Comparative Evaluation of the Phytochemical Composition of Fruits of Ten Haskap Berry (Lonicera caerulea var. kamtschatica Sevast.) Cultivars Grown in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Plant Material
2.3. Preparation of Extract
2.4. Assessment of Physicochemical Properties
2.5. Phenolic Composition by UV–VIS Spectrophotometry and UPLC-PDA-MS/MS
2.6. Determination of Antioxidant Activity
2.6.1. ABTS•+ Radical Scavenging Activity
2.6.2. Determination of Copper Ion Reduction
2.6.3. Superoxide Radical Scavenging Activity Assay
2.6.4. Hydroxyl Radical Scavenging Activity Assay
2.7. Cell Viability Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Content of Polyphenolic Compounds
3.3. Polyphenol Profiles
3.4. Antioxidant Activity
3.5. Cell Viability
3.6. Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gołba, M.; Sokół-Łętowska, A.; Kucharska, A.Z. Health Properties and Composition of Honeysuckle Berry Lonicera caerulea L. An Update on Recent Studies. Molecules 2020, 25, 749. [Google Scholar] [CrossRef] [PubMed]
- Plekhanova, M. Blue Honeysuckle (Lonicera caerulea L.)—A New Commercial Berry Crop for Temperate Climate: Genetic Resources and Breeding. Acta Hortic. 2000, 538, 159–164. [Google Scholar] [CrossRef]
- Wojdyło, A.; Jáuregui, P.N.N.; Carbonell-Barrachina, Á.A.; Oszmiański, J.; Golis, T. Variability of Phytochemical Properties and Content of Bioactive Compounds in Lonicera caerulea L. var. kamtschatica Berries. J. Agric. Food Chem. 2013, 61, 12072–12084. [Google Scholar] [CrossRef] [PubMed]
- Rupasinghe, H.P.V.; Arumuggam, N.; Amararathna, M.; De Silva, A.B.K.H. The Potential Health Benefits of Haskap (Lonicera caerulea L.): Role of Cyanidin-3-O-Glucoside. J. Funct. Foods 2018, 44, 24–39. [Google Scholar] [CrossRef]
- Khattab, R.; Ghanem, A.; Brooks, M.S.-L. Stability of Haskap Berry (Lonicera caerulea L.) Anthocyanins at Different Storage and Processing Conditions. J. Food Res. 2016, 5, 67. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdyło, A.; Lachowicz, S. Effect of Dried Powder Preparation Process on Polyphenolic Content and Antioxidant Activity of Blue Honeysuckle Berries (Lonicera caerulea L. var. kamtschatica). LWT—Food Sci. Technol. 2016, 67, 214–222. [Google Scholar] [CrossRef]
- Kucharska, A.; Sokół-Łętowska, A.; Oszmiański, J.; Piórecki, N.; Fecka, I. Iridoids, Phenolic Compounds and Antioxidant Activity of Edible Honeysuckle Berries (Lonicera caerulea var. kamtschatica Sevast.). Molecules 2017, 22, 405. [Google Scholar] [CrossRef]
- Senica, M.; Bavec, M.; Stampar, F.; Mikulic-Petkovsek, M. Blue Honeysuckle (Lonicera caerulea subsp. edulis (Turcz. Ex Herder) Hultén.) Berries and Changes in Their Ingredients across Different Locations: Changes in Blue Honeysuckle Berry Ingredients across Different Locations. J. Sci. Food Agric. 2018, 98, 3333–3342. [Google Scholar] [CrossRef]
- Senica, M.; Stampar, F.; Mikulic-Petkovsek, M. Different Extraction Processes Affect the Metabolites in Blue Honeysuckle(Loniceracaerulea L. subsp. edulis) Food Products. Turk. J. Agric. 2019, 43, 576–585. [Google Scholar] [CrossRef]
