The Relationship between the Density of Winter Canola Stand and Weed Vegetation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Canola Cultivation Technology
2.3. Evaluation of Weed Infestation
2.4. Statistical Data Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Yin, Y. Analysis and strategy for oil crop industry in China. Chin. J. Oil Crop Sci. 2014, 36, 414–421. [Google Scholar] [CrossRef]
- Ji, C.; Zhai, Y.; Zhang, T.; Shen, X.; Bai, Y.; Hong, J. Carbon, energy and water footprints analysis of rapeseed oil production: A case study in China. J. Environ. Manag. 2021, 287, 112359. [Google Scholar] [CrossRef]
- Lemerle, D.; Luckett, D.J.; Wu, H.; Widderick, M.J. Agronomic interventions for weed management in canola (Brassica napus L.)—A review. Crop Prot. 2017, 95, 69–73. [Google Scholar] [CrossRef]
- Nelson, M.N.; Nesi, N.; Barrero, J.M.; Fletcher, A.L.; Greaves, I.K.; Hughes, T.; Laperche, A.; Snowdon, R.; Rebetzke, G.J.; Kirkegaard, J.A. Strategies to improve field establishment of canola: A review. Adv. Agron. 2022, 175, 133–177. [Google Scholar] [CrossRef]
- Galon, L.; Concenço, G.; Agazzi, L.R.; Nonemacher, F.; Melo, T.S.; da Silva, L.B.X.; Melo, S.T.; Perin, G.F.; Aspiazú, I. Competitive ability of canola (Brassica napus var. oleifera) hybrids with black oat (Avena strigosa) in a subtropical environment. Rev. Fac. Cienc. Agrar. UNCuyo 2021, 53, 119–131. [Google Scholar] [CrossRef]
- Ozer, H. Sowing date and nitrogen rate effects on growth, yield and yield components of two summer rapeseed cultivars. Eur. J. Agron. 2003, 19, 453–463. [Google Scholar] [CrossRef]
- Weymann, W.; Böttcher, U.; Sieling, K.; Kage, H. Effects of weather conditions during different growth phases on yield formation of winter oilseed rape. Field Crops Res. 2015, 173, 41–48. [Google Scholar] [CrossRef]
- Kirkegaard, J.; Lilley, J.; Brill, R.; Sprague, S.; Fettell, N.; Pengilley, G. Re-evaluating sowing time of spring canola (Brassica napus L.) in south-eastern Australia—How early is too early? Crop Pasture Sci. 2016, 67, 381–396. [Google Scholar] [CrossRef]
- Al-Doori, S.A.M. A study of the importance of sowing dates and plant density affecting some rapeseed cultivars (Brassica napus L.). Coll. Basic Educ. Res. J. 2011, 11, 615–632. [Google Scholar]
- Vincze, E. The effect of sowing date and plant density on yield elements of different winter oilseed rape (Brassica napus var. napus f. biennis L.) genotypes. Columella J. Agric. Environ. Sci. 2017, 4, 21–25. [Google Scholar] [CrossRef]
- Gusta, L.; Johnson, E.; Nesbitt, N.; Kirkland, K. Effect of seeding date on canola seed quality and seed vigour. Can. J. Plant Sci. 2004, 84, 463–471. [Google Scholar] [CrossRef]
- Kirkegaard, J.A.; Lilley, J.M.; Brill, R.D.; Ware, A.H.; Walela, C.K. The critical period for yield and quality determination in canola (Brassica napus L.). Field Crops Res. 2018, 222, 180–188. [Google Scholar] [CrossRef]
- Sonjeková, M. Survey of the Occurrence and Distribution of Weeds in the Czech Republic in 2012 [Průzkum Výskytu a Rozšíření Plevelů v ČR v Roce 2012], 1st ed.; State Plant Medicinal Administration: Brno, Czech Republic, 2013; p. 31. (In Czech) [Google Scholar]
