Bull Breeding Soundness Assessment Using Artificial Neural Network-Based Predictive Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Morphological and Behavioral Evaluation
2.3. Semen Quality Evaluation
2.4. Machine Learning Analysis
- Satisfactory (A class): Bulls have a high pregnancy rate in a short time.
- Unsatisfactory (B class): Bulls have a low pregnancy rate.
- Bad (C class): Bulls rarely have cow pregnancies.
3. Results
3.1. Unsupervised Algorithm
3.2. Supervised Algorithm
- A = Activation function: Sigmoid (S) and Relu (R)
- O = Optimizer method: ADAM (A) and SGD
- N = Number of neurons: 8, 16, 32, 64, 128, 256, and 512
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez, J.C.; Castillo, S.P.; Villalobos, A.; Hernández, J. Sistemas de producción con rumiantes en México. RCA 2017, 26, 132–152. [Google Scholar]
- Cañón, J.; García, D.; Delgado, J.; Dunner, S.; Da Gama, L.T.; Landi, V.; Martín-Burriel, I.; Martínez, A.; Penedo, C.; Rodellar, C. Relative breed contributions to neutral genetic diversity of a comprehensive representation of Iberian native cattle. J. Animal. 2011, 5, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, B.; Hernández, A.; Rodríguez, A.; Cervantes, P.; Barrientos, M.; Pinos, J.M. Changes in Livestock Weather Security Index (Temperature Humidity Index, THI) During the Period 1917–2016 in Veracruz, Mexico. J. Anim. Res. 2017, 7, 983–991. [Google Scholar] [CrossRef]
- Ginja, C.; Gama, L.T.; Cortés, O.; Burriel, I.M.; Vega, J.L.; Penedo, C.; Sponenberg, P.; Cañón, J.; Sanz, A.; do Egito, A.A.; et al. The genetic ancestry of American Creole cattle inferred from uniparental and autosomal genetic markers. Sci. Rep. 2019, 9, 11486. [Google Scholar] [CrossRef] [PubMed]
- Nichi, M.; Bols, P.; Züge, R.M.; Barnabe, V.H.; Goovaerts, I.; Barnabe, R.C.; Cortada, C.N.M. Seasonal variation in semen quality in Bos indicus and Bos taurus bulls raised under tropical conditions. Theriogenology 2006, 66, 822–888. [Google Scholar] [CrossRef] [PubMed]
- Páez, E.M.; Corredor, E.S. Evaluación de la aptitud reproductiva del toro. Cienc. Y Agric. 2014, 11, 49–59. [Google Scholar] [CrossRef]
- Chenoweth, P. Bull Libido/Serving Capacity. Vet. Clin. N. Am. Food Ani. Pract. 1997, 13, 331–344. [Google Scholar] [CrossRef]
- Lessard, C.; Siqueira, L.G.; D’Amours, O.; Sullivan, R.; Leclerc, P.; Palmer, C. Infertility in a beef bull due to a failure in the capacitation process. Theriogenology 2011, 76, 891–899. [Google Scholar] [CrossRef]
- Overall, K. The ethogram project. J. Vet. Behav. 2013, 1, 1–5. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.G.; Liu, T.Y.; Wu, Q. Data mining and its application in animal husbandry management systems. Adv. Mat. Res. 2014, 926–930, 2525–2528. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Al-Badi, A. Emerging Data Sources in Decision Making and AI. Procedia Comput. Sci. 2020, 177, 318–323. [Google Scholar] [CrossRef]
- Vinod, U. Integrating intuition and artificial intelligence in organizational decision-making. Bus. Horiz. 2021, 64, 425–438. [Google Scholar] [CrossRef]
- Sharma, R.; Kamble, S.S.; Gunasekaran, A.; Kumar, V.; Kumar, A. A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Comput. Oper. Res. 2020, 119, 104926. [Google Scholar] [CrossRef]
- Plenio, J.L.; Bartel, A.; Madureira, A.M.L.; Cerri, R.L.A.; Heuwieser, W.; Borchardt, S. Application note: Validation of BovHEAT—An open-source analysis tool to process data from automated activity monitoring systems in dairy cattle for estrus detection. Comput. Electron. Agric. 2021, 188, 106323. [Google Scholar] [CrossRef]
- Neethirajan, S. The role of sensors, big data, and machine learning in modern animal farming. Sens. Bio-Sens. Res. 2020, 29, 100367. [Google Scholar] [CrossRef]
- Bishop, J.C.; Falzon, G.; Trotter, M.; Kwan, P.; Meek, P.D. Livestock vocalization classification in farm soundscapes. Comput. Electron. Agric. 2019, 162, 531–542. [Google Scholar] [CrossRef]
- Qiao, Y.; Kong, H.; Clark, C.; Lomax, S.; Su, D.; Eiffert, S.; Sukkarieh, S. Intelligent perception for cattle monitoring: A review for cattle identification, body condition score evaluation, and weight estimation. Comput. Electron. Agric. 2021, 185, 106143. [Google Scholar] [CrossRef]
