Greenhouse Gas Emissions Efficiency in Polish Agriculture
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Category | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.A Enteric fermentation | 33.9 | 33.6 | 32.4 | 29.4 | 28.7 | 27.4 | 26.8 | 26.9 | 27.1 | 26.4 | 25.9 | 25.4 | 25.6 | 25.9 | 25.0 | 25.1 | 26.6 | 27.3 | 26.9 | 27.1 | 27.2 | 27.3 | 27.4 | 27.3 | 27.8 | 29.0 | 27.8 | 27.2 | 27.4 | 28.6 |
3.B Manure management | 3.6 | 4.0 | 4.1 | 3.6 | 3.5 | 3.6 | 3.3 | 3.3 | 3.4 | 3.5 | 3.5 | 3.5 | 3.9 | 4.0 | 3.8 | 4.0 | 4.1 | 4.0 | 3.6 | 3.4 | 3.4 | 3.2 | 3.0 | 2.9 | 3.0 | 3.1 | 2.9 | 2.7 | 2.7 | 2.7 |
3.G Liming | 3.6 | 3.0 | 2.7 | 2.6 | 2.3 | 2.9 | 2.8 | 3.0 | 2.9 | 2.4 | 2.3 | 2.3 | 2.3 | 2.2 | 2.2 | 2.1 | 1.3 | 0.9 | 0.9 | 0.8 | 0.9 | 0.9 | 0.8 | 1.0 | 1.1 | 0.9 | 1.5 | 1.1 | 1.1 | 1.2 |
3.H Urea application | 1.0 | 0.4 | 0.5 | 0.4 | 0.5 | 0.5 | 0.6 | 0.5 | 0.6 | 0.8 | 1.0 | 0.7 | 0.7 | 0.7 | 0.8 | 0.9 | 0.9 | 1.0 | 1.0 | 1.1 | 1.1 | 1.1 | 1.2 | 1.3 | 1.2 | 1.1 | 1.1 | 1.1 | 1.1 | 0.9 |
3.I Other carbon-containing fertilizers | 0.4 | 0.3 | 0.2 | 0.3 | 0.4 | 0.5 | 0.5 | 0.5 | 0.6 | 0.7 | 0.6 | 0.5 | 0.6 | 0.6 | 0.6 | 0.5 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.7 | 0.7 | 0.7 | 0.7 | 0.6 | 0.6 | 0.7 | 0.7 | 0.4 |
3.B Manure management | 7.0 | 7.3 | 7.3 | 6.6 | 6.6 | 6.4 | 6.2 | 6.1 | 6.3 | 6.2 | 6.1 | 6.1 | 6.2 | 6.0 | 5.6 | 5.8 | 6.1 | 6.3 | 6.0 | 5.9 | 6.0 | 5.9 | 5.7 | 5.7 | 5.8 | 6.1 | 6.0 | 5.9 | 6.1 | 6.3 |
3.D Agricultural soils | 35.7 | 31.5 | 29.7 | 29.9 | 29.2 | 30.5 | 30.0 | 29.6 | 30.8 | 30.3 | 31.2 | 32.0 | 31.9 | 31.1 | 32.0 | 31.2 | 33.3 | 35.2 | 35.5 | 35.7 | 34.3 | 35.3 | 35.3 | 36.1 | 36.0 | 35.2 | 35.2 | 35.3 | 34.8 | 33.6 |
3.F Burning of agricultural residues | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
1.A.4.c. Emissions from energy use in agriculture | 14.8 | 19.7 | 23.0 | 27.1 | 28.8 | 28.2 | 29.8 | 30.1 | 28.1 | 29.6 | 29.3 | 29.4 | 28.7 | 29.4 | 29.8 | 30.5 | 26.9 | 24.6 | 25.3 | 25.3 | 26.5 | 25.5 | 25.9 | 25.0 | 24.3 | 23.9 | 24.7 | 25.9 | 25.9 | 26.2 |
Variable | Min | Median | Mean | Max. | Std. Dev. |
---|---|---|---|---|---|
1. Energy | 302,641.5 | 326,101.4 | 330,552.3 | 373,832.7 | 20,878.1 |
2. Industrial processes (…) | 16,685.4 | 20,171.6 | 20,318.2 | 24,365.1 | 1700.1 |
3. Agriculture | 31,412.4 | 33,074.5 | 34,594.1 | 49,424.9 | 3721.2 |
5. Waste | 11,992.5 | 16,996.5 | 16,871.8 | 21,498.4 | 2673.9 |
1.A.4.c. Emissions from energy use in agriculture | 8561.1 | 11,846.1 | 12,380.9 | 15,844.7 | 1786.5 |
3.A Enteric fermentation | 11,259.7 | 12,093.4 | 13,053.2 | 19,649.9 | 1941.2 |
3.B Manure management | 1186.0 | 1700.2 | 1620.3 | 2124.9 | 266.4 |
3.G Liming | 336.7 | 968.4 | 906.4 | 2099.4 | 479.4 |
3.H Urea application | 218.3 | 410.0 | 396.4 | 571.1 | 103.4 |
3.I Other carbon-containing fertilizers | 122.8 | 263.2 | 259.2 | 368.2 | 52.3 |
3.B Manure management | 2483.4 | 2770.8 | 2919.9 | 4075.3 | 418.1 |
3.D Agricultural soils | 13,826.6 | 15,297.9 | 15,407.5 | 20,674.8 | 1141.1 |
3.F Burning of agricultural residues | 26.0 | 30.9 | 31.2 | 38.4 | 3.4 |
Variable | Min | Median | Mean | Max. | Std. Dev. |
---|---|---|---|---|---|
gross value added of agriculture | 23,381.3 | 35,824.3 | 36,615.6 | 54,195.9 | 8974.6 |