- Zand, E.; Beckie, H.J. Competitive ability of hybrid and open-pollinated canola (Brassica napus) with wild oat (Avena fatua). Can. J. Plant Sci. 2002, 82, 473–480. [Google Scholar] [CrossRef]
- Harker, K.N.; Clayton, G.W.; Blackshaw, R.E.; O’Donovan, J.T.; Stevenson, F.C. Seeding rate, herbicide timing and competitive hybrids contribute to integrated weed management in canola (Brassica napus). Can. J. Plant Sci. 2003, 83, 433–440. [Google Scholar] [CrossRef]
- Beckie, H.J.; Johnson, E.N.; Blackshaw, R.E.; Gan, Y. Weed suppression by canola and mustard cultivars. Weed Technol. 2008, 22, 182–185. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Pratley, J.E.; An, M.; Luckett, D.J.; Lemerle, D. Canola interference for weed control. Springer Sci. Rev. 2014, 2, 63–74. [Google Scholar] [CrossRef]
- Vann, R.A.; Reberg-Horton, S.C.; Brinton, C.M. Row spacing and seeding rate effects on canola population, weed competition, and yield in winter organic canola production. Agron. J. 2016, 108, 2425–2432. [Google Scholar] [CrossRef]
- Griesh, M.; Yakout, G. Effect of plant population density and nitrogen fertilization on yield and yield components of some white and yellow maize hybrids under drip irrigation system in sandy soil. In Plant Nutrition; Springer: Berlin/Heidelberg, Germany, 2001; pp. 810–811. [Google Scholar] [CrossRef]
- Guan, C.; Chen, S. Investigation on planting density of double low rapeseed “Xiangyou 15”. Crop Res. 2003, 17, 136–137. [Google Scholar] [CrossRef]
- Sandhu, R.; Irmak, S. Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates and densities under irrigated and rainfed conditions. Agric. Water Manag. 2019, 224, 105753. [Google Scholar] [CrossRef]
- Lemerle, D.; Luckett, D.J.; Lockley, P.; Koetz, E.; Wu, H. Competitive ability of Australian canola (Brassica napus) genotypes for weed management. Crop Pasture Sci. 2014, 65, 1300–1310. [Google Scholar] [CrossRef]
- Clements, D.R.; Jones, V.L. Ten Ways That Weed Evolution Defies Human Management Efforts Amidst a Changing Climate. Agronomy 2021, 11, 284. [Google Scholar] [CrossRef]
- Tonev, T.; Mitkov, A. Chemical control of weeds in major field crops. Farming Plus 2015, 2, 33–44. [Google Scholar]
- Deligios, P.A.; Carboni, G.; Farci, R.; Solinas, S.; Ledda, L. Low-input herbicide management: Effects on rapeseed production and profitability. Sustainability 2018, 10, 2258. [Google Scholar] [CrossRef]
- Jankowski, K.J. Winter and spring oilseed rape. In Crop Production; Kotecki, A., Ed.; Wrocław University of Environmental and Life Sciences: Wrocław, Poland, 2020; Volume 3, pp. 305–383. (In Polish) [Google Scholar]
- Lemerle, D.; Luckett, D.J.; Koetz, E.A.; Potter, T.; Wu, H. Seeding rate and cultivar effects on canola (Brassica napus) competition with volunteer wheat (Triticum aestivum). Crop Pasture Sci. 2016, 67, 857–863. [Google Scholar] [CrossRef]
- Gawęda, D.; Haliniarz, M. The Yield and Weed Infestation of Winter Oilseed Rape (Brassica napus L. ssp. oleifera Metzg) in Two Tillage Systems. Agriculture 2022, 12, 563. [Google Scholar] [CrossRef]
- Plaza, E.H.; Navarrete, L.; González-Andújar, J.L. Intensity of soil disturbance shapes response trait diversity of weed communities: The long-term effects of different tillage systems. Agric. Ecosys. Environ. 2015, 207, 101–108. [Google Scholar] [CrossRef]