- Bao, J.; Xie, Q. Artificial intelligence in animal farming: A systematic literature review. J. Clean. Prod. 2022, 331, 129956. [Google Scholar] [CrossRef]
- Gorczyca, M.; Maia, H.F.; Campos, A.S.; Gebremedhin, K. Machine learning algorithms to predict core, skin, and hair-coat temperatures of piglets. Comput. Electron. Agric. 2018, 151, 286–294. [Google Scholar] [CrossRef]
- Torres, V.F.; Barrientos, M.; Hernández, H.; Rodríguez, A.; Cervantes, P.; Landi, V.; Hernández, A.; Domínguez, B. Breeding soundness examination and herd proficiency of local genetic groups of bulls in tropical environment conditions in Veracruz. Mexico. Ital. J. Anim. Sci. 2020, 19, 840–855. [Google Scholar] [CrossRef]
- Oliveira, S.R.; Jardim, J.O.; Peripolli, V.; Antunes, E.; Gonçalves, J.B. Reproductive success or failure in four breed groups of beef bulls. R Bras. Zootec. 2015, 44, 240–247. [Google Scholar] [CrossRef]
- Sollenberger, L. Sustainable production systems for Cynodon species in the subtropics and tropics. R Bras. Zootec. 2008, 37, 85–100. [Google Scholar] [CrossRef]
- Cruz, A.; Hernández, A.; Chay, A.J.; Mendoza, S.I.; Ramírez, S.; Rojas, A.R.; Ventura, J. Componentes del rendimiento y valor nutritivo de Brachiaria humidicola cv Chetumal a diferentes estrategias de pastoreo. Rev. Mex. De Cienc. Agrícolas 2017, 8, 599–610. [Google Scholar] [CrossRef]
- Perea, F.; Soto, E.; González, C.; Soto, G.; Hernández, H. Factors affecting fertility according to the postpartum period in crossbred dual-purpose suckling cows in the tropics. Trop. Anim. Health Prod. 2005, 37, 559–572. [Google Scholar] [CrossRef]
- Galina, C.S.; Horn, M.M.; Molina, R. Reproductive behavior in bulls raised under tropical and subtropical conditions. Horm. Behav. 2007, 52, 26–31. [Google Scholar] [CrossRef]
- Koziol, J.H.; Chance, L.A. Society for Theriogenology Manual for Breeding Soundness Examination of Bulls, 2nd ed.; Society for Theriogenology: Pike Road, AL, USA, 2018. [Google Scholar]
- Kunkle, W.E.; Sand, R.S.; Rae, D.O. Effect of Body Condition on Productivity in Beef Cattle. Department of Animal Science, Florida, Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. 1994, SP-144. Available online: https://original-ufdc.uflib.ufl.edu/IR00004528/00001 (accessed on 30 November 2023).
- Beggs, D.; Bertram, J.; Chenoweth, P.; Entwistle, K.; Fordyce, G.; Johnston, H.; Johnston, P.; McGowan, M.; Niethe, G. Guidelines for using the bull breeding soundness evaluation form. In Veterinary Bull Breeding Soundness Evaluation, 1st ed.; Norman, S., Ed.; The University of Queensland: Brisbane, Australia; Australian Veterinary Association: Sydney, Australia, 2013; pp. 75–88. [Google Scholar]
- Chenoweth, P.; Hopkins, F.M.; Spitzer, J.C.; Larsen, R.E. Guidelines for using the bull breeding soundness evaluation form. Clin. Theriogenol. 2010, 2, 43–50. [Google Scholar]
- Furman, J.W.; Ball, L.; Seidel, G.E., Jr. Electroejaculation of bulls using pulse waves of variable frequency and length. J. Anim. Sci. 1975, 40, 665–670. [Google Scholar] [CrossRef]
- Moskovtsev, S.I.; Librach, C.L. Methods of sperm vitality assessment. Methods Mol. Biol. 2013, 927, 13–19. [Google Scholar] [CrossRef]
- Atiq, N.; Ullah, N.; Andrabi, S.; Akhter, S. Comparison of photometer with improved Neubauer hemocytometer and Makler counting chamber for sperm concentration measurement in cattle. Pak. Vet. J. 2011, 31, 83–84. [Google Scholar]
- Barth, A. Bull Breeding Soundness Evaluation, 2nd ed.; The Western Canadian Association of Bovine Practitioners: Saskatoon, Canada, 2000; ISBN 0901016101. [Google Scholar]
- Barth, A. Review: The use of bull breeding soundness evaluation to identify subfertile and infertile bulls. J. Anim. 2018, 12, s158–s164. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Pretenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. JMLR 2011, 12, 2825–2830. Available online: https://www.semanticscholar.org/reader/168f28ac3c8c7ea63bf7ed25f2288e8b67e2fe74 (accessed on 30 November 2023).