gross value added at national level | 993,153.4 | 1,861,906.0 | 1,850,794.0 | 3,006,953.2 | 609,028.1 |
References
- Colella, M.; Ripa, M.; Cocozza, A.; Panfilo, C.; Ulgiati, S. Challenges and opportunities for more efficient water use and circular wastewater management. The case of Campania Region, Italy. J. Environ. Manag. 2021, 297, 113171. [Google Scholar] [CrossRef] [PubMed]
- Sadiku, M.N.; Ashaolu, T.J.; Ajayi-Majebi, A.; Musa, S.M. Environmental Studies: An Introduction. Int. J. Sci. Adv. 2020, 1, 153–158. [Google Scholar] [CrossRef]
- Aznar, O. Defining environmental services from agriculture to better understand the implementation of European agri-environmental policy. Environ. Sci. Policy 2023, 139, 22–28. [Google Scholar] [CrossRef]
- Halkos, G.; Managi, S. New developments in the disciplines of environmental and resource economics. Econ. Anal. Policy 2023, 77, 513–522. [Google Scholar] [CrossRef]
- Underwood, A.J. Ecological research and (and research into) environmental management. Ecol. Appl. 1995, 5, 232–247. [Google Scholar] [CrossRef]
- Rau, H.; Edmondson, R. Responding to the environmental crisis: Culture, power and possibilities of change. Eur. J. Cult. Political Sociol. 2022, 9, 259–272. [Google Scholar] [CrossRef]
- Castillo, P.M.M.; Rodríguez-Meza, J.E.; Martelo, R.J. Environmental Impacts of Agriculture, Livestock and Dairy Sector. Contemp. Eng. Sci. 2018, 11, 1477–1489. [Google Scholar] [CrossRef][Green Version]
- Ma, L.; Zhang, Y.; Chen, S.; Yu, L.; Zhu, Y. Environmental effects and their causes of agricultural production: Evidence from the farming regions of China. Ecol. Indic. 2022, 144, 109549. [Google Scholar] [CrossRef]
- Tsoraeva, E.; Bekmurzov, A.; Kozyrev, S.; Khoziev, A.; Kozyrev, A. Environmental issues of agriculture as a consequence of the intensification of the development of agricultural industry. E3S Web Conf. 2020, 215, 02003. [Google Scholar] [CrossRef]
- González, N.; Marquès, M.; Nadal, M.; Domingo, J.L. Meat consumption: Which are the current global risks? A review of recent (2010–2020) evidences. Food Res. Int. 2020, 137, 109341. [Google Scholar] [CrossRef]
- Maleksaeidi, H.; Memarbashi, P. Barriers of environmentally-friendly entrepreneurship development in Iran’s agriculture. Environ. Dev. 2023, 46, 100831. [Google Scholar] [CrossRef]
- Cai, J.; Xu, X.; Yu, T. Performance evaluation of resource utilization with environmental externality: Evidence from Chinese agriculture. J. Clean. Prod. 2023, 397, 136561. [Google Scholar] [CrossRef]
- Fusco, G.; Campobasso, F.; Laureti, L.; Frittelli, M.; Valente, D.; Petrosillo, I. The environmental impact of agriculture: An instrument to support public policy. Ecol. Indic. 2023, 147, 109961. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, H.; Shi, H.; Zhang, J.; Wang, X.; Pan, S.; Yang, J. Increased greenhouse gas emissions intensity of major croplands in China: Implications for food security and climate change mitigation. Glob. Chang. Biol. 2020, 26, 6116–6133. [Google Scholar] [CrossRef]
- Rose, D.C.; Sutherland, W.J.; Barnes, A.P.; Borthwick, F.; Ffoulkes, C.; Hall, C.; Moorby, J.M.; Nicholas-Davies, P.; Twining, S.; Dicks, L.V. Integrated farm management for sustainable agriculture: Lessons for knowledge exchange and policy. Land Use Policy 2019, 81, 834–842. [Google Scholar] [CrossRef]