- Svarcova, I.; Heinrich, J.; Valentova, K. Berry Fruits as a Source of Biologically Active Compounds: The Case of Lonicera Caerulea. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2007, 151, 163–174. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, H.; Yi, J.; Yang, B.; Li, M.; He, D.; Yang, W.; Zhang, Y.; Ni, H. Anti-Tumor Properties of Anthocyanins from Lonicera caerulea ‘Beilei’ Fruit on Human Hepatocellular Carcinoma: In Vitro and in Vivo Study. Biomed. Pharmacother. 2018, 104, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Celli, G.B.; Ghanem, A.; Brooks, M.S.L. Haskap Berries (Lonicera caerulea L.)—A Critical Review of Antioxidant Capacity and Health-Related Studies for Potential Value-Added Products. Food Bioprocess. Technol. 2014, 7, 1541–1554. [Google Scholar] [CrossRef]
- Żurek, N.; Świeca, M.; Kapusta, I. UPLC-ESI-TQD-MS/MS Identification and Antioxidant, Anti-Inflammatory, Anti-Diabetic, Anti-Obesity and Anticancer Properties of Polyphenolic Compounds of Hawthorn Seeds. Plant Foods Hum. Nutr. 2024. [Google Scholar] [CrossRef] [PubMed]
- Żurek, N.; Pawłowska, A.; Kapusta, I. Obtaining Preparations with Increased Content of Bioactive Compounds from Eight Types of Berries. J. Berry Res. 2023, 13, 307–323. [Google Scholar] [CrossRef]
- PN-A-75101-03:1990; Fruit and Vegetable Products. Sample Preparation and Physicochemical Test Methods. Determination of Dry Mass Content by Gravimetric Method. Polish Committee for Standardization (PKN): Warsaw, Poland, 1996. (In Polish)
- PN-EN 12147:2000; Fruit and Vegetable Juices—Determination of Titratable Acidity. Polish Committee for Standardization (PKN): Warsaw, Poland, 2000. (In Polish)
- PN-90/A-75101/08; Fruit and Vegetable Products Sample Preparation and Physicochemical Test Methods. Determination of Total Ash Content and Alkalinity. Polish Committee for Standardization (PKN): Warsaw, Poland, 1996. (In Polish)
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in Antioxidant Effects and Their Relationship to Phytonutrients in Fruits of Sea Buckthorn (Hippophae rhamnoides L.) during Maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef]
- Żurek, N.; Kapusta, I.; Cebulak, T. Impact of Extraction Conditions on Antioxidant Potential of Extracts of Flowers, Leaves and Fruits of Hawthorn (Crataegus × macrocarpa L.). Food Sci. Technol. Qual. 2020, 27, 130–141. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Eisele, T.; Giusti, M.M.; Hach, J.; Hofsommer, H.; Koswig, S.; Krueger, D.A.; Kupina, S.; et al. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Esin Karademir, S.; Erçağ, E. The Cupric Ion Reducing Antioxidant Capacity and Polyphenolic Content of Some Herbal Teas. Int. J. Food Sci. Nutr. 2006, 57, 292–304. [Google Scholar] [CrossRef]
- Robak, J.; Gryglewski, R.J. Flavonoids Are Scavengers of Superoxide Anions. Biochem. Pharmacol. 1988, 37, 837–841. [Google Scholar] [CrossRef]
