A First View on the Competencies and Training Needs of Farmers Working with and Researchers Working on Precision Agriculture Technologies
Abstract
:1. Introduction
2. Methods
2.1. Participants and Research Design
2.2. Instruments Used
- Understanding farmers’ problems and needs.
- Assessing the compatibility of precision agriculture technologies to different types of farming.
- Reflecting on the impacts of precision agriculture.
- Visioning the future of farming and their roles in shaping it.
- Promoting the responsible exploitation of precision agriculture technologies.
2.3. Data Analysis Techniques
3. Results
3.1. Farmers
3.2. Researchers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robert, P. Characterization of soil conditions at the field level for soil specific management. Geoderma 1993, 60, 57–72. [Google Scholar] [CrossRef]
- Wallace, A. High-precision agriculture is an excellent tool for conservation of natural resources. Commun. Soil Sci. Plant Anal. 1994, 25, 45–49. [Google Scholar] [CrossRef]
- Karunathilake, E.M.B.M.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Tan, X.J.; Cheor, W.L.; Yeo, K.S.; Leow, W.Z. Expert systems in oil palm precision agriculture: A decade systematic review. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 1569–1594. [Google Scholar] [CrossRef]
- Duncan, E.; Glaros, A.; Ross, D.Z.; Nost, E. New but for whom? Discourses of innovation in precision agriculture. Agric. Hum. Values 2021, 38, 1181–1199. [Google Scholar] [CrossRef] [PubMed]
- Lowenberg-DeBoer, J.; Erickson, B. Setting the record straight on precision agriculture adoption. Agron. J. 2019, 111, 1552–1569. [Google Scholar] [CrossRef]
- Monzon, J.P.; Calviño, P.A.; Sadras, V.O.; Zubiaurre, J.B.; Andrade, F.H. Precision agriculture based on crop physiological principles improves whole-farm yield and profit: A case study. Eur. J. Agron. 2018, 99, 62–71. [Google Scholar] [CrossRef]
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef]
- McBratney, A.; Whelan, B.; Ancev, T.; Bouma, J. Future directions of precision agriculture. Precis. Agric. 2005, 6, 7–23. [Google Scholar] [CrossRef]
- Plant, R.; Pettygrove, G.; Reinert, W. Precision agriculture can increase profits and limit environmental impacts. Calif. Agric. 2000, 54, 66–71. [Google Scholar] [CrossRef]
- Yarashynskaya, A.; Prus, P. Precision agriculture implementation factors and adoption potential: The case study of Polish agriculture. Agronomy 2022, 12, 2226. [Google Scholar] [CrossRef]
- Song, C.; Zhou, Z.; Zang, Y.; Zhao, L.; Yang, W.; Luo, X.; Jiang, R.; Ming, R.; Zang, Y.; Zi, L.; et al. Variable-rate control system for UAV-based granular fertilizer spreader. Comput. Electron. Agric. 2021, 180, 105832. [Google Scholar] [CrossRef]
- Bhakta, I.; Phadikar, S.; Majumder, K. State-of-the-art technologies in precision agriculture: A systematic review. J. Sci. Food Agric. 2019, 99, 4878–4888. [Google Scholar] [CrossRef] [PubMed]
- Cisternas, I.; Velásquez, I.; Caro, A.; Rodríguez, A. Systematic literature review of implementations of precision agriculture. Comput. Electron. Agric. 2020, 176, 105626. [Google Scholar] [CrossRef]
- Groher, T.; Heitkämper, K.; Walter, A.; Liebisch, F.; Umstätter, C. Status quo of adoption of precision agriculture enabling technologies in Swiss plant production. Precis. Agric. 2020, 21, 1327–1350. [Google Scholar] [CrossRef]
- Torky, M.; Hassanein, A.E. Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and challenges. Comput. Electron. Agric. 2020, 178, 105476. [Google Scholar] [CrossRef]
- Feng, X.; Yan, F.; Liu, X. Study of wireless communication technologies on Internet of Things for precision agriculture. Wirel. Pers. Commun. 2019, 108, 1785–1802. [Google Scholar] [CrossRef]
- McConnell, M.D. Bridging the gap between conservation delivery and economics with precision agriculture. Wild. Soc. Bull. 2019, 43, 391–397. [Google Scholar] [CrossRef]