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Den, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th “USENIX” Symposium on Operating Systems Design and Implementation, Savannah, GA, USA, 2–4 November 2016. [Google Scholar]
- Engelken, T.J. The development of beef breeding bulls. Theriogenology 2008, 70, 573–575. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 2001, 96, 1348–1360. [Google Scholar] [CrossRef]
- Shirfadizar, A.; Miar, Y.; Plastow, G.; Basarab, J.A.J.; Li, C.; Fitzsimmons, C.; Riazi, C.; Manafiazar, G. A machine learning approach to predict the most and the least feed-efficient groups in beef cattle. Smart Agric. Technol. 2023, 5, 100314. [Google Scholar] [CrossRef]
BBSE Parameters | Genetic Group, N = 359 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Zebu Bos indicus, N = 73 | European Bos taurus, N = 136 | Crossbreed, N = 150 | ||||||||||
Brahman (n = 41) | Gyr (n = 32) | Simmental (n = 18) | Brown Swiss (n = 24) | Charolais (n = 78) | Holstein (n = 3) | Angus (n = 7) | Limousin (n = 6) | Charolais × Ce (n = 57) | Holst × Ce (n = 2) | Swiss × Ce (n = 62) | Synthetic × Ce (n = 29) | |
BCS (1–5) | 3.59 ± 0.08 | 3.37 ± 0.08 | 3.63 ± 0.13 | 3.04 ± 0.07 | 3.27 ± 0.07 | 3.33 ± 0.33 | 3.50 ± 0.18 | 4.00 ± 0.22 | 2.85 ± 0.04 | 4.00 ± 0.04 | 3.24 ± 0.06 | 3.96 ± 0.03 |
Age (years) | 4.51 ± 0.24 | 3.97 ± 0.29 | 3.61 ± 0.32 | 3.17 ± 0.25 | 4.17 ± 0.24 | 4.33 ± 0.33 | 3.57 ± 0.57 | 4.66 ± 0.80 | 5.00 ± 0.37 | 5.50 ± 1.50 | 5.16 ± 0.17 | 3.59 ± 0.19 |
Libido (0–10) | 7.73 ± 0.19 | 7.31 ± 0.32 | 8.15 ± 0.32 | - | 7.43 ± 0.18 | - | - | - | 7.42 ± 0.16 | - | 7.05 ± 0.20 | - |
Scrotal circ. (cm) | 37.14 ± 0.34 | 36.81 ± 0.54 | 37.44 ± 0.28 | 32.50 ± 0.70 | 35.83 ± 0.27 | 40.67 ± 1.86 | 36.57 ± 1.26 | 34.16 ± 1.07 | 36.87 ± 0.23 | 44.00 ± 0.23 | 38.30 ± 0.40 | 36.28 ± 0.68 |
Semen vol. (mL) | 5.48 ± 0.33 | 5.03 ± 0.24 | 4.25 ± 0.39 | 4.92 ± 0.60 | 4.16 ± 0.21 | 2.33 ± 0.33 | 5.85 ± 0.91 | 5.83 ± 1.70 | 3.56 ± 0.18 | 4.00 ± 2.00 | 5.76 ± 0.32 | 4.62 ± 0.33 |
Sperm conc. (×106) | 507.2 ± 34.4 | 497.5 ± 48.7 | 494.3 ± 73.2 | 338.8 ± 43.4 | 496.0 ± 36.6 | 263.3 ± 28.8 | 384.2 ± 134.2 | 413.3 ± 115.8 | 621.2 ± 50.6 | 250.0 ± 50.0 | 477.4 ± 34.0 | 496.9 ± 49.4 |
Sperm mot. (%) | 53.41 ± 2.96 | 56.56 ± 3.57 | 53.61 ± 6.38 | 64.38 ± 4.46 | 60.91 ± 2.73 | 24.19 ± 1.44 | 55.71 ± 7.10 | 62.50 ± 12.63 | 68.84 ± 2.89 | 60.00 ± 10.00 | 49.03 ± 2.94 | 65.00 ± 2.57 |
Cows (n) | 27.17 ± 1.29 | 29.00 ± 1.92 | 25.92 ± 2.29 | - | 32.90 ± 0.76 | - | - | - | 28.78 ± 0.58 | - | 31.03 ± 1.08 | - |
Pregnancy rate (%) | 38.85 ± 1.70 | 36.00 ± 1.96 | 41.15 ± 1.46 | 3.04 ± 0.07 | 43.46 ± 2.19 | 3.33 ± 0.33 | 3.50 ± 0.18 | 4.00 ± 0.22 | 45.44 ± 1.78 | 4.00 ± 0.04 | 33.41 ± 1.62 | 3.96 ± 0.03 |
Satisfactory, n (%) | 37 (90.24) | 25 (78.13) | 15 (83.33) | 14 (58.33) | 60 (76.92) | 0 (0.0) | 5 (71.42) | 5 (83.33) | 45 (78.95) | 2 (100) | 51 (82.26) | 29 (100) |
Unsatisfactory, n (%) | 3 (7.32) | 6 (18.75) | 3 (16.67) | 10 (41.67) | 16 (20.51) | 3 (100) | 2 (28.57) | 1 (16.67) | 12 (21.05) | 0 (0.0) | 6 (9.68) | 0 (0.0) |