- Jiang, H.D.; Yu, R.; Qian, X.Y. Socio-economic and the energy-environmental impacts of technological change on China’s agricultural development under the carbon neutrality strategy. Pet. Sci. 2023, 20, 1289–1299. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Bin, P. Agriculture carbon-emission reduction and changing factors behind agricultural eco-efficiency growth in China. J. Clean. Prod. 2022, 334, 130193. [Google Scholar] [CrossRef]
- Shan, T.; Xia, Y.; Hu, C.; Zhang, S.; Zhang, J.; Xiao, Y.; Dan, F. Analysis of regional agricultural carbon emission efficiency and influencing factors: Case study of Hubei Province in China. PLoS ONE 2022, 17, e0266172. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Salvatore, M.; Ferrara, A.F.; House, J.; Federici, S.; Rossi, S.; Biancalani, R.; Golec, R.D.C.; Jacobs, H.; Flammini, A.; et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Chang. Biol. 2015, 21, 2655–2660. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019.
- Shukla, J.; Sundar, S.; Mishra, A.K.; Naresh, R. Numerical model on methane emissions from agriculture sector. Int. J. Big Data Min. Glob. Warm. 2020, 2, 2050003. [Google Scholar] [CrossRef]
- Dimitrov, D.D.; Wang, J. Geographic Inventory Framework for estimating spatial pattern of methane and nitrous oxide emissions from agriculture in Alberta, Canada. Environ. Dev. 2019, 32, 100461. [Google Scholar] [CrossRef]
- Olesen, J.E.; Schelde, K.; Weiske, A.; Weisbjerg, M.R.; Asman, W.A.H.; Djurhuus, J. Modelling greenhouse gas emissions from European conventional and organic dairy farms. Agric. Ecosyst. Environ. 2006, 112, 207–220. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Salvatore, M.; Rossi, S.; Ferrara, A.; Fitton, N.; Smith, P. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 2013, 8, 015009. [Google Scholar] [CrossRef]
- Prosekov, A.Y.; Ivanova, S.A. Food security: The challenge of the present. Geoforum 2018, 91, 73–77. [Google Scholar] [CrossRef]
- Ahmed, J.; Almeida, E.; Aminetzah, D.; Denis, N.; Henderson, K.; Katz, J.; Kitchel, H.; Mannion, P. Agriculture and Climate Change: Reducing Emissions through Improved Farming Practices; McKinsey & Company: Chicago, IL, USA, 2020. [Google Scholar]
- Huang, H.; Legg, W.; Cattaneo, A. Climate Change and Agriculture: The Policy Challenge for the 21st Century? EuroChoices 2010, 9, 9–15. [Google Scholar] [CrossRef]
- Bruinsma, J. The Resource Outlook to 2050: By How Much Do Land, Water Use and Crop Yields Need to Increase by 2050? Paper Prepared for the Expert Meeting on How to Feed the World in 2050; Food and Agriculture Organization: Rome, Italy, 2009. [Google Scholar]
- Struik, P.C.; Kuyper, T.W. Sustainable intensification in agriculture: The richer shade of green. A review. Agron. Sustain. Dev. 2017, 37, 1–15. [Google Scholar] [CrossRef]
- Phelps, J.; Carrasco, L.R.; Webb, E.L.; Koh, L.P.; Pascual, U. Agricultural intensification escalates future conservation costs. Proc. Natl. Acad. Sci. USA 2013, 110, 7601–7606. [Google Scholar] [CrossRef]
- Garcia, A. The Environmental Impacts of Agricultural Intensification; Technical Note, N.9.; SPIA: Rome, Italy, 2020. [Google Scholar]