- Thakur, D.; Kumar, Y.; Kumar, A.; Singh, P.K. Applicability of wireless sensor networks in precision agriculture: A review. Wirel. Pers. Commun. 2019, 107, 471–512. [Google Scholar] [CrossRef]
- Gargiulo, J.I.; Eastwood, C.R.; Garcia, S.C.; Lyons, N.A. Dairy farmers with larger herd sizes adopt more precision dairy technologies. J. Dairy Sci. 2018, 101, 5466–5473. [Google Scholar] [CrossRef]
- Silva, C.B.; do Vale, S.M.L.R.; Pinto, F.A.; Müller, C.A.; Moura, A.D. The economic feasibility of precision agriculture in Mato Grosso do Sul State, Brazil: A case study. Precis. Agric 2007, 8, 255–265. [Google Scholar] [CrossRef]
- Carrer, M.J.; de Souza Filho, H.M.; Vinholis, M.D.M.B.; Mozambani, C.I. Precision agriculture adoption and technical efficiency: An analysis of sugarcane farms in Brazil. Technol. Forecast. Soc. Chang. 2022, 177, 121510. [Google Scholar] [CrossRef]
- Zhang, Z.; Boubin, J.; Stewart, C.; Khanal, S. Whole-field reinforcement learning: A fully autonomous aerial scouting method for precision agriculture. Sensors 2020, 20, 6585. [Google Scholar] [CrossRef] [PubMed]
- Sgroi, F. Precision agriculture and competitive advantage: Economic efficiency of the mechanized harvesting of Chardonnay and Nero d’Avola grapes. J. Agric. Food Res. 2023, 14, 100774. [Google Scholar] [CrossRef]
- Lavorato, M.P.; Braga, M.J. Risk and return of soybeans precision production: A case study in Mato Grosso do Sul state, Brazil1. Ital. Rev. Agric. Econ. 2018, 73, 27–36. [Google Scholar] [CrossRef]
- Rakun, J.; Rihter, E.; Kelc, D.; Denis, S.; Vindiš, P.; Berk, P.; Polič, P.; Lakota, M. Possibilities and concerns of implementing precision agriculture technologies on small farms in Slovenia. Int. J. Agric. Biol. Eng. 2022, 15, 16–21. [Google Scholar] [CrossRef]
- Pierce, F.J.; Nowak, P. Aspects of precision agriculture. Adv. Agron. 1999, 67, 1–85. [Google Scholar] [CrossRef]
- Gumbi, N.; Gumbi, L.; Twinomurinzi, H. Towards sustainable digital agriculture for smallholder farmers: A systematic literature review. Sustainability 2023, 15, 12530. [Google Scholar] [CrossRef]
- Pathak, H.S.; Brown, P.; Best, T.A. A systematic literature review of the factors affecting the precision agriculture adoption process. Precis. Agric. 2019, 20, 1292–1316. [Google Scholar] [CrossRef]
- Wang, T.; Jin, H.; Sieverding, H.; Kumar, S.; Miao, Y.; Rao, X.; Obembe, O.; Mirzakhani Nafchi, A.; Redfearn, D.; Cheye, S. Understanding farmer views of precision agriculture profitability in the US Midwest. Ecol. Econ. 2023, 213, 107950. [Google Scholar] [CrossRef]
- Kolady, D.E.; Van der Sluis, E.; Uddin, M.M.; Deutz, A.P. Determinants of adoption and adoption intensity of precision agriculture technologies: Evidence from South Dakota. Prec. Agric. 2021, 22, 689–710. [Google Scholar] [CrossRef]
- Michels, M.; von Hobe, C.F.; Weller von Ahlefeld, P.J.; Musshoff, O. The adoption of drones in German agriculture: A structural equation model. Precis. Agric. 2021, 22, 1728–1748. [Google Scholar] [CrossRef]
- Miller, N.J.; Griffin, T.W.; Ciampitti, I.A.; Sharda, A. Farm adoption of embodied knowledge and information intensive precision agriculture technology bundles. Precis. Agric. 2019, 20, 348–361. [Google Scholar] [CrossRef]
- Higgins, V.; van der Velden, D.; Bechtet, N.; Bryant, M.; Battersby, J.; Belle, M.; Klerkx, L. Deliberative assembling: Tinkering and farmer agency in precision agriculture implementation. J. Rural Stud. 2023, 100, 103023. [Google Scholar] [CrossRef]
- da Silveira, F.; da Silva, S.L.C.; Machado, F.M.; Barbedo, J.G.A.; Amaral, F.G. Farmers’ perception of barriers that difficult the implementation of agriculture 4.0. Agric. Syst. 2023, 208, 103656. [Google Scholar] [CrossRef]
- Delavarpour, N.; Koparan, C.; Nowatzki, J.; Bajwa, S.; Sun, X. A technical study on UAV characteristics for precision agriculture applications and associated practical challenges. Remote Sens. 2021, 13, 1204. [Google Scholar] [CrossRef]
