Influence of Application Timings, Rates, and Adjuvants on Tiencarbazone-Methyl Plus Isoxaflutole and Mesotrione with Nicosulfuron and Rimsulfuron on Weed Control and Yield of Maize
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, N.; Rayamajhi, M. Different aspects of weed management in maize (Zea mays L.): A brief review. Adv. Agric. 2022, 2022, 7960175. [Google Scholar] [CrossRef]
- Doǧan, M.N.; Ünay, A.; Boz, Ö.; Albay, F. Determination of optimum weed control timing in maize (Zea mays L.). Turk. J. Agric. For. 2004, 28, 349–354. [Google Scholar]
- Idziak, R.; Woźnica, Z. Efficacy of reduced rates of soil applied dimethenamid-P and pendimethalin mixture followed by postemergence herbicides in maize. Agriculture 2020, 10, 163. [Google Scholar] [CrossRef]
- Cerrudo, D.; Page, E.; Tollenaar, M.; Stewart, G.; Swanton, C.J. Mechanisms of yield loss in maize caused by weed competition. Weed Sci. 2012, 60, 225–232. [Google Scholar] [CrossRef]
- Zystro, J.P.; de Leon, N.; Tracy, W.F. Analysis of traits related to weed competitiveness in sweet corn (Zea mays L.). Sustainability 2012, 4, 543–560. [Google Scholar] [CrossRef]
- Keller, M.; Böhringer, N.; Möhring, J.; Rueda-Ayala, V.; Gutjahr, C.; Gerhards, R. Long-term changes in weed occurrence, yield and use of herbicides in maize in southwestern Germany, with implications for the determination of economic thresholds. Weed Res. 2014, 54, 457–466. [Google Scholar] [CrossRef]
- Idziak, R.; Waligóra, H.; Szuba, V. The influence of agronomical and chemical weed control on weeds of corn. J. Plant Prot. Res. 2022, 62, 215–222. [Google Scholar]
- Imoloame, E.O. Agronomic and economic performance of maize (Zea mays L.) as influenced by seed bed configuration and weed control treatments. Open Agric. 2021, 6, 445–455. [Google Scholar] [CrossRef]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef]
- Haliniarz, M.; Chojnacka, S.; Rusecki, H.; Gawęda, D.; Łukasz, J. The effect of combined use of herbicide and growth retardants as well as diversified mineral fertilization on weed infestation of spring wheat. Agron. Sci. 2018, 74, 111–123. [Google Scholar] [CrossRef]
- Kasahara, T.; Takeuchi, T.; Koyama, K.; Kuzuma, S. Effects of environmental factors on the herbicidal activity and phytotoxicity of ipfencarbazone. J. Pestic. Sci. 2018, 43, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Matzenbacher, F.O.; Vidal, R.A.; Merotto, J.R.; Trezzi, M.M. Environmental and physiological factors that affect the efficacy of herbicides that inhibit the enzyme protoporphyrinogen oxidase: A literature review. Planta Daninha 2014, 32, 457–463. [Google Scholar] [CrossRef][Green Version]
- Ikley, J.; Christoffers, M.; Dalley, C.; Endres, G.; Graming, G.; Howatt, K.; Jenks, B.; Law, Q.; Lim, C.; Ostlie, M.; et al. North Dakota Weed Control Guide. North Dak. State Univ. Ext. Serv. Publ. 2023, W253-23, 1–136. [Google Scholar][Green Version]
- Vahedi, A.; Bakhshi, Z.; Fakhari, R.; Vahidipour, H.R. Evaluation of competitiveness of corn and pigweed in nitrogen levels under pigweed densities by corn yield converse relations. Int. J. Agric. Crop Sci. 2013, 5, 1442–1444. [Google Scholar][Green Version]