- Jiang, M.; Hu, X.; Chunga, J.; Lin, Z.; Fei, R. Does the popularization of agricultural mechanization improve energy-environment performance in China’s agricultural sector? J. Clean. Prod. 2020, 276, 124210. [Google Scholar] [CrossRef]
- Shen, J.; Li, S.; Liang, Z.; Liu, L.; Li, D.; Wu, S. Exploring the heterogeneity and nonlinearity of trade-offs and synergies among ecosystem services bundles in the Beijing-Tianjin-Hebei urban agglomeration. Ecosyst. Serv. 2020, 43, 101103. [Google Scholar] [CrossRef]
- Dufalla, J. Agricultural Overproduction and the Deteriorating Environment. Available online: https://www.e-ir.info/2016/07/07/agricultural-overproduction-and-the-deteriorating-environment/ (accessed on 15 September 2023).
- Zou, X.; Li, Y.E.; Li, K.; Cremades, R.; Gao, Q.; Wan, Y.; Qin, X. Greenhouse gas emissions from agricultural irrigation in China. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 295–315. [Google Scholar] [CrossRef]
- Gołasa, P.; Wysokiński, M.; Bieńkowska-Gołasa, W.; Gradziuk, P.; Golonko, M.; Gradziuk, B.; Siedlecka, A.; Gromada, A. Sources of greenhouse gas emissions in agriculture, with particular emphasis on emissions from energy used. Energies 2021, 14, 3784. [Google Scholar] [CrossRef]
- Pata, U.K. Linking renewable energy, globalization, agriculture, CO2 emissions and ecological footprint in BRIC countries: A sustainability perspective. Renew. Energy 2021, 173, 197–208. [Google Scholar] [CrossRef]
- Garbach, K.; Milder, J.C.; Montenegro, M.; Karp, D.S.; DeClerck, F.A.J. Biodiversity and ecosystem services in agroecosystems. Encycl. Agric. Food Syst. 2014, 2, 21–40. [Google Scholar] [CrossRef]
- The Polish Countryside. Report on the State of the Countryside (Polska Wieś 2022. Raport o Stanie Wsi); Fundacja na rzecz Rozwoju Polskiego Rolnictwa i Wydawnictwo Naukowe Scholar: Warsaw, Poland, 2022. [Google Scholar]
- Hornowski, A.; Parzonko, A. The Role and Directions of Development of Small Farms in Poland (Rola i Kierunki Rozwoju Drobnych Gospodarstw Rolniczych w Polsce); Wydawnictwo SGGW: Warsaw, Poland, 2023. [Google Scholar]
- Zmyślona, J.; Sadowski, A.; Genstwa, N. Plant Protection and Fertilizer Use Efficiency in Farms in a Context of Overinvestment: A Case Study from Poland. Agriculture 2023, 13, 1567. [Google Scholar] [CrossRef]
- Innes, R. Economics of agricultural residuals and overfertilization: Chemical fertilizer use, livestock waste, manure management, and environmental impacts. In Encyclopedia of Energy, Natural Resource, and Environmental Economics; Elsevier Science: Waltham, MA, USA, 2013; pp. 50–57. [Google Scholar] [CrossRef]
- Liu, F.; Wang, C.; Luo, M.; Zhou, S.; Liu, C. An investigation of the coupling coordination of a regional agricultural economics-ecology-society composite based on a data-driven approach. Ecol. Indic. 2022, 143, 109363. [Google Scholar] [CrossRef]
- Meng, F.; Qiao, Y.; Wu, W.; Smith, P.; Scott, S. Environmental impacts and production performances of organic agriculture in China: A monetary valuation. J. Environ. Manag. 2017, 188, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, C. Effects of circular-agriculture economic measures on environmental conservation and socioeconomic development. J. Clean. Prod. 2022, 379, 134685. [Google Scholar] [CrossRef]