- Schwering, D.S.; Bergmann, L.; Sonntag, W.I. How to encourage farmers to digitize? A study on user typologies and motivations of farm management information systems. Comput. Electron. Agric. 2022, 199, 107133. [Google Scholar] [CrossRef]
- Ciarli, T.; Kenney, M.; Massini, S.; Piscitello, L. Digital technologies, innovation, and skills: Emerging trajectories and challenges. Res. Policy 2021, 50, 104289. [Google Scholar] [CrossRef]
- Shepherd, M.; Turner, J.A.; Small, B.; Wheeler, D. Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’revolution. J. Sci. Food Agric. 2020, 100, 5083–5092. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, X.; Shu, L.; Hancke, G.P.; Abu-Mahfouz, A.M. From Industry 4.0 to Agriculture 4.0: Current status, enabling technologies, and research challenges. IEEE Trans. Ind. Inform. 2020, 17, 4322–4334. [Google Scholar] [CrossRef]
- McGrath, K.; Brown, C.; Regan, Á.; Russell, T. Investigating narratives and trends in digital agriculture: A scoping study of social and behavioural science studies. Agric. Syst. 2023, 207, 103616. [Google Scholar] [CrossRef]
- Gascuel-Odoux, C.; Lescourret, F.; Dedieu, B.; Detang-Dessendre, C.; Faverdin, P.; Hazard, L.; Litrico-Chiarelli, I.; Petit, S.; Roques, L.; Reboud, X.; et al. A research agenda for scaling up agroecology in European countries. Agron. Sustain. Dev. 2022, 42, 53. [Google Scholar] [CrossRef] [PubMed]
- Hackfort, S. Patterns of inequalities in digital agriculture: A systematic literature review. Sustainability 2021, 13, 12345. [Google Scholar] [CrossRef]
- Regan, Á. Exploring the readiness of publicly funded researchers to practice responsible research and innovation in digital agriculture. J. Responsible Innov. 2021, 8, 28–47. [Google Scholar] [CrossRef]
- Jakku, E.; Fleming, A.; Espig, M.; Fielke, S.; Finlay-Smits, S.C.; Turner, J.A. Disruption disrupted? Reflecting on the relationship between responsible innovation and digital agriculture research and development at multiple levels in Australia and Aotearoa New Zealand. Agric. Syst. 2023, 204, 103555. [Google Scholar] [CrossRef]
- Ingram, J.; Maye, D.; Bailye, C.; Barnes, A.; Bear, C.; Bell, M.; Cutress, D.; Davies, L.; de Boon, A.; Dinnie, L.; et al. What are the priority research questions for digital agriculture? Land Use Policy 2022, 114, 105962. [Google Scholar] [CrossRef]
- Lioutas, E.D.; Charatsari, C. Innovating digitally: The new texture of practices in agriculture 4.0. Sociol. Rural. 2022, 62, 250–278. [Google Scholar] [CrossRef]
- Leech, N.L.; Onwuegbuzie, A.J. A typology of mixed methods research designs. Qual. Quant. 2009, 43, 265–275. [Google Scholar] [CrossRef]
- Johnson, R.B.; Onwuegbuzie, A.J.; Turner, L.A. Toward a definition of mixed methods research. J. Mix. Methods Res. 2007, 1, 112–133. [Google Scholar] [CrossRef]
- Johnson, R.B.; Onwuegbuzie, A.J. Mixed methods research: A research paradigm whose time has come. Educ. Res. 2004, 33, 14–26. [Google Scholar] [CrossRef]
- Bolfe, É.L.; Jorge, L.A.D.C.; Sanches, I.D.A.; Luchiari Júnior, A.; da Costa, C.C.; Victoria, D.D.C.; Inamasu, R.Y.; Grego, C.R.; Ferreira, V.R.; Ramirez, A.R. Precision and digital agriculture: Adoption of technologies and perception of Brazilian farmers. Agriculture 2020, 10, 653. [Google Scholar] [CrossRef]
- Charatsari, C.; Lioutas, E.D. Is current agronomy ready to promote sustainable agriculture? Identifying key skills and competencies needed. Int. J. Sustain. Dev. World Ecol. 2019, 26, 232–241. [Google Scholar] [CrossRef]
- Thomas, K.V.; Murali, S. Validation and testing of a measurement model for the assessment of agripreneurial competencies. J. Agribusiness Dev. Emerg. Econ. 2023, in press. [Google Scholar] [CrossRef]
- Kwaghtyo, D.K.; Eke, C.I. Smart farming prediction models for precision agriculture: A comprehensive survey. Artif. Intell. Rev. 2023, 56, 5729–5772. [Google Scholar] [CrossRef]
