of precipitation and air temperature in arid region. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2017, 33, 127–135, (in Chinese with English abstract). [Google Scholar] [CrossRef]
Year | Treatment | Cob Length/cm | Cob Thickness /mm | Grain Row Number per Cob | Number of Grains per Row | 100-Grain Weight/g |
---|---|---|---|---|---|---|
2018 | NM | 11.43 ± 0.50 c | 31.71 ± 2.58 b | 13.60 ± 0.35 b | 23.80 ± 1.33 b | 24.53 ± 1.34 b |
SM | 13.93 ± 0.33 b | 42.76 ± 0.41 ab | 14.80 ± 0.38 ab | 31.80 ± 0.93 a | 24.78 ± 0.49 b | |
AM | 14.60 ± 0.51 ab | 43.69 ± 0.82 a | 14.93 ± 0.33 ab | 31.53 ± 1.31 a | 30.46 ± 2.43 ab | |
AMS | 15.67 ± 0.39 a | 37.90 ± 2.40 a | 15.07 ± 0.43 a | 34.73 ± 1.09 a | 34.30 ± 1.14 a | |
2019 | NM | 16.30 ± 0.41 b | 50.01 ± 0.40 a | 14.27 ± 0.33 a | 36.07 ± 1.28 b | 35.22 ± 0.66 b |
SM | 17.90 ± 0.32 a | 49.95 ± 0.44 a | 14.13 ± 0.36 a | 39.67 ± 1.04 ab | 37.81 ± 0.38 ab | |
AM | 17.70 ± 0.28 a | 51.57 ± 0.54 a | 14.80 ± 0.26 a | 39.13 ± 0.68 ab | 37.60 ± 0.99 ab | |
AMS | 18.00 ± 0.22 a | 51.18 ± 0.39 a | 14.80 ± 0.33 a | 39.20 ± 0.74 a | 40.80 ± 0.70 a | |
2020 | NM | 15.57 ± 0.54 b | 45.36 ± 1.35 b | 14.80 ± 0.51 a | 29.20 ± 1.52 a | 35.96 ± 0.34 a |
SM | 15.53 ± 0.74 b | 47.10 ± 0.60 ab | 15.47 ± 0.41 a | 31.47 ± 1.71 a | 35.53 ± 0.85 a | |
AM | 17.33 ± 0.36 ab | 47.60 ± 2.58 ab | 15.73 ± 0.27 a | 34.60 ± 1.42 a | 35.39 ± 1.15 a | |
AMS | 17.60 ± 0.41 a | 49.81 ± 0.74 a | 15.73 ± 0.27 a | 33.67 ± 1.30 a | 37.11 ± 1.99 a | |
2021 | NM | 17.57 ± 0.36 c | 53.84 ± 0.52 b | 16.40 ± 0.56 a | 35.80 ± 0.83 a | 40.31 ± 0.38 a |
SM | 18.03 ± 0.26 bc | 54.82 ± 0.41 ab | 16.53 ± 0.31 a | 36.87 ± 0.73 a | 46.25 ± 3.33 a | |
AM | 19.30 ± 0.20 ab | 55.99 ± 0.36 ab | 17.33 ± 0.37 a | 37.47 ± 1.08 a | 43.43 ± 0.37 a | |
AMS | 19.60 ± 0.34 a | 55.29 ± 0.35 a | 17.07 ± 0.38 a | 38.53 ± 1.15 a | 43.75 ± 1.31 a | |
p-value | Treatment (T) | 0.003 | 0.049 | 0.056 | 0.006 | 0.000 |
Year (Y) | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | |
T × Y | 0.270 | 0.285 | 0.702 | 0.221 | 0.010 |
Factors | Simple Correlation Coefficient with Y | Path Coefficient (Direct Action) | Indirect Path Coefficient | ||||
---|---|---|---|---|---|---|---|
X1-Y | X2-Y | X3-Y | X4-Y | X5-Y | |||
X1 | 0.780 ** | 0.168 | - | 0.120 | 0.001 | 0.047 | 0.444 |
X2 | 0.786 ** | 0.167 | 0.121 | - | 0.001 | 0.025 | 0.472 |
X3 | 0.469 ** | 0.002 | 0.070 | 0.091 | - | 0.005 | 0.302 |
X4 | 0.545 ** | 0.064 | 0.122 | 0.065 | 0.001 | - | 0.294 |