- Pawłowska, A.M.; Żurek, N.; Kapusta, I.; De Leo, M.; Braca, A. Antioxidant and Antiproliferative Activities of Phenolic Extracts of Eriobotrya japonica (Thunb.) Lindl. Fruits and Leaves. Plants 2023, 12, 3221. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C.; Aruoma, O.I. The Deoxyribose Method: A Simple “Test-Tube” Assay for Determination of Rate Constants for Reactions of Hydroxyl Radicals. Anal. Biochem. 1987, 165, 215–219. [Google Scholar] [CrossRef]
- Żurek, N.; Pawłowska, A.M.; Pycia, K.; Potocki, L.; Kapusta, I.T. Quantitative and Qualitative Determination of Polyphenolic Compounds in Castanea Sativa Leaves and Evaluation of Their Biological Activities. Appl. Sci. 2024, 14, 3859. [Google Scholar] [CrossRef]
- Żurek, N.; Świeca, M.; Pawłowska, A.; Kapusta, I.T. Microencapsulation of Blueberry (Vaccinium myrtillus L.) Extracts via Ionotropic Gelation: In Vitro Assessment of Bioavailability of Phenolic Compounds and Their Activity against Colon Cancer Cells. Appl. Sci. 2024, 14, 7842. [Google Scholar] [CrossRef]
- Ochmian, I.D.; Skupien, K.; Grajkowski, J.; Smolik, M.; Ostrowska, K. Chemical Composition and Physical Characteristics of Fruits of Two Cultivars of Blue Honeysuckle (Lonicera caerulea L.) in Relation to Their Degree of Maturity and Harvest Date. Not. Bot. Hort. Agrobot. 2012, 40, 155. [Google Scholar] [CrossRef]
- Gerbrandt, E.M.; Bors, R.H.; Meyer, D.; Wilen, R.; Chibbar, R.N. Fruit Quality of Japanese, Kuril and Russian Blue Honeysuckle (Lonicera caerulea L.) Germplasm Compared to Blueberry, Raspberry and Strawberry. Euphytica 2020, 216, 59. [Google Scholar] [CrossRef]
- Auzanneau, N.; Weber, P.; Kosińska-Cagnazzo, A.; Andlauer, W. Bioactive Compounds and Antioxidant Capacity of Lonicera caerulea Berries: Comparison of Seven Cultivars over Three Harvesting Years. J. Food Compos. Anal. 2018, 66, 81–89. [Google Scholar] [CrossRef]
- Pažereckaitė, A.; Jasutienė, I.; Šarkinas, A.; Česonienė, L. Antimicrobial Activity and Composition of Different Cultivars of Honeysuckle Berry Lonicera caerulea L. Biol. Life Sci. Forum 2021, 4, 71. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef]
- Jahanban-Esfahlan, A.; Ostadrahimi, A.; Tabibiazar, M.; Amarowicz, R. A Comparative Review on the Extraction, Antioxidant Content and Antioxidant Potential of Different Parts of Walnut (Juglans regia L.) Fruit and Tree. Molecules 2019, 24, 2133. [Google Scholar] [CrossRef]
- Rupasinghe, H.; Boehm, M.; Sekhon-Loodu, S.; Parmar, I.; Bors, B.; Jamieson, A. Anti-Inflammatory Activity of Haskap Cultivars Is Polyphenols-Dependent. Biomolecules 2015, 5, 1079–1098. [Google Scholar] [CrossRef] [PubMed]
- Gawroński, J.; Żebrowska, J.; Pabich, M.; Jackowska, I.; Kowalczyk, K.; Dyduch-Siemińska, M. Phytochemical Characterization of Blue Honeysuckle in Relation to the Genotypic Diversity of Lonicera sp. Appl. Sci. 2020, 10, 6545. [Google Scholar] [CrossRef]
- Orsavová, J.; Sytařová, I.; Mlček, J.; Mišurcová, L. Phenolic Compounds, Vitamins C and E and Antioxidant Activity of Edible Honeysuckle Berries (Lonicera caerulea L. var. kamtschatica Pojark) in Relation to Their Origin. Antioxidants 2022, 11, 433. [Google Scholar] [CrossRef] [PubMed]
