Influence of Application Timings, Rates, and Adjuvants on Tiencarbazone-Methyl Plus Isoxaflutole and Mesotrione with Nicosulfuron and Rimsulfuron on Weed Control and Yield of Maize
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, N.; Rayamajhi, M. Different aspects of weed management in maize (Zea mays L.): A brief review. Adv. Agric. 2022, 2022, 7960175. [Google Scholar] [CrossRef]
- Doǧan, M.N.; Ünay, A.; Boz, Ö.; Albay, F. Determination of optimum weed control timing in maize (Zea mays L.). Turk. J. Agric. For. 2004, 28, 349–354. [Google Scholar]
- Idziak, R.; Woźnica, Z. Efficacy of reduced rates of soil applied dimethenamid-P and pendimethalin mixture followed by postemergence herbicides in maize. Agriculture 2020, 10, 163. [Google Scholar] [CrossRef]
- Cerrudo, D.; Page, E.; Tollenaar, M.; Stewart, G.; Swanton, C.J. Mechanisms of yield loss in maize caused by weed competition. Weed Sci. 2012, 60, 225–232. [Google Scholar] [CrossRef]
- Zystro, J.P.; de Leon, N.; Tracy, W.F. Analysis of traits related to weed competitiveness in sweet corn (Zea mays L.). Sustainability 2012, 4, 543–560. [Google Scholar] [CrossRef]
- Keller, M.; Böhringer, N.; Möhring, J.; Rueda-Ayala, V.; Gutjahr, C.; Gerhards, R. Long-term changes in weed occurrence, yield and use of herbicides in maize in southwestern Germany, with implications for the determination of economic thresholds. Weed Res. 2014, 54, 457–466. [Google Scholar] [CrossRef]
- Idziak, R.; Waligóra, H.; Szuba, V. The influence of agronomical and chemical weed control on weeds of corn. J. Plant Prot. Res. 2022, 62, 215–222. [Google Scholar]
- Imoloame, E.O. Agronomic and economic performance of maize (Zea mays L.) as influenced by seed bed configuration and weed control treatments. Open Agric. 2021, 6, 445–455. [Google Scholar] [CrossRef]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef]
- Haliniarz, M.; Chojnacka, S.; Rusecki, H.; Gawęda, D.; Łukasz, J. The effect of combined use of herbicide and growth retardants as well as diversified mineral fertilization on weed infestation of spring wheat. Agron. Sci. 2018, 74, 111–123. [Google Scholar] [CrossRef]
- Kasahara, T.; Takeuchi, T.; Koyama, K.; Kuzuma, S. Effects of environmental factors on the herbicidal activity and phytotoxicity of ipfencarbazone. J. Pestic. Sci. 2018, 43, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Matzenbacher, F.O.; Vidal, R.A.; Merotto, J.R.; Trezzi, M.M. Environmental and physiological factors that affect the efficacy of herbicides that inhibit the enzyme protoporphyrinogen oxidase: A literature review. Planta Daninha 2014, 32, 457–463. [Google Scholar] [CrossRef]
- Ikley, J.; Christoffers, M.; Dalley, C.; Endres, G.; Graming, G.; Howatt, K.; Jenks, B.; Law, Q.; Lim, C.; Ostlie, M.; et al. North Dakota Weed Control Guide. North Dak. State Univ. Ext. Serv. Publ. 2023, W253-23, 1–136. [Google Scholar]
- Vahedi, A.; Bakhshi, Z.; Fakhari, R.; Vahidipour, H.R. Evaluation of competitiveness of corn and pigweed in nitrogen levels under pigweed densities by corn yield converse relations. Int. J. Agric. Crop Sci. 2013, 5, 1442–1444. [Google Scholar]