- Bonesmo, H.; Skjelvåg, A.O.; Janzen, H.H.; Klakegg, O.; Tveito, O.E. Greenhouse gas emission intensities and economic efficiency in crop production: A systems analysis of 95 farms. Agric. Syst. 2012, 110, 142–151. [Google Scholar] [CrossRef]
- Horowitz, J.K.; Just, R.E. Economics of additionality for environmental services from agriculture. J. Environ. Econ. Manag. 2013, 66, 105–122. [Google Scholar] [CrossRef]
- Smeets Kristkova, Z.; Van Dijk, M.; Van Meijl, H. Projections of long-term food security with R&D driven technical change—A CGE analysis. NJAS Wagening. J. Life Sci. 2016, 77, 39–51. [Google Scholar] [CrossRef]
- Jebli, M.B.; Youssef, S.B. The role of renewable energy and agriculture in reducing CO2 emissions: Evidence for North Africa countries. Ecol. Indic. 2017, 74, 295–301. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Bae, J. The impact of renewable energy and agriculture on carbon dioxide emissions: Investigating the environmental Kuznets curve in four selected ASEAN countries. J. Clean. Prod. 2017, 164, 1239–1247. [Google Scholar] [CrossRef]
- Martinho, V.J.P.D. Interrelationships between renewable energy and agricultural economics: An overview. Energy Strategy Rev. 2018, 22, 396–409. [Google Scholar] [CrossRef]
- Gao, J.; Hou, H.; Zhai, Y.; Woodward, A.; Vardoulakis, S.; Kovats, S.; Wilkinson, P.; Li, L.; Song, X.; Liu, Q.; et al. Greenhouse gas emissions reduction in different economic sectors: Mitigation measures, health co-benefits, knowledge gaps, and policy implications. Environ. Pollut. 2018, 240, 683–698. [Google Scholar] [CrossRef]
- Tompkins, E.L.; Few, R.; Brown, K. Scenario-based stakeholder engagement: Incorporating stakeholders preferences into coastal planning for climate change. J. Environ. Manag. 2008, 88, 1580–1592. [Google Scholar] [CrossRef]
- The National Centre for Emissions Management (Krajowy Ośrodek Bilansowania i Zarządzania Emisjami) (KOBiZE). National Inventory Report ”Greenhouse Gas Inventory in Poland for the Years 1988–2019 (Krajowy Raport Inwentaryzacyjny ”Inwentaryzacja Gazów Cieplarnianych w Polsce dla lat 1988–2019); The National Centre for Emissions Management (Krajowy Ośrodek Bilansowania i Zarządzania Emisjami) (KOBiZE): Warsaw, Poland, 2021. [Google Scholar]
- Kutlu, L. Greenhouse gas emission efficiencies of world countries. Int. J. Environ. Res. Public Health 2020, 17, 8771. [Google Scholar] [CrossRef]
- Gajos, E.; Malazewska, S.; Prandecki, K. Emission efficiency of European Union countries (Efektywność emisyjna krajów Unii Europejskiej). Ann. Pol. Assoc. Agric. Agribus. Econ. (Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu) 2018, 20, 55–60. [Google Scholar] [CrossRef]
- Klepacki, B.; Gołasa, P.; Wysokiński, M. Efficiency of Greenhouse Gas Emissions in European Union Agriculture (Efektywność emisji gazów cieplarnianych w rolnictwie Unii Europejskiej). In Village and Agriculture (Wieś i Rolnictwo); Institute of Rural and Agricultural Development: Warsaw, Poland, 2016; Volume 3, pp. 129–144. [Google Scholar] [CrossRef]