- Scavo, A.; Mauromicale, G. Integrated Weed Management in Herbaceous Field Crops. Agronomy 2020, 10, 466. [Google Scholar] [CrossRef]
- Barbieri, G.F.; Young, B.G.; Dayan, F.E.; Streibig, J.C.; Takano, H.K.; Merotto, A., Jr.; Avila, L.A. Herbicide mixtures: Interactions and modeling. Adv. Weed Sci. 2022, 40, e020220051. [Google Scholar] [CrossRef] [PubMed]
- Pacanoski, Z. Herbicides and adjuvants. In Herbicides, Physiology of Action, and Safety; InTech: Houston, TX, USA, 2015; pp. 125–147. [Google Scholar]
- Woźnica, Z.; Idziak, R. Influence of herbicide application timings, rates and adjuvant type on weed control and yield of maize grown for forage. Acta Sci. Pol. Agric. 2010, 9, 77–84. [Google Scholar]
- Ofosu, R.; Agyemang, E.D.; Márton, A.; Pásztör, G.; Taller, J.; Kazinczi, G. Herbicide resistance: Managing weeds in a changing world. Agronomy 2023, 13, 1595. [Google Scholar] [CrossRef]
- Kumar, A.; Dhaka, A.K.; Kumar, S.; Singh, S.; Punia, S.S. Weed management indices as affected by different weed control treatments in pigeon pea [Cajanus cajan (L.) Millsp.]. J. Pharmacogn. Phytochem. 2019, 8, 3490–3494. [Google Scholar]
- Skowera, B.; Puła, J. Pluviometric extreme conditions in spring season in Poland in the years 1971–2000). Acta Agrophys. 2004, 3, 171–177. [Google Scholar]
- Pilipavicius, V. Influence of climate change on weed vegetation. Global Warming. In Causes, Impacts and Remedies; Singh, B.R., Ed.; IntechOpen: London, UK, 2015; pp. 89–114. [Google Scholar]
- Neil, R.E.; Newman, J.E. Growing Season Characteristics and Requirements in the Corn Belt; Cooperative Extension Service; Iowa State University: Ames, IA, USA, 1987. [Google Scholar]
- Siebers, M.H.; Slattery, R.A.; Yendrek, C.R.; Locke, A.M.; Drag, D.; Ainsworth, E.A.; Bernacchi, C.J.; Ort, D.R. Simulated heat waves during maize reproductive stages alter reproductive growth but have no lasting effect when applied during vegetative stages. Agric. Ecosyst. Environ. 2017, 240, 162–170. [Google Scholar] [CrossRef]
- Jurasik, M.; Kolářová, M.; Kučera, J. Effect of weather conditions on efficacy of different herbicides used in Bromus sterilis control. Weed Res. 2023, 63, 305–310. [Google Scholar] [CrossRef]
- Hatterman-Valenti, H.; Pitty, A.; Owen, M. Effect of environment on giant foxtail (Setaria faberi) leaf wax and fluazifop-P absorption. Weed Sci. 2006, 54, 607–614. [Google Scholar] [CrossRef]
- Varanasi, A.; Prasad, P.V.V.; Jugulam, M. Impact of climate change factors on weeds and herbicide efficacy. Adv. Agron. 2016, 135, 107–146. [Google Scholar]
- Ferrel, M.A.; Whitson, T.D.; Miller, S.D. Basic Guide to Weeds and Herbicides; Cooperative Extension Service; The University of Wyoming, College of Agriculture, Department of Plant Sciences: Laramie, WY, USA, 2004; Volume MP19, pp. 1–19. [Google Scholar]
- Boerboom, C.M.; Stolenberg, D.E.; Jeschke, M.R.; Trower, T.L.; Gaska, M.J. Factrors affecting glyphosate control of common lambsquarters. North Cent. Weed Sci. Soc. Proc. 2006, 61, 54. [Google Scholar]