Bad, n (%) | 1 (2.44) | 1 (3.13) | 0 (0.0) | 0 (0.0) | 2 (2.56) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 5 (8.06) | 0 (0.0) |
Variable | Scale | Assessment | Reference |
---|---|---|---|
Genetic group | Race | Objective | [22] |
Body condition score (BCS) | 1–5 | Subjective | [28] |
Age | Years | Objective | [30] |
Scrotal circumference | cm | Objective | [29] |
Semen volume | mL | Objective | [30] |
Sperm concentration | ×106 | Objective | [31] |
Individual sperm motility | % | Subjective | [32] |
Gross motility | Category | Subjective | [30] |
Color | Creamy-translucent | Subjective | [33] |
Density | 4–1 | Objective | [33] |
Libido | 0–10 | Objective | [7,30] |
Pregnancy rate | % | Objective | [26] |
Cows | n | Objective | [26] |
Calving interval | days | Objective | [26] |
Variable Type | Source | |
---|---|---|
Individual motility (%) | ||
Semen | Semen volume | |
Anatomy and physiology (A&P) | Sperm concentration | |
Body | Age | |
Scrotal circumference | ||
CI | ||
Performance | Number of cows | |
Pregnancy rate |
Class | A | B&C | Total |
---|---|---|---|
A | 61.50% | 20.19% | 81.69% |
B&C | 1.41% | 16.90% | 18.31% |
Total | 62.91% | 37.09% | 100.00% |
Class | Precision | Recall | f1-Score | Support |
---|---|---|---|---|
Unsatisfactory | 0.85 | 1.00 | 0.92 | 51 |
Bad | 0.92 | 0.96 | 0.94 | 24 |
Satisfactory | 0.97 | 0.75 | 0.85 | 44 |
Accuracy | 0.90 | 119 | ||
Macro avg. | 0.91 | 0.90 | 0.90 | 119 |
Weighted avg. | 0.91 | 0.90 | 0.90 | 119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín-Urías, L.F.; García-Ramírez, P.J.; Domínguez-Mancera, B.; Hernández-Beltrán, A.; Vásquez-Santacruz, J.A.; Cervantes-Acosta, P.; Barrientos-Morales, M.; Portillo-Vélez, R.d.J. Bull Breeding Soundness Assessment Using Artificial Neural Network-Based Predictive Models. Agriculture 2024, 14, 67. https://doi.org/10.3390/agriculture14010067
Marín-Urías LF, García-Ramírez PJ, Domínguez-Mancera B, Hernández-Beltrán A, Vásquez-Santacruz JA, Cervantes-Acosta P, Barrientos-Morales M, Portillo-Vélez RdJ. Bull Breeding Soundness Assessment Using Artificial Neural Network-Based Predictive Models. Agriculture. 2024; 14(1):67. https://doi.org/10.3390/agriculture14010067
Chicago/Turabian StyleMarín-Urías, Luis F., Pedro J. García-Ramírez, Belisario Domínguez-Mancera, Antonio Hernández-Beltrán, José A. Vásquez-Santacruz, Patricia Cervantes-Acosta, Manuel Barrientos-Morales, and Rogelio de J. Portillo-Vélez. 2024. "Bull Breeding Soundness Assessment Using Artificial Neural Network-Based Predictive Models" Agriculture 14, no. 1: 67. https://doi.org/10.3390/agriculture14010067
APA StyleMarín-Urías, L. F., García-Ramírez, P. J., Domínguez-Mancera, B., Hernández-Beltrán, A., Vásquez-Santacruz, J. A., Cervantes-Acosta, P., Barrientos-Morales, M., & Portillo-Vélez, R. d. J. (2024). Bull Breeding Soundness Assessment Using Artificial Neural Network-Based Predictive Models. Agriculture, 14(1), 67. https://doi.org/10.3390/agriculture14010067