- Prutzer, E.; Gardezi, M.; Rizzo, D.M.; Emery, M.; Merrill, S.; Ryan, B.E.; Oikonomou, P.D.; Alvez, J.P.; Adereti, D.T.; Anjum, R.; et al. Rethinking ‘responsibility’ in precision agriculture innovation: Lessons from an interdisciplinary research team. J. Responsible Innov. 2023, 10, 2202093. [Google Scholar] [CrossRef]
- Charatsari, C.; Lioutas, E.D.; De Rosa, M.; Papadaki-Klavdianou, A. Extension and advisory organizations on the road to the digitalization of animal farming: An organizational learning perspective. Animals 2020, 10, 2056. [Google Scholar] [CrossRef]
- Charatsari, C.; Lioutas, E.D.; Papadaki-Klavdianou, A.; Michailidis, A.; Partalidou, M. Farm advisors amid the transition to Agriculture 4.0: Professional identity, conceptions of the future and future-specific competencies. Sociol. Rural. 2022, 62, 335–362. [Google Scholar] [CrossRef]
- Fielke, S.; Bronson, K.; Carolan, M.; Eastwood, C.; Higgins, V.; Jakku, E.; Klerkx, L.; Nettle, R.; Regan, Á.; Rose, D.C.; et al. A call to expand disciplinary boundaries so that social scientific imagination and practice are central to quests for ‘responsible’ digital agri-food innovation. Sociol. Rural. 2022, 62, 151–161. [Google Scholar] [CrossRef]
- Lioutas, E.D.; Charatsari, C. Smart farming and short food supply chains: Are they compatible? Land Use Policy 2020, 94, 104541. [Google Scholar] [CrossRef]
- Vecchio, Y.; Di Pasquale, J.; Del Giudice, T.; Pauselli, G.; Masi, M.; Adinolfi, F. Precision farming: What do Italian farmers really think? An application of the Q methodology. Agric. Syst. 2022, 201, 103466. [Google Scholar] [CrossRef]
- Lajoie-O’Malley, A.; Bronson, K.; van der Burg, S.; Klerkx, L. The future(s) of digital agriculture and sustainable food systems: An analysis of high-level policy documents. Ecosyst. Serv. 2020, 45, 101183. [Google Scholar] [CrossRef]
- Hsieh, H.F.; Shannon, S.E. Three approaches to qualitative content analysis. Qual. Health Res. 2005, 15, 1277–1288. [Google Scholar] [CrossRef] [PubMed]
- Ingram, J.; Maye, D. “How can we?” the need to direct research in digital agriculture towards capacities. J. Rural Stud. 2023, 100, 103003. [Google Scholar] [CrossRef]
- Kant, V. Cyber-physical systems as sociotechnical systems: A view towards human–technology interaction. Cyber-Phys. Syst. 2016, 2, 75–109. [Google Scholar] [CrossRef]
- Ammann, J.; Umstätter, C.; El Benni, N. The adoption of precision agriculture enabling technologies in Swiss outdoor vegetable production: A Delphi study. Precis. Agric. 2022, 23, 1354–1374. [Google Scholar] [CrossRef] [PubMed]
- Mulder, M. A five-component future competence (5CFC) model. J. Agric. Educ. Ext. 2017, 23, 99–102. [Google Scholar] [CrossRef]
- Bukchin, S.; Kerret, D. The role of self-control, hope and information in technology adoption by smallholder farmers–A moderation model. J. Rural. Stud. 2020, 74, 160–168. [Google Scholar] [CrossRef]
- Charatsari, C.; Lioutas, E.D.; De Rosa, M.; Vecchio, Y. Technological innovation and agrifood systems resilience: The potential and perils of three different strategies. Front. Sustain. Food Syst. 2022, 6, 872706. [Google Scholar] [CrossRef]
- Bahn, R.A.; Yehya, A.A.K.; Zurayk, R. Digitalization for sustainable agri-food systems: Potential, status, and risks for the MENA region. Sustainability 2021, 13, 3223. [Google Scholar] [CrossRef]
- Bacco, M.; Barsocchi, P.; Ferro, E.; Gotta, A.; Ruggeri, M. The digitisation of agriculture: A survey of research activities on smart farming. Array 2019, 3, 100009. [Google Scholar] [CrossRef]
- Bustamante, M.J. Digital platforms as common goods or economic goods? Constructing the worth of a nascent agricultural data platform. Technol. Forecast. Soc. Chang. 2023, 192, 122549. [Google Scholar] [CrossRef]