- Mrówczyńska-Kamińska, A.; Bajan, B.; Pawłowski, K.; Genstwa, N.; Zmyślona, J. Greenhouse gas emissions intensity of food production systems and its determinants. PLoS ONE 2021, 16, e0250995. [Google Scholar] [CrossRef]
- Meng, F.; Su, B.; Thomson, E.; Zhou, D.; Zhou, P. Measuring China’s Regional Energy and Carbon Emission Efficiency with DEA Models: A Survey. Appl. Energy 2016, 183, 1–21. [Google Scholar] [CrossRef]
- Sun, W.; Huang, C. How Does Urbanization Affect Carbon Emission Efficiency? Evidence from China. J. Clean. Prod. 2020, 272, 122828. [Google Scholar] [CrossRef]
- Liu, S.; Durani, F.; Syed, Q.R.; Haseeb, M.; Shamim, J.; Li, Z. Exploring the Dynamic Relationship between Energy Efficiency, Trade, Economic Growth, and CO2 Emissions: Evidence from Novel Fourier ARDL Approach. Front. Environ. Sci. 2022, 10, 945091. [Google Scholar] [CrossRef]
- Mizgajski, A.; Stępniewska, M. Environmental Change and Management. In Three Decades of Polish Socio-Economic Transformations: Geographical Perspectives; Springer International Publishing: Cham, Switzerland, 2022; pp. 359–380. [Google Scholar]
- Mielcarek-Bocheńska, P.; Rzeźnik, W. Greenhouse Gas Emissions from Agriculture in EU Countries—State and Perspectives. Atmosphere 2021, 12, 1396. [Google Scholar] [CrossRef]
- Ważniewski, P.; Kraciuk, J. Economic Effects of Regulatory Changes in Municipal Waste Management (Ekonomiczne Efekty Zmian Regulacji Prawnych w Gospodarce Odpadami Komunalnymi); Wydawnictwo SGGW: Warsaw, Poland, 2021. [Google Scholar]
- Bebkiewicz, K.; Chłopek, Z.; Lasocki, J.; Szczepański, K.; Zimakowska-Laskowska, M. Analysis of Emission of Greenhouse Gases from Road Transport in Poland between 1990 and 2017. Atmosphere 2020, 11, 387. [Google Scholar] [CrossRef]
- Woods, J.; Williams, A.; Hughes, J.K.; Black, M.; Murphy, R. Energy and the Food System. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2991–3006. [Google Scholar] [CrossRef] [PubMed]
- Ilahi, S.; Wu, Y.; Raza, M.A.A.; Wei, W.; Imran, M.; Bayasgalankhuu, L. Optimization approach for improving energy efficiency and evaluation of greenhouse gas emission of wheat crop using data envelopment analysis. Sustainability 2019, 11, 3409. [Google Scholar] [CrossRef]
- Gokmenoglu, K.K.; Taspinar, N. Testing the agriculture-induced EKC hypothesis: The case of Pakistan. Environ. Sci. Pollut. Res. 2018, 25, 22829–22841. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Ozcatalbas, O. Optimization of Energy Consumption and Its Effect on the Energy Use Efficiency and Greenhouse Gas Emissions of Wheat Production in Turkey. Discov. Sustain. 2021, 2, 1–13. [Google Scholar] [CrossRef]
- Waheed, R.; Sarwar, S.; Wei, C. The survey of economic growth, energy consumption and carbon emission. Energy Rep. 2019, 5, 1103–1115. [Google Scholar] [CrossRef]
- Gołąbeska, E.; Harasimowicz, A. Selected Problems Related to the Implementation of Green Energy Systems (Wybrane Problemy Związane z Realizacją Systemów Wykorzystujących Zieloną Energię); Oficyna Wydawnicza Politechniki Białostockiej: Białystok, Poland, 2023. [Google Scholar]