- Khattab, R.; Brooks, M.S.-L.; Ghanem, A. Phenolic Analyses of Haskap Berries (Lonicera caerulea L.): Spectrophotometry Versus High Performance Liquid Chromatography. Int. J. Food Prop. 2016, 19, 1708–1725. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Yu, L.J.; Bhullar, K.S.; Bors, B. Short Communication: Haskap (Lonicera caerulea): A New Berry Crop with High Antioxidant Capacity. Can. J. Plant Sci. 2012, 92, 1311–1317. [Google Scholar] [CrossRef]
- Rop, O.; Řezníček, V.; Mlček, J.; Juríková, T.; Balík, J.; Sochor, J.; Kramářová, D. Antioxidant and Radical Oxygen Species Scavenging Activities of 12 Cultivars of Blue Honeysuckle Fruit. Hortic. Sci. 2011, 38, 63–70. [Google Scholar] [CrossRef]
- Dziedzic, E.; Błaszczyk, J.; Bieniasz, M.; Dziadek, K.; Kopeć, A. Effect of Modified (MAP) and Controlled Atmosphere (CA) Storage on the Quality and Bioactive Compounds of Blue Honeysuckle Fruits (Lonicera caerulea L.). Sci. Hortic. 2020, 265, 109226. [Google Scholar] [CrossRef]
- Česonienė, L.; Labokas, J.; Jasutienė, I.; Šarkinas, A.; Kaškonienė, V.; Kaškonas, P.; Kazernavičiūtė, R.; Pažereckaitė, A.; Daubaras, R. Bioactive Compounds, Antioxidant, and Antibacterial Properties of Lonicera caerulea Berries: Evaluation of 11 Cultivars. Plants 2021, 10, 624. [Google Scholar] [CrossRef]
- De Silva, A.B.K.H.; Rupasinghe, H.P.V. Polyphenols Composition and Anti-Diabetic Properties in Vitro of Haskap (Lonicera caerulea L.) Berries in Relation to Cultivar and Harvesting Date. J. Food Compos. Anal. 2020, 88, 103402. [Google Scholar] [CrossRef]
- Kang, H.-J.; Ko, M.-J.; Chung, M.-S. Anthocyanin Structure and pH Dependent Extraction Characteristics from Blueberries (Vaccinium corymbosum) and Chokeberries (Aronia melanocarpa) in Subcritical Water State. Foods 2021, 10, 527. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmiański, J.; Rapak, A.; Ochmian, I. Profile and Content of Phenolic Compounds in Leaves, Flowers, Roots, and Stalks of Sanguisorba Officinalis L. Determined with the LC-DAD-ESI-QTOF-MS/MS Analysis and Their In Vitro Antioxidant, Antidiabetic, Antiproliferative Potency. Pharmaceuticals 2020, 13, 191. [Google Scholar] [CrossRef] [PubMed]
- Raudonė, L.; Liaudanskas, M.; Vilkickytė, G.; Kviklys, D.; Žvikas, V.; Viškelis, J.; Viškelis, P. Phenolic Profiles, Antioxidant Activity and Phenotypic Characterization of Lonicera caerulea L. Berries, Cultivated in Lithuania. Antioxidants 2021, 10, 115. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xie, X.; Ran, X.; Chou, S.; Jiao, X.; Li, E.; Zhang, Q.; Meng, X.; Li, B. Comparative Analysis of the Polyphenols Profiles and the Antioxidant and Cytotoxicity Properties of Various Blue Honeysuckle Varieties. Open Chem. 2018, 16, 637–646. [Google Scholar] [CrossRef]
- Jurikova, T.; Rop, O.; Mlcek, J.; Sochor, J.; Balla, S.; Szekeres, L.; Hegedusova, A.; Hubalek, J.; Adam, V.; Kizek, R. Phenolic Profile of Edible Honeysuckle Berries (Genus lonicera) and Their Biological Effects. Molecules 2011, 17, 61–79. [Google Scholar] [CrossRef]