- Zscheischler, J.; Brunsch, R.; Rogga, S.; Scholz, R.W. Perceived risks and vulnerabilities of employing digitalization and digital data in agriculture–Socially robust orientations from a transdisciplinary process. J. Clean. Prod. 2022, 358, 132034. [Google Scholar] [CrossRef]
- Lioutas, E.D.; Charatsari, C. Big data in agriculture: Does the new oil lead to sustainability? Geoforum 2020, 109, 1–3. [Google Scholar] [CrossRef]
Item | Mean Score | S.D. |
---|---|---|
Choosing appropriate technologies for my farm | 3.63 | 1.06 |
Estimating the costs and benefits of new technologies | 4.25 | 0.89 |
Introducing new technologies to my farm | 4.25 | 0.89 |
Properly using technologies | 4.38 | 0.92 |
Reorganizing work after technology adoption | 4.63 | 0.74 |
Solving problems associated with newly introduced technologies | 3.63 | 0.92 |
Connecting precision agriculture technologies with traditionally used technologies | 3.63 | 1.30 |
Creating value from technologies | 4.25 | 0.71 |
Transforming technologies into productive resources | 4.25 | 0.89 |
Item | Mean Score | S.D. |
---|---|---|
Using technologies in a way that maximizes the benefits for my farm | 4.00 | 1.07 |
Using technologies in a way that minimizes the production cost | 4.13 | 0.99 |
Exploiting the full range of opportunities offered by technologies | 3.88 | 1.55 |
Making technology a part of my farm enterprise | 3.75 | 1.03 |
Planning how to effectively exploit the opportunities that technologies offer | 3.75 | 1.03 |
Taking well-calculated risks concerning future investments in relevant technologies | 4.00 | 1.41 |
Being agile in accommodating relevant complementary innovations in my farm | 3.88 | 0.99 |
Handling my emotions when things go wrong | 4.25 | 0.71 |
Being capable of integrating these technologies into the way of doing business | 3.88 | 0.99 |
Being able to make changes when technologies don’t fit the purposes of my farm enterprise | 3.63 | 1.06 |
Helping farm workers exploit technologies for the benefit of my farm | 3.43 | 1.13 |
Understanding how farm workers feel about technologies and resolving potential conflicts | 3.43 | 1.27 |
Facilitate the collaboration of human actors and technologies in my farm enterprise | 3.88 | 0.99 |
Being able to learn while integrating technologies into my farm enterprise | 4.38 | 0.74 |
Learning how to learn from technologies | 4.38 | 0.74 |
Forecasting future scenarios for my farm | 4.00 | 0.76 |
Orienting myself and my enterprise to the future | 4.13 | 0.99 |
Anticipating the potential futures that technologies create | 3.75 | 1.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michailidis, A.; Charatsari, C.; Bournaris, T.; Loizou, E.; Paltaki, A.; Lazaridou, D.; Lioutas, E.D. A First View on the Competencies and Training Needs of Farmers Working with and Researchers Working on Precision Agriculture Technologies. Agriculture 2024, 14, 99. https://doi.org/10.3390/agriculture14010099
Michailidis A, Charatsari C, Bournaris T, Loizou E, Paltaki A, Lazaridou D, Lioutas ED. A First View on the Competencies and Training Needs of Farmers Working with and Researchers Working on Precision Agriculture Technologies. Agriculture. 2024; 14(1):99. https://doi.org/10.3390/agriculture14010099
Chicago/Turabian StyleMichailidis, Anastasios, Chrysanthi Charatsari, Thomas Bournaris, Efstratios Loizou, Aikaterini Paltaki, Dimitra Lazaridou, and Evagelos D. Lioutas. 2024. "A First View on the Competencies and Training Needs of Farmers Working with and Researchers Working on Precision Agriculture Technologies" Agriculture 14, no. 1: 99. https://doi.org/10.3390/agriculture14010099
APA StyleMichailidis, A., Charatsari, C., Bournaris, T., Loizou, E., Paltaki, A., Lazaridou, D., & Lioutas, E. D. (2024). A First View on the Competencies and Training Needs of Farmers Working with and Researchers Working on Precision Agriculture Technologies. Agriculture, 14(1), 99. https://doi.org/10.3390/agriculture14010099