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed dynamics and conservation agriculture principles: A review. Field Crops Res. 2015, 183, 56–68. [Google Scholar] [CrossRef]
- Małecka-Jankowiak, I.; Blecharczyk, A.; Sawinska, Z.; Piechota, T.; Waniorek, B. Impact of crop sequence and tillage system on weed infestation of winter wheat. Fragm. Agronom. 2015, 32, 54–63. [Google Scholar]
- Gawęda, D.; Haliniarz, M.; Cierpiała, R.; Klusek, I. Yield, Weed infestation and seed quality of soybean (Glycine max (L.) Merr.) under different tillage systems. Tarim Bilim. Derg. 2017, 23, 268–275. [Google Scholar]
- Gawęda, D.; Haliniarz, M.; Bronowicka-Mielniczuk, U.; Łukasz, J. Weed Infestation and Health of the Soybean Crop Depending on Cropping System and Tillage System. Agriculture 2020, 10, 208. [Google Scholar] [CrossRef]
- Chovancová, S.; Neudert, L.; Winkler, J. The efect of three soil tillage treatments on weed infestation in forage maize. Acta Agrobot. 2019, 72, 1756. [Google Scholar] [CrossRef]
- Brozović, B.; Jug, I.; Ðurdevi’c, B.; Ravli’c, M.; Vukadinovi´c, V.; Rojnica, I.; Jug, D. Initial Weed and Maize Response to Conservation Tillage and Liming in Different Agroecological Conditions. Agronomy 2023, 13, 1116. [Google Scholar] [CrossRef]
- Winkler, J.; Dvořák, J.; Hosa, J.; Martínez Barroso, P.; Vaverková, M.D. Impact of Conservation Tillage Technologies on the Biological Relevance of Weeds. Land 2023, 12, 121. [Google Scholar] [CrossRef]
- Santín-Montanyá, M.I.; Martín-Lammerding, D.; Walter, I.; Zambrana, E.; Tenorio, J.L. Effects of tillage, crop systems and fertilization on weed abundance and diversity in 4-year dry land winter wheat. Eur. J Agron. 2013, 48, 43–49. [Google Scholar] [CrossRef]
- Romaneckas, K.; Kimbirauskienė, R.; Sinkevičienė, A.; Jaskulska, I.; Buragienė, S.; Adamavičienė, A.; Šarauskis, E. Weed Diversity, Abundance, and Seedbank in Differently Tilled Faba Bean (Vicia faba L.) Cultivations. Agronomy 2021, 11, 529. [Google Scholar] [CrossRef]
- Ruisi, P.; Frangipane, B.; Amato, G.; Badagliacca, G.; di Miceli, G.; Plaia, A.; Giambalvo, D. Weed seedbank size and composition in a long-term tillage and crop sequence experiment. Weed Res. 2015, 55, 320–328. [Google Scholar] [CrossRef]
- Chovancová, S.; Illek, F.; Winkler, J. The effect of three tillage treatments on weed infestation in maize monoculture. Pak. J. Bot. 2020, 52, 697–701. [Google Scholar] [CrossRef]
- Kotlánová, B.; Hledík, P.; Hudec, S.; Martínez Barroso, P.; Vaverková, M.D.; Jiroušek, M.; Winkler, J. The Influence of Sugar Beet Cultivation Technologies on the Intensity and Species Biodiversity of Weeds. Agronomy 2024, 14, 390. [Google Scholar] [CrossRef]
- Mahmoodi, S.; Rahimi, A. The critical period of weed control in corn in Birjand region, Iran. Int. J. Plant Prod. 2009, 3, 91–96. [Google Scholar]
- Mohler, C.L.; Frisch, J.C.; McCulloch, C.E. Vertical movement of weed seed surrogates by tillage implements and natural processes. Soil Tillage Res. 2006, 86, 110–122. [Google Scholar] [CrossRef]
- Peigné, J.; Ball, B.C.; Roger-Estrade, J.; David, C. Is conservation tillage suitable for organic farming? Rev. Soil Use Manag. 2007, 23, 129–144. [Google Scholar] [CrossRef]