- Palma-Bautista, C.; Vazquez-Garcia, J.G.; Travlos, I.; Tataridas, A.; Kantas, P.; Dominquez-Valenzuela, J.A.; De Prado, R. Effect of adjuvant on glyphosate effectiveness, retention, absorption and translocation in Lolium rigidum and Conyza canadiensis. Plants 2020, 9, 297. [Google Scholar] [CrossRef] [PubMed]
- Zanatta, J.F.; Procópio, S.O.; Manica, R.; Pauletto, E.A.; Cargnelutti, F.A.; Vargas, L.; Sganzerla, D.C.; Rosenthal, M.D.A.; Pinto, J.J.O. Soil water contents and fomesafen efficacy in controlling Amaranthus hybridis. Planta Daninha 2008, 26, 143–155. [Google Scholar] [CrossRef]
- Grzanka, M.; Sobiech, Ł.; Idziak, R.; Skrzypczak, G. Effect of the time of herbicide application and the properties of the spray solution on the efficacy of weed control in maize (Zea mays L.) cultivation. Agriculture 2022, 12, 353. [Google Scholar] [CrossRef]
- Idziak, R.; Skrzypczak, W.; Waligóra, H.; Woźnica, Z. The effect of mesotrione applied with adjuvants on weed control efficacy and forage sorghum tolerance. Turk. J. Agric. For. 2013, 37, 265–270. [Google Scholar] [CrossRef]
- Idziak, R.; Woźnica, Z.; Sobczak, A.; Naskręt, B. Impact of soil-applied adjuvant and UAN on effectivity of thiencarbazone plus isoxaflutole applied in maize. Fragm. Agron. 2019, 36, 35–44. [Google Scholar]
- Hallman, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef] [PubMed]
- Heldbjerg, H.; Sunde, P.; Fox, A.D. Continuous population declines for specialist farmland birds 1987-2014 in Denmark indicates no halt in biodiversity loss in agricultural habitats. Bird Conserv. Int. 2018, 28, 278–292. [Google Scholar] [CrossRef]
- Wepprich, T.; Adrion, J.R.; Ries, L.; Wiedmann, J.; Haddad, N.M. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLoS ONE 2019, 14, e0216270. [Google Scholar] [CrossRef]
- Schäffer, A.; Filser, J.; Frische, T.; Gessner, M.; Köck, W.; Kratz, W.; Liess, M.; Nuppenau, E.A.; Roß-Nickoll, M.; Schäfer, R.; et al. The silent spring—on the need for sustainable plant protection. Leopoldina Discuss. 2018, 16, 61. Available online: www.leopoldina.org/uploads/tx_leopublication/2018_Diskussionspapier_Pflanzenschutzmittel_EN_02.pdf (accessed on 10 May 2023).
- Holka, M.; Kowalska, J. Assessing the potential toxicity for freshwater ecosystem from chemical protection of maize in different soil tillage systems. Prog. Plant Prot. 2023, 63, 21–28. [Google Scholar]
2016 | 2017 | 2018 | |
---|---|---|---|
Field experimental arrangement; replications | the randomized complete block design; 4 | ||
Plot size, m | 2.8 × 10 m (28 m−2) | ||
Previous crop | winter wheat | white lupine | winter triticale |
Maize variety | PR39H32 | ||
Planting/harvesting date | 26.04/26.09 | 06.05/18.10 | 25.04/24.09 |
Plant density, no. m−2 | 8 | ||
Row space, cm | 70 | ||
Planting depth, cm | 4 | ||
Type of soil | loamy sand | ||
Organic matter content, % | 1.3 | 1.5 | 1.4 |
Soil pH | 5.5 | 6.6 | 6.3 |
Years | Application Date | Relative Humidity (%) | Temperature (°C) | Sum of Rainfall FWAT (mm) | ||