- Scavo, A.; Mauromicale, G. Integrated Weed Management in Herbaceous Field Crops. Agronomy 2020, 10, 466. [Google Scholar] [CrossRef]
- Barbieri, G.F.; Young, B.G.; Dayan, F.E.; Streibig, J.C.; Takano, H.K.; Merotto, A., Jr.; Avila, L.A. Herbicide mixtures: Interactions and modeling. Adv. Weed Sci. 2022, 40, e020220051. [Google Scholar] [CrossRef] [PubMed]
- Pacanoski, Z. Herbicides and adjuvants. In Herbicides, Physiology of Action, and Safety; InTech: Houston, TX, USA, 2015; pp. 125–147. [Google Scholar]
- Woźnica, Z.; Idziak, R. Influence of herbicide application timings, rates and adjuvant type on weed control and yield of maize grown for forage. Acta Sci. Pol. Agric. 2010, 9, 77–84. [Google Scholar]
- Ofosu, R.; Agyemang, E.D.; Márton, A.; Pásztör, G.; Taller, J.; Kazinczi, G. Herbicide resistance: Managing weeds in a changing world. Agronomy 2023, 13, 1595. [Google Scholar] [CrossRef]
- Kumar, A.; Dhaka, A.K.; Kumar, S.; Singh, S.; Punia, S.S. Weed management indices as affected by different weed control treatments in pigeon pea [Cajanus cajan (L.) Millsp.]. J. Pharmacogn. Phytochem. 2019, 8, 3490–3494. [Google Scholar]
- Skowera, B.; Puła, J. Pluviometric extreme conditions in spring season in Poland in the years 1971–2000). Acta Agrophys. 2004, 3, 171–177. [Google Scholar]
- Pilipavicius, V. Influence of climate change on weed vegetation. Global Warming. In Causes, Impacts and Remedies; Singh, B.R., Ed.; IntechOpen: London, UK, 2015; pp. 89–114. [Google Scholar]
- Neil, R.E.; Newman, J.E. Growing Season Characteristics and Requirements in the Corn Belt; Cooperative Extension Service; Iowa State University: Ames, IA, USA, 1987. [Google Scholar]
- Siebers, M.H.; Slattery, R.A.; Yendrek, C.R.; Locke, A.M.; Drag, D.; Ainsworth, E.A.; Bernacchi, C.J.; Ort, D.R. Simulated heat waves during maize reproductive stages alter reproductive growth but have no lasting effect when applied during vegetative stages. Agric. Ecosyst. Environ. 2017, 240, 162–170. [Google Scholar] [CrossRef]
- Jurasik, M.; Kolářová, M.; Kučera, J. Effect of weather conditions on efficacy of different herbicides used in Bromus sterilis control. Weed Res. 2023, 63, 305–310. [Google Scholar] [CrossRef]
- Hatterman-Valenti, H.; Pitty, A.; Owen, M. Effect of environment on giant foxtail (Setaria faberi) leaf wax and fluazifop-P absorption. Weed Sci. 2006, 54, 607–614. [Google Scholar] [CrossRef]
- Varanasi, A.; Prasad, P.V.V.; Jugulam, M. Impact of climate change factors on weeds and herbicide efficacy. Adv. Agron. 2016, 135, 107–146. [Google Scholar]
- Ferrel, M.A.; Whitson, T.D.; Miller, S.D. Basic Guide to Weeds and Herbicides; Cooperative Extension Service; The University of Wyoming, College of Agriculture, Department of Plant Sciences: Laramie, WY, USA, 2004; Volume MP19, pp. 1–19. [Google Scholar]
- Boerboom, C.M.; Stolenberg, D.E.; Jeschke, M.R.; Trower, T.L.; Gaska, M.J. Factrors affecting glyphosate control of common lambsquarters. North Cent. Weed Sci. Soc. Proc. 2006, 61, 54. [Google Scholar]