- Stancevičius, A.; Špokienė, N.; Jodaugienė, D.; Trečiokas, K.; Raudonius, S. Impact of reduced soil tillage on crop weedinesss. Proc. Lith. Acad. Agric. 2002, 55, 50–58. (In Lithuanian) [Google Scholar]
- Winkler, J.; Kopta, T.; Ferby, V.; Neudert, L.; Vaverková, M.D. Effect of Tillage Technology Systems for Seed Germination Rate in a Laboratory Tests. Environments 2022, 9, 13. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Sokólski, M.; Szatkowski, A.; Załuski, D. The Effects of Tillage Systems on the Management of Agronomic Factors in Winter Oilseed Rape Cultivation: A Case Study in North-Eastern Poland. Agronomy 2024, 14, 437. [Google Scholar] [CrossRef]
- Franek, M. Reacting of six winter oilseed rape cultivars to herbicides applied post sowing and post emergence. Rośliny Oleiste Oilseed Crops 2001, 22, 91–96. (In Polish) [Google Scholar]
- Hamzei, J.; Nasab, A.D.M.; Khoie, F.R.; Javanshir, A.; Moghaddam, M. Critical period of weed control in three winter oilseed rape (Brassica napus L.) cultivars. Turk. J. Agric. For. 2007, 31, 83–90. [Google Scholar]
- Pacanoski, Z. Application time and herbicide rate effects on weeds in oilseed rape (Brassica napus var. oleifera). Herbologia 2014, 14, 33–45. [Google Scholar] [CrossRef]
- Guerrero, I.; Morales, M.B.; Onate, J.J.; Geiger, F.; Berendse, F.; de Snoo, G.; Eggers, S.; Pärt, T.; Bengtsson, J.; Clement, L.W.; et al. Response of ground-nesting farmland birds to agricultural intensificationacross Europe: Landscape and field level management factors. Biol. Conserv. 2012, 152, 74–80. [Google Scholar] [CrossRef]
- Mitra, A.; Chatterjee, C.; Mandal, F.B. Synthetic chemical pesticides and theireffects on birds. Res. J. Environ. Toxicol. 2011, 5, 81–96. [Google Scholar] [CrossRef]
- Cook, R.J. Toward cropping systems that enhance productivity and sustainability. Proc. Natl. Acad. Sci. USA 2006, 103, 18389–18394. [Google Scholar] [CrossRef]
- Winkler, J.; Hledík, P.; Procházková, B. Influence of Crop Rotation on Actual Weed Infestation of Sugar Beet. Listy Cukrov. Řepařské: Odb. Časopis Obor Cukrovka-Cukr-Líh 2015, 131, 162–166. (In Czech) [Google Scholar]
- Bowles, T.M.; Mooshammer, M.; Socolar, Y.; Calderón, F.; Cavigelli, M.A.; Culman, S.W.; Deen, W.; Drury, C.F.; Garcia, A.G.Y.; Gaudin, A.C.M.; et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2020, 2, 284–293. [Google Scholar] [CrossRef]
- Minhas, W.A.; Mumtaz, N.; Ur-Rehman, H.; Farooq, S.; Farooq, M.; Ali, H.M.; Hussain, M. Weed infestation and productivity of wheat crop sown in various cropping systems under conventional and conservation tillage. Front. Plant Sci. 2023, 14, 1176738. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, M.; Hussain, M.; Jabran, K.; Farooq, M.; Farooq, S.; Gašparovič, K.; Barboricova, M.; Aljuaid, B.S.; El-Shehawi, A.M.; Zuan, A.T.K. The Impact of Different Crop Rotations by Weed Management Strategies’ Interactions on Weed Infestation and Productivity of Wheat (Triticum aestivum L.). Agronomy 2021, 11, 2088. [Google Scholar] [CrossRef]
- Ramsdale, B.K.; Kegode, G.O.; Messersmith, C.G.; Nalewaja, J.D.; Nord, C.A. Long-term effects of spring wheat–soybean cropping systems on weed populations. Field Crops Res. 2006, 97, 197–208. [Google Scholar] [CrossRef]