- Wąs, A.; Witajewski-Baltvilks, J.; Krupin, V.; Kobus, P. Assessing Climate Policy Impacts in Poland’s Agriculture-Options Overview; CAKE/KOBiZE/IOS-PIB: Warsaw, Poland, 2020. [Google Scholar]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate Change and Livestock: Impacts, Adaptation, and Mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Wu, H.; MacDonald, G.K.; Galloway, J.N.; Zhang, L.; Gao, L.; Yang, L.; Yang, J.; Li, X.; Li, H.; Yang, T. The Influence of Crop and Chemical Fertilizer Combinations on Greenhouse Gas Emissions: A Partial Life-Cycle Assessment of Fertilizer Production and Use in China. Resour. Conserv. Recycl. 2021, 168, 105303. [Google Scholar] [CrossRef]
- Domínguez, I.P.; Fellmann, T.; Weiss, F.; Witzke, P.; Barreiro-Hurlé, J.; Himics, M.; Barreiro-Hurlé, J.; Gómez-Barbero, M.; Leip, A. An Economic Assessment of GHG Mitigation Policy Options for EU Agriculture; JRC Science for Policy Report; EUR: Luxembourg, 2016; p. 27973. [Google Scholar] [CrossRef]
- Charkovska, N.; Horabik-Pyzel, J.; Bun, R.; Danylo, O.; Nahorski, Z.; Jonas, M.; Xiangyang, X. High-Resolution Spatial Distribution and Associated Uncertainties of Greenhouse Gas Emissions from the Agricultural Sector. Mitig. Adapt. Strateg. Glob. Chang. 2018, 24, 881–905. [Google Scholar] [CrossRef]
- Nachmany, M.; Fankhauser, S.; Davidová, J.; Kingsmill, N.; Landesman, T.; Roppongi, H.; Schleifer, P.; Setzer, J.; Sharman, A.; Sundaresan, J.; et al. The 2015 Global Climate Legislation Study: A Review of Climate Change Legislation in 99 Countries: Summary for Policy-Makers. 2015. Available online: https://eprints.lse.ac.uk/65347/ (accessed on 15 September 2023).
- Piwowar, A. Low-Carbon Agriculture in Poland: Theoretical and Practical Challenges. Pol. J. Environ. Stud. 2019, 28, 2785–2792. [Google Scholar] [CrossRef] [PubMed]
- Panchasara, H.; Samrat, N.H.; Islam, N. Greenhouse Gas Emissions Trends and Mitigation Measures in Australian Agriculture Sector—A Review. Agriculture 2021, 11, 85. [Google Scholar] [CrossRef]
- Syp, A. Greenhouse Gas Emissions from Agriculture in 1990–2014 (Emisje gazów cieplarnianych z rolnictwa w latach 1990–2014). Sci. J. Wars. Univ. Life Sci. SGGW. Probl. World Agric. 2017, 17, 244–255. [Google Scholar] [CrossRef]
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Smith, J.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.M.F.; Franzluebbers, A.J.; Weyers, S.L.; Reicosky, D.C. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef]
- Bajan, B.; Genstwa, N.; Smutka, L. The similarity of food consumption patterns in selected EU countries combined with the similarity of food production and imports. Agric. Econ. 2021, 67, 316–326. [Google Scholar] [CrossRef]
- Sans, P.; Combris, P. World meat consumption patterns: An overview of the last fifty years (1961–2011). Meat Sci. 2015, 109, 106–111. [Google Scholar] [CrossRef]
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef]
- Susur, E.; Karakaya, E. A reflexive perspective for sustainability assumptions in transition studies. Environ. Innov. Soc. Transit. 2021, 39, 34–54. [Google Scholar] [CrossRef]
- Kataria, R.P. Use of feed additives for reducing greenhouse gas emissions from dairy farms. Microbiol. Res. 2015, 6, 6120. [Google Scholar] [CrossRef]
- Løvendahl, P.; Difford, G.F.; Li, B.; Chagunda, M.G.G.; Huhtanen, P.; Lidauer, M.H.; Jassen, J.; Lund, P. Selecting for improved feed efficiency and reduced methane emissions in dairy cattle. Animal 2018, 12, s336–s349. [Google Scholar] [CrossRef]