- Palma-Bautista, C.; Vazquez-Garcia, J.G.; Travlos, I.; Tataridas, A.; Kantas, P.; Dominquez-Valenzuela, J.A.; De Prado, R. Effect of adjuvant on glyphosate effectiveness, retention, absorption and translocation in Lolium rigidum and Conyza canadiensis. Plants 2020, 9, 297. [Google Scholar] [CrossRef] [PubMed]
- Zanatta, J.F.; Procópio, S.O.; Manica, R.; Pauletto, E.A.; Cargnelutti, F.A.; Vargas, L.; Sganzerla, D.C.; Rosenthal, M.D.A.; Pinto, J.J.O. Soil water contents and fomesafen efficacy in controlling Amaranthus hybridis. Planta Daninha 2008, 26, 143–155. [Google Scholar] [CrossRef]
- Grzanka, M.; Sobiech, Ł.; Idziak, R.; Skrzypczak, G. Effect of the time of herbicide application and the properties of the spray solution on the efficacy of weed control in maize (Zea mays L.) cultivation. Agriculture 2022, 12, 353. [Google Scholar] [CrossRef]
- Idziak, R.; Skrzypczak, W.; Waligóra, H.; Woźnica, Z. The effect of mesotrione applied with adjuvants on weed control efficacy and forage sorghum tolerance. Turk. J. Agric. For. 2013, 37, 265–270. [Google Scholar] [CrossRef]
- Idziak, R.; Woźnica, Z.; Sobczak, A.; Naskręt, B. Impact of soil-applied adjuvant and UAN on effectivity of thiencarbazone plus isoxaflutole applied in maize. Fragm. Agron. 2019, 36, 35–44. [Google Scholar]
- Hallman, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef] [PubMed]
- Heldbjerg, H.; Sunde, P.; Fox, A.D. Continuous population declines for specialist farmland birds 1987-2014 in Denmark indicates no halt in biodiversity loss in agricultural habitats. Bird Conserv. Int. 2018, 28, 278–292. [Google Scholar] [CrossRef]
- Wepprich, T.; Adrion, J.R.; Ries, L.; Wiedmann, J.; Haddad, N.M. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLoS ONE 2019, 14, e0216270. [Google Scholar] [CrossRef]
- Schäffer, A.; Filser, J.; Frische, T.; Gessner, M.; Köck, W.; Kratz, W.; Liess, M.; Nuppenau, E.A.; Roß-Nickoll, M.; Schäfer, R.; et al. The silent spring—on the need for sustainable plant protection. Leopoldina Discuss. 2018, 16, 61. Available online: www.leopoldina.org/uploads/tx_leopublication/2018_Diskussionspapier_Pflanzenschutzmittel_EN_02.pdf (accessed on 10 May 2023).
- Holka, M.; Kowalska, J. Assessing the potential toxicity for freshwater ecosystem from chemical protection of maize in different soil tillage systems. Prog. Plant Prot. 2023, 63, 21–28. [Google Scholar]
2016 | 2017 | 2018 | |
---|---|---|---|
Field experimental arrangement; replications | the randomized complete block design; 4 | ||
Plot size, m | 2.8 × 10 m (28 m−2) | ||
Previous crop | winter wheat | white lupine | winter triticale |
Maize variety | PR39H32 | ||
Planting/harvesting date | 26.04/26.09 | 06.05/18.10 | 25.04/24.09 |
Plant density, no. m−2 | 8 | ||
Row space, cm | 70 | ||
Planting depth, cm | 4 | ||
Type of soil | loamy sand | ||
Organic matter content, % | 1.3 | 1.5 | 1.4 |
Soil pH | 5.5 | 6.6 | 6.3 |
Years | Application Date | Relative Humidity (%) | Temperature (°C) | Sum of Rainfall FWAT (mm) | ||