- Treml, J.; Šmejkal, K. Flavonoids as Potent Scavengers of Hydroxyl Radicals. Comp. Rev. Food Sci. Food Safe 2016, 15, 720–738. [Google Scholar] [CrossRef]
- Podsędek, A.; Majewska, I.; Redzynia, M.; Sosnowska, D.; Koziołkiewicz, M. In Vitro Inhibitory Effect on Digestive Enzymes and Antioxidant Potential of Commonly Consumed Fruits. J. Agric. Food Chem. 2014, 62, 4610–4617. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Z.; Cheng, C.; Yao, L.; Wang, L.; Lu, W.; Yang, X.; Ma, F. In-Vitro Free Radical Scavenging Activities of Anthocyanins from Three Berries. J. Med. Plants Res. 2012, 6, 101–107. [Google Scholar] [CrossRef]
- Zdařilová, A.; Svobodová, A.R.; Chytilová, K.; Šimánek, V.; Ulrichová, J. Polyphenolic Fraction of Lonicera caerulea L. Fruits Reduces Oxidative Stress and Inflammatory Markers Induced by Lipopolysaccharide in Gingival Fibroblasts. Food Chem. Toxicol. 2010, 48, 1555–1561. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Zang, H.; Yin, Z.; Guan, P.; Yu, C.; Shan, A.; Feng, X. Dietary Pterostilbene Exerts Potential Protective Effects by Regulating Lipid Metabolism and Enhancing Antioxidant Capacity on Liver in Broilers. Anim. Physiol. Nutr. 2024, 108, 921–933. [Google Scholar] [CrossRef]
- Guan, P.; Yu, H.; Wang, S.; Sun, J.; Chai, X.; Sun, X.; Qi, X.; Zhang, R.; Jiao, Y.; Li, Z.; et al. Dietary Rutin Alleviated the Damage by Cold Stress on Inflammation Reaction, Tight Junction Protein and Intestinal Microbial Flora in the Mice Intestine. J. Nutr. Biochem. 2024, 130, 109658. [Google Scholar] [CrossRef]
- Siddiqui, A.J.; Jahan, S.; Singh, R.; Saxena, J.; Ashraf, S.A.; Khan, A.; Choudhary, R.K.; Balakrishnan, S.; Badraoui, R.; Bardakci, F.; et al. Plants in Anticancer Drug Discovery: From Molecular Mechanism to Chemoprevention. BioMed Res. Int. 2022, 2022, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Caprioli, G.; Iannarelli, R.; Innocenti, M.; Bellumori, M.; Fiorini, D.; Sagratini, G.; Vittori, S.; Buccioni, M.; Santinelli, C.; Bramucci, M.; et al. Blue Honeysuckle Fruit (Lonicera caerulea L.) from Eastern Russia: Phenolic Composition, Nutritional Value and Biological Activities of Its Polar Extracts. Food Funct. 2016, 7, 1892–1903. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-S.; Cho, I.J.; Kim, J.W.; Lee, S.-K.; Ku, S.K.; Lee, H.-J. Evaluation of in Vitro Anti-Oxidant and Anti-Inflammatory Activities of Korean and Chinese Lonicera caerulea. Nutr. Res. Pract. 2018, 12, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Amararathna, M.; Hoskin, D.W.; Rupasinghe, H.P.V. Anthocyanin-Rich Haskap (Lonicera caerulea L.) Berry Extracts Reduce Nitrosamine-Induced DNA Damage in Human Normal Lung Epithelial Cells. Food Chem. Toxicol. 2020, 141, 111404. [Google Scholar] [CrossRef]
Cultivar | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Boreal Beauty | Boreal Beast | Boreal Blizzard | Aurora | Honeybee | Vostorg | Jugana | Usłada | Lawina | Sinij Uties | |