- Neve, P.; Vila-Aiub, M.; Roux, F. Evolutionary-thinking in agricultural weed management. New Phytol. 2009, 184, 783–793. [Google Scholar] [CrossRef]
- Cleland, E.E.; Chiariello, N.R.; Loarie, S.R.; Mooney, H.A.; Field, C.B. Diverse responses of phenology to global changes in a grassland ecosystem. Proc. Natl. Acad. Sci. USA 2006, 103, 13740–13744. [Google Scholar] [CrossRef] [PubMed]
- Franks, S.J.; Sim, S.; Weis, A.E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl. Acad. Sci. USA 2007, 104, 1278–1282. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Pratley, J.E.; Luckett, D.; Lemerle, D.; Wu, H. Weed management in canola (Brassica napus L.): A review of current constraints and future strategies for Australia. Arch. Agron. Soil Sci. 2020, 66, 427–444. [Google Scholar] [CrossRef]
- Travlos, I.; Gazoulis, I.; Simić, M.; Kanatas, P. The Underestimated Role of Cultural Practices in Ecologically Based Weed Management Approaches. In Ecologically-Based Weed Management: Concepts, Challenges, and Limitations; John Wiley & Sons, Inc.: New York, NY, USA, 2023; pp. 75–92. [Google Scholar] [CrossRef]
- Iboyi, J.E.; Mulvaney, M.J.; Balkcom, K.S.; Seepaul, R.; Bashyal, M.; Perondi, D.; Leon, R.G.; Devkota, P.; Small, I.M.; George, S.; et al. Tillage system and seeding rate effects on the performance of Brassica carinata. GCB Bioenergy 2021, 13, 600–617. [Google Scholar] [CrossRef]
- Nosratti, I.; Chauhan, B.S. The Ecological Base of Nonchemical Weed Control. In Ecologically-Based Weed Management: Concepts, Challenges, and Limitations; John Wiley & Sons, Inc.: New York, NY, USA, 2023; pp. 49–74. [Google Scholar] [CrossRef]
- Mwendwa, J.M.; Brown, W.B.; Weston, P.A.; Haque, K.S.; Preston, C.; Weston, L.A. Evaluation of selected commercial oilseed rape cultivars for early vigour, weed suppression and yield in southern New South Wales. Weed Res. 2020, 60, 450–463. [Google Scholar] [CrossRef]
- Lin, G.; Li, H.; Yang, Z.; Ruan, Y.; Liu, C. Pod canopy staggered-layer cultivation increases rapeseed (Brassica napus L.) yield by improving population canopy structure and fully utilizing light-energy resources. Eur. J. Agron. 2024, 158, 127229. [Google Scholar] [CrossRef]
- Scavo, A.; Mauromicale, G. Integrated weed management in herbaceous field crops. Agronomy 2020, 10, 466. [Google Scholar] [CrossRef]
- Anderson, W.K.; Brennan, R.F.; Jayasena, K.W.; Micic, S.; Moore, J.H.; Nordblom, T. Tactical crop management for improved productivity in winter-dominant rainfall regions: A review. Crop Pasture Sci. 2020, 71, 621–644. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; 236p, Available online: https://www.isric.org/sites/default/files/WRB_fourth_edition_2022-12-18.pdf (accessed on 12 June 2024).
- CGS. Geological Map of the Czech Republic, 1:50,000; Czech Geological Society: Prague, Czech Republic, 2018; Available online: https://mapy.geology.cz/geocr50 (accessed on 8 November 2023).
- CGS. Map of Soil Types of the Czech Republic, 1:50,000; Czech Geological Society: Prague, Czech Republic, 2017; Available online: https://mapy.geology.cz/pudy (accessed on 8 November 2023).