---|---|---|---|---|---|---|
Air | Soil | Air FWAT | ||||
2016 | 0: 27/04 | 63 | 6.8 | 5.7 | 5.3–13.5 | 4.4 |
A: 02/06 | 87 | 18.8 | 19.5 | 15.6–20.4 | 2.3 | |
B: 19/05 | 76 | 13.9 | 12.3 | 13.4–22.0 | 3.4 | |
C: 09/06 | 83 | 15.1 | 18.7 | 14.5–18.0 | 28.8 | |
2017 | 0: 08/05 | 90 | 3.7 | 7.1 | 3.9–16.4 | 22.0 |
A: 25/05 | 67 | 17.5 | 13.4 | 13.7–23.2 | 14.0 | |
B: 01/06 | 70 | 14.2 | 14.9 | 14.3–17.4 | 44.3 | |
C: 22/06 | 55 | 20.9 | 19.4 | 19.9–21.4 | 20.4 | |
2018 | 0: 26/04 | 80 | 9.6 | 8.7 | 8.9–18.5 | 10.4 |
A: 24/05 | 68 | 19.7 | 19.1 | 18.1–23.5 | 0.0 | |
B: 14/05 | 70 | 18.6 | 17.5 | 14.2–17.7 | 11.2 | |
C: 30/05 | 63 | 22.3 | 20.5 | 15.1–23.5 | 0.2 |
Latin Name | Abbreviation | Species Share (%) | ||
---|---|---|---|---|
2016 | 2017 | 2018 | ||
Galinsoga parviflora Cav. | GALPA | - | 1.0 | - |
Euphorbia helioscopia L. | EUPHE | - | 1.0 | - |
Veronica persica Poir. | VERHE | - | 1.0 | 3.3 |
Fumaria officinalis L. | FUMAR | 1.0 | 1.0 | - |
Poa annua L. | POAAN | 1.0 | - | - |
Chenopodium album L. | CHEAL | 63.1 | 57.1 | 50.0 |
Solanum nigrum L. | SOLNI | 1.0 | - | 3.3 |
Capsella bursa-pastoris (L.) Medik. | CAPBP | 1.0 | 2.0 | 6.7 |
Echinochloa crus-gali (L.) P.Beauv. | ECHCG | 23.3 | 12.0 | 13.3 |
Geranium pusillum L. | GERPU | 1.0 | 5.0 | 3.3 |
Papaver rhoeas L. | PAPRH | - | 1.0 | - |
Anthemis arvensis L. | ANTAR | - | 1.0 | 10.0 |
Centaurea cyanus L. | CENCY | - | 4 | - |
Viola arvensis Murray | VIOAR | - | - | 3.3 |
Polygonum aviculare L. | POLAV | 1.0 | 1.0 | - |
Tripleurospermum inodorum (L.) Sch. Bip. | TRIIN | - | - | 3.3 |
Anchusa arvensis (L.) M.Bieb. | ANCAR | - | 1.0 | - |
Cirsium arvense (L.) Scop. | CIRAR | - | 2.0 | - |
Galium aparine L. | GALAP | - | 4.0 | - |
Agropyron repens (L.) P. Beauv. | AGRRE | 1.0 | 1.0 | - |
Equisetum arvense L. | EQUAR | 1.9 | - | - |
Fallotopia convonvulus (L.) A. Löve | FALCO | 2.9 | 4.0 | 3.3 |
Erodium cicutarium (L.) L’Her. | EROCI | 1.0 | - | - |
Number of species in the community | 13 | 17 | 10 |
No. | Treatment | Rate | AT | CHEAL | ECHCG | ||||
---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2016 | 2017 | 2018 | ||||
1. | Untreated check (g m–2) | - | - | 2217 | 3481 | 881 | 334 | 233 | 77 |
WCE % | |||||||||
2. | T + I | FR | 0 | 91 ab | 84 bc | 100 a | 90 ab | 73 bc | 100 a |
3. | M + N + R | FR | A | 88 ab | 91 ab | 100 a | 83 b | 83 b | 94 ab |
4. | T + I | RR 1 | 0 | 79 b | 78 bc | 93 bc | 61 c | 60 c | 89 ab |
5. | M + N + R | RR 1 | A | 66 c | 72 c | 88 b | 75 bc | 75 bc | 83 b |
6. | T + I + AtSM | RR 1 | 0 | 88 ab | 80 bc | 100 a | 66 c | 79 b | 93 ab |
7. | T + I + Gr | RR 1 | 0 | 89 ab | 83 bc | 96 bc | 65 c | 73 bc | 91 ab |
8. | M + N + R + AtB | RR 1 | A | 89 ab | 100 a | 100 a | 89 ab | 100 a | 91 ab |
9. | M + N + R + Ac | RR 1 | A | 91 ab | 100 a | 100 a | 90 ab | 100 a | 90 ab |
10. | T + I + AtSM + RSM M + N + R + Ac + RSM | RR 2 | B C | 100 a | 100 a | 100 a | 100 a | 100 a | 94 ab |
11. | T + I + Gr + RSM M + N + R + Ac + RSM | RR 2 | B C | 100 a | 100 a | 100 a | 100 a | 100 a | 94 ab |