Physicochemical properties | ||||||||||
pH | 3.14 ± 0.09 ab | 3.16 ± 0.10 ab | 3.09 ± 0.02 ab | 3.14 ± 0.06 ab | 3.35 ± 0.08 c | 3.04 ± 0.05 a | 3.15 ± 0.08 ab | 3.13 ± 0.07 ab | 3.37 ± 0.06 c | 3.21 ± 0.07 b |
SSC | 12.54 ± 0.39 b | 12.88 ± 0.30 bc | 10.82 ± 0.85 a | 13.46 ± 0.74 cd | 14.38 ± 0.31 e | 11.54 ± 0.35 a | 13.24 ± 0.20 bc | 14.69 ± 0.27 e | 14.07 ± 0.08 de | 13.33 ± 0.06 bcd |
TA | 2.94 ± 0.04 e | 2.13 ± 0.05 a | 3.36 ± 0.04 h | 2.84 ± 0.09 d | 3.03 ± 0.03 f | 3.12 ± 0.03 g | 2.95 ± 0.01 e | 2.54 ± 0.04 b | 2.70 ± 0.01 c | 2.85 ± 0.05 d |
MI | 4.27 ± 0.08 c | 6.04 ± 0.24 f | 3.22 ± 0.28 a | 4.74 ± 0.19 d | 4.75 ± 0.07 d | 3.69 ± 0.14 b | 4.48 ± 0.05 cd | 5.78 ± 0.16 f | 5.22 ± 0.04 e | 4.68 ± 0.07 d |
DM | 13.79 ± 1.69 a | 13.63 ± 0.68 a | 15.45 ± 1.47 ab | 15.25 ± 1.10 ab | 16.94 ± 1.03 b | 15.92 ± 0.70 ab | 15.21 ± 1.02 ab | 14.23 ± 1.81 a | 14.15 ± 0.87 a | 15.08 ± 1.03 ab |
Ash | 0.50 ± 0.02 ab | 0.51 ± 0.08 abc | 0.53 ± 0.06 abc | 0.49 ± 0.01 a | 0.54 ± 0.04 abc | 0.59 ± 0.06 bcd | 0.60 ± 0.02 cd | 0.59 ± 0.08 bcd | 0.63 ± 0.05 d | 0.54 ± 0.04 abc |
Content of polyphenolic compounds | ||||||||||
TPC | 20.90 ± 0.33 a | 45.09 ± 0.21 f | 43.69 ± 0.29 e | 32.13 ± 0.33 b | 42.98 ± 0.33 e | 32.15 ± 0.57 b | 39.37 ± 0.57 d | 35.75 ± 0.33 c | 32.70 ± 0.87 b | 46.76 ± 0.57 g |
TFC | 7.47 ± 0.04 c | 6.56 ± 0.04 a | 8.06 ± 0.03 d | 8.50 ± 0.07 e | 15.86 ± 0.05 j | 8.81 ± 0.04 f | 7.22 ± 0.03 b | 12.61 ± 0.02 i | 12.19 ± 0.04 h | 10.81 ± 0.04 g |
TAC | 14.05 ± 0.16 b | 22.03 ± 0.23 f | 14.26 ± 0.11 b | 18.50 ± 0.02 d | 21.77 ± 0.13 e | 14.11 ± 0.06 b | 13.01 ± 0.39 a | 18.76 ± 0.33 d | 17.27 ± 0.29 c | 18.74 ± 0.15 d |
Antioxidant activity | ||||||||||
ABTS | 42.62 ± 0.53 a | 53.29 ± 0.21 e | 45.12 ± 0.29 b | 49.60 ± 0.08 d | 58.69 ± 0.14 g | 48.35 ± 0.08 c | 43.02 ± 0.24 a | 55.62 ± 0.14 f | 49.94 ± 0.21 d | 53.29 ± 0.08 e |
CUPRAC | 36.52 ± 0.05 a | 48.71 ± 0.05 e | 40.56 ± 0.05 c | 49.95 ± 0.08 f | 53.92 ± 0.10 i | 47.22 ± 0.05 d | 37.53 ± 0.08 b | 51.30 ± 0.08 g | 49.36 ± 0.05 f | 52.37 ± 0.13 h |
O2˙− | 1003.05 ± 0.03 e | 622.27 ± 0.02 b | 760.00 ± 0.01 d | 1149.66 ± 0.05 f | 546.62 ± 0.02 a | 770.25 ± 0.02 d | 651.34 ± 0.02 bc | 683.47 ± 0.01 c | 1458.16 ± 0.06 g | 668.47 ± 0.01 bc |
OH˙ | 1163.00 ± 0.03 e | 703.55 ± 0.01 c | 734.58 ± 0.02 c | 717.85 ± 0.01 c | 639.60 ± 0.02 b | 1297.15 ± 0.04 f | 894.38 ± 0.03 d | 541.22 ± 0.00 a | 1174.06 ± 0.01 e | 652.08 ± 0.01 b |
Cytotoxic activity | ||||||||||
MCF-7 | 610.00 ± 9.12 e | 594.04 ± 6.30 de | 610.34 ± 9.74 e | 575.74 ± 7.99 d | 305.16 ± 3.47 b | 588.63 ± 3.63 de | 675.81 ± 8.67 f | 310.25 ± 3.62 b | 416.42 ± 3.54 c | 244.55 ± 1.25 a |
HT-29 | 299.04 ± 5.31 d | 279.80 ± 1.83 d | 478.16 ± 6.61 f | 395.86 ± 1.00 e | 103.62 ± 4.51 a | 228.86 ± 1.04 c | 290.38 ± 4.32 d | 169.53 ± 3.45 b | 386.72 ± 10.69 e | 158.28 ± 6.32 b |
SK-Mel-28 | 489.20 ± 2.99 b | 634.76 ± 1.14 c | 622.75 ± 1.89 c | >750 | 427.35 ± 1.84 a | >750 | >750 | 464.31 ± 0.52 b | >750 | 649.22 ± 3.20 c |