- Culek, M. (Ed.) Biogeographical Division of the Czech Republic (Biogeografické členění České Republiky), 1st ed.; Enigma: Prague, Czech Republic, 1996; p. 347. (In Czech) [Google Scholar]
- Kaplan, Z.; Danihelka, J.; Chrtek, J.; Kirschner, J.; Kubát, K.; Štech, M.; Štěpánek, J. (Eds.) Key to the Flora of the Czech Republic [Klíč ke Květeně České Republiky], 2nd ed.; Academia: Prague, Czech Republic, 2019; p. 1168. (In Czech) [Google Scholar]
- Ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0; Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- Vykydalová, L.; Martínez Barroso, P.; Děkanovský, I.; Neoralová, M.; Lumbantobing, Y.R.; Winkler, J. Interactions between Weeds, Pathogen Symptoms and Winter Rapeseed Stand Structure. Agronomy 2024, 14, 2273. [Google Scholar] [CrossRef]
- Vykydalová, L.; Martínez Barroso, P.; Děkanovský, I.; Hrudová, E.; Lumbantobing, Y.R.; Michutová, M.; Winkler, J. The Response of Insects and Weeds within the Crop to Variation in Sowing Density of Canola. Land 2024, 13, 1509. [Google Scholar] [CrossRef]
- Daugovish, O.; Thill, D.C.; Shafii, B. Modeling competition between wild oat (Avena fatua L.) and yellow mustard or canola. Weed Sci. 2003, 51, 102–109. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Beckie, H.J.; Molnar, L.J.; Entz, T.; Moyer, J.R. Combining agronomic practices and herbicides improves weed management in wheat–canola rotations within zero-tillage production systems. Weed Sci. 2005, 53, 528–535. [Google Scholar] [CrossRef]
- Andreasen, C.; Streibig, J.; Haas, H. Soil properties affecting the distribution of 37 weed species in Danish fields. Weed Res. 1991, 31, 181–187. [Google Scholar] [CrossRef]
- Mehrtens, J.; Schulte, M.; Hurle, K. Unkrautflora in Mais—Ergebnisse eines Monitorings in Deutschland. Ges Pfl. 2005, 57, 206–218. [Google Scholar] [CrossRef]
- Myers, R.; Weber, A.; Tellatin, S. Cover Crop Economics: Opportunities to Improve Your Bottom Line in Row Crops; SARE Technical Bulletin; US Department of Agriculture, National Institute of Food and Agriculture: Washington, DC, USA, 2019. Available online: https://www.sare.org/learning-center/bulletins/cover-crop-economics (accessed on 31 January 2023).
- Shaner, D.L.; Beckie, H.J. The future for weed control and technology. Pest Manag. Sci. 2014, 70, 1329–1339. [Google Scholar] [CrossRef] [PubMed]
- Schwabe, S.; Gruber, S.; Claupein, W. Oilseed Rape Yield Performance in the Clearfield® System under Varying Management Intensities. Agronomy 2021, 11, 2551. [Google Scholar] [CrossRef]
- Hanzlik, K.; Gerowitt, B. Occurrence and distribution of important weed species in German winter oilseed rape fields. J Plant Dis Prot. 2012, 119, 107–120. [Google Scholar] [CrossRef]
- Schröder, G. Die Ausbreitung der Raukenarten von den Ruderalstandorten auf die Agrarflächen bereitet im Winterraps, aber zunehmend auch in anderen Kulturen, Probleme bei der Unkrautbekämpfung. Mitt. Biol. Bundesanst. LandForstwirtsch. 1998, 357, 228. [Google Scholar]
- Chao, W.S.; Anderson, J.V.; Li, X.; Gesch, R.W.; Berti, M.T.; Horvath, D.P. Overwintering Camelina and Canola/Rapeseed Show Promise for Improving Integrated Weed Management Approaches in the Upper Midwestern U.S. Plants 2023, 12, 1329. [Google Scholar] [CrossRef]
- Tyler, T.; Herbertsson, L.; Olofsson, J.; Olsson, P.A. Ecological indicator and traits values for swedish vascular plants. Ecol. Indic. 2021, 120, 106923. [Google Scholar] [CrossRef]