12. | T + I + AtSM + RSM M + N + R + AtB + RSM | RR 2 | B C | 100 a | 100 a | 100 a | 100 a | 99 a | 100 a |
13. | T + I + Gr + RSM M + N + R + AtB + RSM | RR 2 | B C | 100 a | 99 a | 99 a | 100 a | 99 a | 98 a |
No. | Treatment | Rate | AT | Total Weed Control | Grain YieldT ha–1 | ||||
---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2016 | 2017 | 2018 | ||||
Untreated check | - | - | 2614 | 4405 | 1009 | 3.0 b | 4.0 e | 4.6 d | |
1. | (g m–2) | ||||||||
WCE % | |||||||||
2. | T + I | FR | 0 | 89 abc | 74 c | 99 a | 11.8 a | 12.5 abc | 11.3 a |
3. | M + N + R | FR | A | 82 abc | 72 c | 99 a | 9.3 a | 10.1 cd | 10.1 ab |
4. | T + I | RR 1 | 0 | 67 c | 52 de | 97 ab | 11.0 a | 9.8 cd | 8.0 bc |
5. | M + N + R | RR 1 | A | 65 c | 48 e | 91 c | 9.4 a | 8.3 d | 6.7 cd |
6. | T + I + AtSM | RR 1 | 0 | 74 bc | 67 cd | 99 a | 11.8 a | 10.9 bcd | 11.3 a |
7. | T + I + Gr | RR 1 | 0 | 77 bc | 65 cde | 93 bc | 11.3 a | 10.8 bcd | 10.4 ab |
8. | M + N + R + AtB | RR 1 | A | 82 abc | 81 bc | 99 a | 10.8 a | 11.8 abc | 11.1 a |
9. | M + N + R + Ac | RR 1 | A | 90 ab | 82 abc | 99 a | 9.7 a | 11.6 abc | 11.0 ab |
10. | T + I + AtSM + RSM M + N + R + Ac + RSM | RR 2 | B C | 100 a | 99 a | 98 a | 10.3 a | 13.0 ab | 11.1 a |
11. | T + I + Gr + RSM M + N + R + Ac + RSM | RR 2 | B C | 100 a | 99 a | 99 a | 11.8 a | 13.0 ab | 10.3 ab |
12. | T + I + AtSM + RSM M + N + R + AtB + RSM | RR 2 | B C | 100 a | 100 a | 100 a | 11.9 a | 13.2 ab | 10.5 ab |
13. | T + I + Gr + RSM M + N + R + AtB + RSM | RR 2 | B C | 100 a | 98 ab | 98 a | 11.1 a | 13.9 a | 11.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idziak, R.; Sakowicz, T.; Waligóra, H.; Szulc, P.; Majchrzak, L.; Stachowiak, B.; Neumann, M. Influence of Application Timings, Rates, and Adjuvants on Tiencarbazone-Methyl Plus Isoxaflutole and Mesotrione with Nicosulfuron and Rimsulfuron on Weed Control and Yield of Maize. Agriculture 2024, 14, 73. https://doi.org/10.3390/agriculture14010073
Idziak R, Sakowicz T, Waligóra H, Szulc P, Majchrzak L, Stachowiak B, Neumann M. Influence of Application Timings, Rates, and Adjuvants on Tiencarbazone-Methyl Plus Isoxaflutole and Mesotrione with Nicosulfuron and Rimsulfuron on Weed Control and Yield of Maize. Agriculture. 2024; 14(1):73. https://doi.org/10.3390/agriculture14010073
Chicago/Turabian StyleIdziak, Robert, Tomasz Sakowicz, Hubert Waligóra, Piotr Szulc, Leszek Majchrzak, Barbara Stachowiak, and Małgorzata Neumann. 2024. "Influence of Application Timings, Rates, and Adjuvants on Tiencarbazone-Methyl Plus Isoxaflutole and Mesotrione with Nicosulfuron and Rimsulfuron on Weed Control and Yield of Maize" Agriculture 14, no. 1: 73. https://doi.org/10.3390/agriculture14010073
APA StyleIdziak, R., Sakowicz, T., Waligóra, H., Szulc, P., Majchrzak, L., Stachowiak, B., & Neumann, M. (2024). Influence of Application Timings, Rates, and Adjuvants on Tiencarbazone-Methyl Plus Isoxaflutole and Mesotrione with Nicosulfuron and Rimsulfuron on Weed Control and Yield of Maize. Agriculture, 14(1), 73. https://doi.org/10.3390/agriculture14010073