Compound | Rt | λmax | [M − H] m/z | ||
---|---|---|---|---|---|
min | nm | MS | MS/MS | ||
Anthocyanins | |||||
1 | Cyanidin 3,5-O-diglucoside | 2.23 | 279, 515 | 611 | 449, 287 |
2 | Cyanidin 3-O-glucoside | 2.66 | 279, 514 | 449 | 287 |
3 | Cyanidin 3-O-rutinoside | 2.85 | 279, 515 | 595 | 287 |
4 | Pelargonidin 3-O-glucoside | 3.09 | 278, 504 | 433 | 271 |
5 | Peonidin 3-O-glucoside | 3.35 | 279, 517 | 463 | 301 |
6 | Peonidin 3-O-rutinoside | 3.43 | 279, 517 | 609 | 301 |
Other phenolics | |||||
7 | Neochlorogenic acid | 2.21 | 288sh, 324 | 353 | 191 |
8 | Chlorogenic acid | 2.85 | 288sh, 324 | 353 | 191 |
9 | Procyanidin dimer B-type | 3.01 | 279 | 577 | 289 |
10 | Quercetin 3-O-rutinoside-7-O-rhamnoside | 3.85 | 255, 354 | 755 | 301 |
11 | Quercetin 3-O-pentoside-glucoside I | 4.03 | 255, 355 | 595 | 301 |
12 | Quercetin 3-O-pentoside-glucoside II | 4.18 | 255, 355 | 595 | 301 |
13 | Quercetin 3-O-rutinoside | 4.30 | 255, 355 | 609 | 301 |
14 | Quercetin 3-O-glucoside | 4.51 | 255, 355 | 463 | 301 |
15 | Quercetin 3-O-rhmanoside | 4.66 | 255, 355 | 447 | 301 |
16 | Quercetin 3-O-pentoside | 4.73 | 255, 355 | 433 | 301 |
17 | Kaempferol 3-O-rutinoside | 4.86 | 264, 338 | 593 | 285 |
18 | 3,4-di-O-caffeoyl-quinic acid | 5.00 | 288sh, 324 | 515 | 353 |
19 | Quercetin 3-O-(6″-acetyl)-glucoside | 5.23 | 255, 335 | 505 | 301 |
Cultivar | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Boreal Beauty | Boreal Beast | Boreal Blizzard | Aurora | Honeybee | Vostorg | Jugana | Usłada | Lawina | Sinij Uties | |
1 * | 74.60 ± 1.71 e | 163.42 ± 14.7 c | 51.35 ± 0.03 f | 159.24 ± 1.52 c | 131.94 ± 4.37 d | 258.77 ± 10.62 a | 60.87 ± 0.05 c | 68.85 ± 2.89 c | 76.85 ± 0.01 e | 188.43 ± 3.28 b |
2 | 1753.07 ± 23.10 d | 2033.01 ± 92.57 c | 1746.0 ± 16.61 d | 2009.09 ± 66.60 c | 2696.21 ± 20.4 a | 1894.91 ± 1.41 d | 1856 ± 78.0 d | 2263.33 ± 25.04 b | 2040.56 ± 34.21 c | 2418.93 ± 83.80 a |
3 | 55.90 ± 0.04 c | 161.1 ± 6.28 b | 256.9 ± 8.52 a | 197.53 ± 1.50 a | 272.40 ± 10.1 a | 140.10 ± 5.89 b | 132.45 ± 0.01 b | 297.76 ± 5.00 a | 271.12 ± 9.40 a | 238.28 ± 3.62 a |
4 | 15.30 ± 0.15 b | 13.33 ± 1.94 b | 8.67 ± 0.07 c | 9.93 ± 0.37 c | 21.21 ± 0.86 b | 6.21 ± 0.00 c | 12.13 ± 0.20 b | 26.44 ± 0.92 a | 11.98 ± 0.18 b | 11.55 ± 0.33 b |
5 | 88.80 ± 2.95 c | 107.4 ± 2.24 b | 63.6 ± 2.37 d | 80.91 ± 3.29 c | 102.9 ± 1.26 b | 72.87 ± 1.22 c | 106.4 ± 3.69 b | 125.8 ± 1.88 a | 98.90 ± 2.95 b | 98.90 ± 3.47 b |
6 | 5.86 ± 0.66 c | 7.45 ± 2.05 c | 13.8 ± 0.56 b | 11.98 ± 0.15 b | 12.25 ± 0.67 b | 9.24 ± 0.32 b | 10.56 ± 0.16 b | 22.80 ± 0.68 a | 19.16 ± 0.65 a | 14.03 ± 0.25 b |
7 | 5.37 ± 0.20 c | 5.53 ± 0.84 c | 13.1 ± 0.16 b | 10.83 ± 0.59 b | 13.16 ± 0.17 a | 20.29 ± 0.30 a | 10.01 ± 0.30 b | 10.94 ± 0.37 b | 11.19 ± 0.16 b | 14.18 ± 0.45 b |
8 | 61.20 ± 2.49 d | 113.6 ± 7.37 c | 118.5 ± 6.50 c | 71.64 ± 0.94 d | 187.0 ± 14.9 a | 106.5 ± 3.18 c | 97.34 ± 3.31 c | 131.5 ± 1.86 b | 107.7 ± 2.73 c | 95.53 ± 0.99 d |