- Winkler, J.; Vaverková, M.D.; Havel, L. Anthropogenic life strategy of plants. Anthr. Rev. 2023, 10, 455–462. [Google Scholar] [CrossRef]
Evaluation Date and Weed Control Conditions | Weed Species Growing Only in Sparse Canola Stands | Weed Species with an Indifferent Response | Weed Species Growing Even in Dense Canola Stands |
---|---|---|---|
The first term of evaluation without herbicide treatment | Brassica rapa, Cirsium arvense, Galium aparine, Geranium pusillum, Hordeum vulgare, Chenopodium album, Lamium purpureum, Papaver rhoeas, Phacelia tanacetifolia, Poa annua, Polygonum aviculare, Raphanus raphanistrum, Veronica persica, Viola arvensis | Euphorbia helioscopia, Fumaria officinalis, Chamomilla suaveolens, Polygonum lapathifolia, Thlaspi arvense | Stellaria media, Echinochloa crus-galli, Fagopyrum convolvulus, Phragmites australis, Sinapis alba, Tripleurospermum inodorum, Triticum aestivum, Veronica polita |
The first term of evaluation with herbicide treatment | Geranium pusillum, Hordeum vulgare, Chamomilla suaveolens, Chenopodium album, Lamium purpureum, Phacelia tanacetifolia, Phragmites australis, Polygonum aviculare, Polygonum lapathifolia, Sinapis alba | Brassica rapa, Cirsium arvense, Fagopyrum convolvulus, Fumaria officinalis, Galium aparine, Poa annua, Raphanus raphanistrum, Thlaspi arvense, Triticum aestivum, Stellaria media, Veronica polita | Echinochloa crus-galli, Euphorbia helioscopia, Papaver rhoeas, Tripleurospermum inodorum, Viola arvensis |
The second term of evaluation without herbicide treatment | Galium aparine, Geranium pusillum, Hordeum vulgare, Chamomilla suaveolens, Chenopodium album, Lamium purpureum, Papaver rhoeas, Poa annua, Polygonum aviculare, Thlaspi arvense, Veronica persica, Viola arvensis | Cirsium arvense, Euphorbia helioscopia, Fumaria officinalis, Phacelia tanacetifolia, Polygonum lapathifolia, Veronica polita | Echinochloa crus-galli, Fagopyrum convolvulus, Phragmites australis, Sinapis alba, Tripleurospermum inodorum, Triticum aestivum, Stellaria media (SteMedi) |
The second term of evaluation with herbicide treatment | Fumaria officinalis, Galium aparine, Hordeum vulgare, Chamomilla suaveolens, Chenopodium album, Papaver rhoeas, Phacelia tanacetifolia, Polygonum aviculare | Cirsium arvense, Geranium pusillum, Veronica polita | Euphorbia helioscopia, Fagopyrum convolvulus, Lamium purpureum, Phragmites australis, Poa annua, Polygonum lapathifolia, Thlaspi arvense, Tripleurospermum inodorum, Triticum aestivum, Stellaria media, Viola arvensis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vykydalová, L.; Kubík, T.J.; Martínez Barroso, P.; Děkanovský, I.; Winkler, J. The Relationship between the Density of Winter Canola Stand and Weed Vegetation. Agriculture 2024, 14, 1767. https://doi.org/10.3390/agriculture14101767
Vykydalová L, Kubík TJ, Martínez Barroso P, Děkanovský I, Winkler J. The Relationship between the Density of Winter Canola Stand and Weed Vegetation. Agriculture. 2024; 14(10):1767. https://doi.org/10.3390/agriculture14101767
Chicago/Turabian StyleVykydalová, Lucie, Tomáš Jiří Kubík, Petra Martínez Barroso, Igor Děkanovský, and Jan Winkler. 2024. "The Relationship between the Density of Winter Canola Stand and Weed Vegetation" Agriculture 14, no. 10: 1767. https://doi.org/10.3390/agriculture14101767
APA StyleVykydalová, L., Kubík, T. J., Martínez Barroso, P., Děkanovský, I., & Winkler, J. (2024). The Relationship between the Density of Winter Canola Stand and Weed Vegetation. Agriculture, 14(10), 1767. https://doi.org/10.3390/agriculture14101767