---|---|---|---|---|---|---|
Air | Soil | Air FWAT | ||||
2016 | 0: 27/04 | 63 | 6.8 | 5.7 | 5.3–13.5 | 4.4 |
A: 02/06 | 87 | 18.8 | 19.5 | 15.6–20.4 | 2.3 | |
B: 19/05 | 76 | 13.9 | 12.3 | 13.4–22.0 | 3.4 | |
C: 09/06 | 83 | 15.1 | 18.7 | 14.5–18.0 | 28.8 | |
2017 | 0: 08/05 | 90 | 3.7 | 7.1 | 3.9–16.4 | 22.0 |
A: 25/05 | 67 | 17.5 | 13.4 | 13.7–23.2 | 14.0 | |
B: 01/06 | 70 | 14.2 | 14.9 | 14.3–17.4 | 44.3 | |
C: 22/06 | 55 | 20.9 | 19.4 | 19.9–21.4 | 20.4 | |
2018 | 0: 26/04 | 80 | 9.6 | 8.7 | 8.9–18.5 | 10.4 |
A: 24/05 | 68 | 19.7 | 19.1 | 18.1–23.5 | 0.0 | |
B: 14/05 | 70 | 18.6 | 17.5 | 14.2–17.7 | 11.2 | |
C: 30/05 | 63 | 22.3 | 20.5 | 15.1–23.5 | 0.2 |
Latin Name | Abbreviation | Species Share (%) | ||
---|---|---|---|---|
2016 | 2017 | 2018 | ||
Galinsoga parviflora Cav. | GALPA | - | 1.0 | - |
Euphorbia helioscopia L. | EUPHE | - | 1.0 | - |
Veronica persica Poir. | VERHE | - | 1.0 | 3.3 |
Fumaria officinalis L. | FUMAR | 1.0 | 1.0 | - |
Poa annua L. | POAAN | 1.0 | - | - |
Chenopodium album L. | CHEAL | 63.1 | 57.1 | 50.0 |
Solanum nigrum L. | SOLNI | 1.0 | - | 3.3 |
Capsella bursa-pastoris (L.) Medik. | CAPBP | 1.0 | 2.0 | 6.7 |
Echinochloa crus-gali (L.) P.Beauv. | ECHCG | 23.3 | 12.0 | 13.3 |
Geranium pusillum L. | GERPU | 1.0 | 5.0 | 3.3 |
Papaver rhoeas L. | PAPRH | - | 1.0 | - |
Anthemis arvensis L. | ANTAR | - | 1.0 | 10.0 |
Centaurea cyanus L. | CENCY | - | 4 | - |
Viola arvensis Murray | VIOAR | - | - | 3.3 |
Polygonum aviculare L. | POLAV | 1.0 | 1.0 | - |
Tripleurospermum inodorum (L.) Sch. Bip. | TRIIN | - | - | 3.3 |
Anchusa arvensis (L.) M.Bieb. | ANCAR | - | 1.0 | - |
Cirsium arvense (L.) Scop. | CIRAR | - | 2.0 | - |
Galium aparine L. | GALAP | - | 4.0 | - |
Agropyron repens (L.) P. Beauv. | AGRRE | 1.0 | 1.0 | - |
Equisetum arvense L. | EQUAR | 1.9 | - | - |
Fallotopia convonvulus (L.) A. Löve | FALCO | 2.9 | 4.0 | 3.3 |
Erodium cicutarium (L.) L’Her. | EROCI | 1.0 | - | - |
Number of species in the community | 13 | 17 | 10 |
No. | Treatment | Rate | AT | CHEAL | ECHCG | ||||
---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2016 | 2017 | 2018 | ||||
1. | Untreated check (g m–2) | - | - | 2217 | 3481 | 881 | 334 | 233 | 77 |
WCE % | |||||||||
2. | T + I | FR | 0 | 91 ab | 84 bc | 100 a | 90 ab | 73 bc | 100 a |
3. | M + N + R | FR | A | 88 ab | 91 ab | 100 a | 83 b | 83 b | 94 ab |
4. | T + I | RR 1 | 0 | 79 b | 78 bc | 93 bc | 61 c | 60 c | 89 ab |
5. | M + N + R | RR 1 | A | 66 c | 72 c | 88 b | 75 bc | 75 bc | 83 b |
6. | T + I + AtSM | RR 1 | 0 | 88 ab | 80 bc | 100 a | 66 c | 79 b | 93 ab |
7. | T + I + Gr | RR 1 | 0 | 89 ab | 83 bc | 96 bc | 65 c | 73 bc | 91 ab |
8. | M + N + R + AtB | RR 1 | A | 89 ab | 100 a | 100 a | 89 ab | 100 a | 91 ab |
9. | M + N + R + Ac | RR 1 | A | 91 ab | 100 a | 100 a | 90 ab | 100 a | 90 ab |
10. | T + I + AtSM + RSM M + N + R + Ac + RSM | RR 2 | B C | 100 a | 100 a | 100 a | 100 a | 100 a | 94 ab |
11. | T + I + Gr + RSM M + N + R + Ac + RSM | RR 2 | B C | 100 a | 100 a | 100 a | 100 a | 100 a | 94 ab |