9 | 20.50 ± 1.85 c | 26.23 ± 3.63 c | 21.84 ± 0.29 c | 24.72 ± 1.98 c | 40.36 ± 1.66 d | 26.00 ± 0.89 c | 25.53 ± 0.36 c | 33.63 ± 0.85 b | 28.72 ± 0.27 b | 34.92 ± 0.86 b |
10 | 3.18 ± 0.17 c | 3.36 ± 0.18 c | 2.42 ± 0.19 c | 5.19 ± 0.21 b | 1.65 ± 0.00 c | 2.82 ± 0.04 d | 3.81 ± 0.10 c | 7.87 ± 0.07 a | 7.92 ± 0.18 a | 8.41 ± 0.01 a |
11 | 5.63 ± 0.63 d | 8.11 ± 0.97 c | 7.18 ± 0.29 c | 4.73 ± 0.00 d | 8.13 ± 0.34 c | 16.36 ± 0.41 b | 10.91 ± 0.10 b | 14.15 ± 0.33 b | 34.03 ± 0.17 a | 7.30 ± 0.01 c |
12 | 1.83 ± 0.15 c | 1.52 ± 0.14 c | 1.65 ± 0.00 c | 2.06 ± 0.09 c | 1.36 ± 0.00 a | 2.03 ± 0.02 c | 1.74 ± 0.04 c | 2.49 ± 0.01 b | 5.44 ± 0.00 a | 2.73 ± 0.01 b |
13 | 46.60 ± 1.91 c | 57.2 ± 1.48 b | 50.01 ± 2.10 b | 54.81 ± 0.01 b | 59.03 ± 0.99 a | 45.75 ± 1.05 b | 49.20 ± 0.25 b | 63.63 ± 0.04 a | 36.72 ± 0.35 c | 76.11 ± 2.52 a |
14 | 9.21 ± 0.01 b | 8.31 ± 0.53 b | 6.39 ± 0.00 c | 6.80 ± 0.11 c | 18.79 ± 0.65 b | 12.71 ± 0.06 a | 8.43 ± 0.01 b | 15.94 ± 0.15 a | 15.35 ± 0.51 a | 10.20 ± 0.16 b |
15 | 1.51 ± 0.06 c | 1.61 ± 0.21 c | 0.80 ± 0.01 d | 2.71 ± 0.09 b | 3.73 ± 0.06 c | 2.03 ± 0.00 b | 1.35 ± 0.01 c | 4.62 ± 0.15 a | 2.35 ± 0.02 b | 4.05 ± 0.11 a |
16 | 1.38 ± 0.00 c | 1.31 ± 0.14 c | 0.73 ± 0.03 d | 1.92 ± 0.03 c | 1.30 ± 0.04 c | 2.79 ± 0.03 b | 1.22 ± 0.04 c | 2.10 ± 0.02 b | 4.49 ± 0.17 d | 2.92 ± 0.14 b |
17 | 1.90 ± 0.03 a | 1.61 ± 0.58 b | 1.75 ± 0.03 b | 1.07 ± 0.03 d | 1.44 ± 0.05 a | 0.45 ± 0.02 e | 0.85 ± 0.01 e | 2.46 ± 0.09 a | 0.94 ± 0.04 e | 1.47 ± 0.09 a |
18 | 9.31 ± 0.32 d | 10.9 ± 0.87 c | 10.79 ± 0.32 c | 10.94 ± 0.37 c | 20.29 ± 0.29 a | 16.05 ± 0.12 b | 13.86 ± 0.52 c | 14.02 ± 0.57 c | 12.00 ± 0.15 c | 15.90 ± 0.90 b |
19 | 5.17 ± 0.08 b | 4.29 ± 0.87 c | 2.15 ± 0.07 d | 4.37 ± 0.06 c | 4.12 ± 0.10 a | 8.32 ± 0.31 a | 4.95 ± 0.20 c | 4.38 ± 0.05 c | 5.91 ± 0.32 b | 6.32 ± 0.14 a |
Total (μg/g) | 2166.25 ± 17.30 c | 2729.26 ± 96.71 b | 2377.58 ± 38.18 c | 2670.34 ± 73.30 b | 3597.02 ± 52.50 a | 2643.22 ± 25.76 b | 2407.56 ± 78.75 c | 3112.32 ± 40.88 a | 2790.70 ± 52.46 b | 3248.90 ± 77.20 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żurek, N.; Pluta, S.; Seliga, Ł.; Lachowicz-Wiśniewska, S.; Kapusta, I.T. Comparative Evaluation of the Phytochemical Composition of Fruits of Ten Haskap Berry (Lonicera caerulea var. kamtschatica Sevast.) Cultivars Grown in Poland. Agriculture 2024, 14, 1734. https://doi.org/10.3390/agriculture14101734
Żurek N, Pluta S, Seliga Ł, Lachowicz-Wiśniewska S, Kapusta IT. Comparative Evaluation of the Phytochemical Composition of Fruits of Ten Haskap Berry (Lonicera caerulea var. kamtschatica Sevast.) Cultivars Grown in Poland. Agriculture. 2024; 14(10):1734. https://doi.org/10.3390/agriculture14101734
Chicago/Turabian StyleŻurek, Natalia, Stanisław Pluta, Łukasz Seliga, Sabina Lachowicz-Wiśniewska, and Ireneusz Tomasz Kapusta. 2024. "Comparative Evaluation of the Phytochemical Composition of Fruits of Ten Haskap Berry (Lonicera caerulea var. kamtschatica Sevast.) Cultivars Grown in Poland" Agriculture 14, no. 10: 1734. https://doi.org/10.3390/agriculture14101734