X5 | 0.904 ** | 0.630 ** | 0.118 | 0.125 | 0.001 | 0.030 | - |
Year | Treatment | Rainfall in Growth Period/mm | Crop Water Consumption/mm | Biological Yield Water-Use Efficiency/(kg·ha−1·mm−1) | Yield Water-Use Efficiency/(kg·ha−1·mm−1) |
---|---|---|---|---|---|
2018 | NM | 296.1 | 364.26 ± 12.47 a | 25.53 ± 2.74 b | 11.93 ± 1.02 b |
SM | 265.05 ± 10.42 b | 39.03 ± 0.07 ab | 22.86 ± 2.03 a | ||
AM | 323.4 ± 28.7 ab | 53.81 ± 9.37 a | 25.54 ± 4.93 a | ||
AMS | 358.87 ± 12.1 a | 46.29 ± 4.77 ab | 25.02 ± 2.65 a | ||
2019 | NM | 561.4 | 466.61 ± 14.81 b | 48.96 ± 3.65 a | 23.35 ± 1.34 a |
SM | 497.36 ± 11.58 ab | 52.5 ± 1.1 a | 25.17 ± 0.71 a | ||
AM | 544.71 ± 9.49 a | 48.36 ± 2.66 a | 23.32 ± 0.47 a | ||
AMS | 549.74 ± 11.26 a | 50.5 ± 3.42 a | 24.9 ± 0.83 a | ||
2020 | NM | 458.4 | 474.75 ± 9.78 b | 32.73 ± 1.44 b | 17.75 ± 0.86 c |
SM | 411.82 ± 9.05 c | 46.7 ± 1.87 a | 24.23 ± 0.87 ab | ||
AM | 522.85 ± 10.24 a | 43.95 ± 3.15 a | 22.12 ± 1.45 b | ||
AMS | 496.84 ± 9.39 ab | 50.89 ± 1.63 a | 26.24 ± 0.97 a | ||
2021 | NM | 548.5 | 514.02 ± 13.12 ab | 49.19 ± 1.76 b | 26.71 ± 0.97 b |
SM | 477.82 ± 11.24 b | 60.18 ± 1.64 a | 31.26 ± 0.92 a | ||
AM | 550.59 ± 9.48 a | 56.38 ± 2.04 ab | 28.46 ± 0.8 ab | ||
AMS | 531.17 ± 12.19 a | 57.34 ± 4.7 ab | 30.93 ± 1.41 a | ||
p-value | Treatment (T) | - | 0.000 | 0.000 | 0.000 |
Year (Y) | 0.000 | 0.000 | 0.000 | ||
T×Y | 0.001 | 0.021 | 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lou, Y.; Zhang, X.; Zhang, S.; Li, N.; Zhao, Y.; Bai, W.; Sun, Z.; Zhang, Z. Effects of Straw Input on the Yield and Water-Use Efficiency of Spring Maize in Film-Mulched Farmland. Agriculture 2024, 14, 1803. https://doi.org/10.3390/agriculture14101803
Lou Y, Zhang X, Zhang S, Li N, Zhao Y, Bai W, Sun Z, Zhang Z. Effects of Straw Input on the Yield and Water-Use Efficiency of Spring Maize in Film-Mulched Farmland. Agriculture. 2024; 14(10):1803. https://doi.org/10.3390/agriculture14101803
Chicago/Turabian StyleLou, Yisheng, Xu Zhang, Shiyu Zhang, Na Li, Yidong Zhao, Wei Bai, Zhanxiang Sun, and Zhe Zhang. 2024. "Effects of Straw Input on the Yield and Water-Use Efficiency of Spring Maize in Film-Mulched Farmland" Agriculture 14, no. 10: 1803. https://doi.org/10.3390/agriculture14101803
APA StyleLou, Y., Zhang, X., Zhang, S., Li, N., Zhao, Y., Bai, W., Sun, Z., & Zhang, Z. (2024). Effects of Straw Input on the Yield and Water-Use Efficiency of Spring Maize in Film-Mulched Farmland. Agriculture, 14(10), 1803. https://doi.org/10.3390/agriculture14101803