12. | T + I + AtSM + RSM M + N + R + AtB + RSM | RR 2 | B C | 100 a | 100 a | 100 a | 100 a | 99 a | 100 a |
13. | T + I + Gr + RSM M + N + R + AtB + RSM | RR 2 | B C | 100 a | 99 a | 99 a | 100 a | 99 a | 98 a |
No. | Treatment | Rate | AT | Total Weed Control | Grain YieldT ha–1 | ||||
---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2016 | 2017 | 2018 | ||||
Untreated check | - | - | 2614 | 4405 | 1009 | 3.0 b | 4.0 e | 4.6 d | |
1. | (g m–2) | ||||||||
WCE % | |||||||||
2. | T + I | FR | 0 | 89 abc | 74 c | 99 a | 11.8 a | 12.5 abc | 11.3 a |
3. | M + N + R | FR | A | 82 abc | 72 c | 99 a | 9.3 a | 10.1 cd | 10.1 ab |
4. | T + I | RR 1 | 0 | 67 c | 52 de | 97 ab | 11.0 a | 9.8 cd | 8.0 bc |
5. | M + N + R | RR 1 | A | 65 c | 48 e | 91 c | 9.4 a | 8.3 d | 6.7 cd |
6. | T + I + AtSM | RR 1 | 0 | 74 bc | 67 cd | 99 a | 11.8 a | 10.9 bcd | 11.3 a |
7. | T + I + Gr | RR 1 | 0 | 77 bc | 65 cde | 93 bc | 11.3 a | 10.8 bcd | 10.4 ab |
8. | M + N + R + AtB | RR 1 | A | 82 abc | 81 bc | 99 a | 10.8 a | 11.8 abc | 11.1 a |
9. | M + N + R + Ac | RR 1 | A | 90 ab | 82 abc | 99 a | 9.7 a | 11.6 abc | 11.0 ab |
10. | T + I + AtSM + RSM M + N + R + Ac + RSM | RR 2 | B C | 100 a | 99 a | 98 a | 10.3 a | 13.0 ab | 11.1 a |
11. | T + I + Gr + RSM M + N + R + Ac + RSM | RR 2 | B C | 100 a | 99 a | 99 a | 11.8 a | 13.0 ab | 10.3 ab |
12. | T + I + AtSM + RSM M + N + R + AtB + RSM | RR 2 | B C | 100 a | 100 a | 100 a | 11.9 a | 13.2 ab | 10.5 ab |
13. | T + I + Gr + RSM M + N + R + AtB + RSM | RR 2 | B C | 100 a | 98 ab | 98 a | 11.1 a | 13.9 a | 11.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idziak, R.; Sakowicz, T.; Waligóra, H.; Szulc, P.; Majchrzak, L.; Stachowiak, B.; Neumann, M. Influence of Application Timings, Rates, and Adjuvants on Tiencarbazone-Methyl Plus Isoxaflutole and Mesotrione with Nicosulfuron and Rimsulfuron on Weed Control and Yield of Maize. Agriculture 2024, 14, 73. https://doi.org/10.3390/agriculture14010073
Idziak R, Sakowicz T, Waligóra H, Szulc P, Majchrzak L, Stachowiak B, Neumann M. Influence of Application Timings, Rates, and Adjuvants on Tiencarbazone-Methyl Plus Isoxaflutole and Mesotrione with Nicosulfuron and Rimsulfuron on Weed Control and Yield of Maize. Agriculture. 2024; 14(1):73. https://doi.org/10.3390/agriculture14010073
Chicago/Turabian StyleIdziak, Robert, Tomasz Sakowicz, Hubert Waligóra, Piotr Szulc, Leszek Majchrzak, Barbara Stachowiak, and Małgorzata Neumann. 2024. "Influence of Application Timings, Rates, and Adjuvants on Tiencarbazone-Methyl Plus Isoxaflutole and Mesotrione with Nicosulfuron and Rimsulfuron on Weed Control and Yield of Maize" Agriculture 14, no. 1: 73. https://doi.org/10.3390/agriculture14010073
APA StyleIdziak, R., Sakowicz, T., Waligóra, H., Szulc, P., Majchrzak, L., Stachowiak, B., & Neumann, M. (2024). Influence of Application Timings, Rates, and Adjuvants on Tiencarbazone-Methyl Plus Isoxaflutole and Mesotrione with Nicosulfuron and Rimsulfuron on Weed Control and Yield of Maize. Agriculture, 14(1), 73. https://doi.org/10.3390/agriculture14010073