- Galford, G.L.; Peña, O.; Sullivan, A.K.; Nash, J.; Gurwick, N.; Pirolli, G.; Richards, M.; White, J.; Wollenberg, E. Agricultural development addresses food loss and waste while reducing greenhouse gas emissions. Sci. Total Environ. 2020, 699, 134318. [Google Scholar] [CrossRef]
- Schröder, P.; Beckers, B.; Daniels, S.; Gnädinger, F.; Maestri, E.; Marmiroli, N.; Mench, M.; Millan, R.; Obermeier, M.M.; Oustriere, N.; et al. Intensify production, transform biomass to energy and novel goods and protect soils in Europe—A vision how to mobilize marginal lands. Sci. Total Environ. 2018, 616, 1101–1123. [Google Scholar] [CrossRef]
- Francaviglia, R.; Almagro, M.; Vicente-Vicente, J.L. Conservation agriculture and soil organic carbon: Principles, processes, practices and policy options. Soil Syst. 2023, 7, 17. [Google Scholar] [CrossRef]
Category | 1990 | 2000 | 2019 | Change [%] (2019/1990) | Change [%] (2019/2000) |
---|---|---|---|---|---|
Total (except for Cat. 4) | 475,721.1 | 395,328.4 | 386,898.5 | −18.7% | −2.1% |
1. Energy | 373,832.7 | 307,815.3 | 310,285.9 | −17.0% | 0.8% |
2. Industrial processes (…) | 22,403.9 | 21,809.6 | 20,283.0 | −9.5% | −7.0% |
3. Agriculture | 49,424.9 | 33,491.4 | 32,735.4 | −33.8% | −2.3% |
5. Waste | 21,498.4 | 18,317.7 | 11,992.5 | −44.2% | −34.5% |
1.A.4.c. Emissions from energy use in agriculture | 8561.1 | 13,894.3 | 11601.7 | 35.5% | −16.5% |
Category | 1990 | 2000 | 2019 | Change, 2019/1990 [%] | Change, 2019/2000 [%] |
---|---|---|---|---|---|
Total | 57,986.0 | 47,385.72 | 44,337.1 | −23.5% | −6.4% |
3.A Enteric fermentation | 19,649.9 | 12,293.3 | 12,699.2 | −35.4% | 3.3% |
3.B Manure management | 2087.6 | 1637.6 | 1186.0 | −43.2% | −27.6% |
3.G Liming | 2099.4 | 1095.0 | 541.4 | −74.2% | −50.6% |
3.H Urea application | 571.1 | 457.1 | 411.4 | −28.0% | −10.0% |
3.I Other carbon-containing fertilizers | 236.1 | 296.9 | 169.9 | −28.0% | −42.8% |
3.B Manure management | 4075.3 | 2898.7 | 2798.8 | −31.3% | −3.4% |
3.D Agricultural soils | 20,674.8 | 14,785.6 | 14,895.2 | −28.0% | 0.7% |
3.F Burning of agricultural residues | 30.6 | 27.1 | 33.4 | 9.1% | 23.2% |
1.A.4.c. Emissions from energy use in agriculture | 8561.1 | 13,894.3 | 11,601.7 | 35.5% | −16.5% |
Year | EER [PLN Million/kt CO2e] | WEE Ratio | Year | EER [PLN Million/kt CO2e] | WEE Ratio |
---|---|---|---|---|---|
2000 | 0.56 | 0.22 | 2010 | 0.82 | 0.17 |
2001 | 0.56 | 0.21 | 2011 | 0.90 | 0.18 |
2002 | 0.52 | 0.19 | 2012 | 0.99 | 0.18 |
2003 | 0.53 | 0.19 | 2013 | 1.10 | 0.20 |
2004 | 0.76 | 0.25 | 2014 | 1.00 | 0.17 |
2005 | 0.63 | 0.20 | 2015 | 0.86 | 0.14 |
2006 | 0.66 | 0.19 | 2016 | 0.96 | 0.15 |
2007 | 0.84 | 0.22 | 2017 | 1.14 | 0.18 |
2008 | 0.73 | 0.18 | 2018 | 1.01 | 0.15 |
2009 | 0.74 | 0.16 | 2019 | 1.22 | 0.16 |
Source | Result | Reduction Method |
---|---|---|
Enteric fermentation | Accounts for ca. 30% of total agricultural emissions, including CH4 in particular. |
|
Liming/urea application/other fertilizers | GHG emissions from the use of nitrogenous fertilizers |
|
Manure management | Atmospheric emissions (N2O in particular) |
|
Emissions from energy use (…) | CO2 emissions caused by energy use in agriculture |
|
Agricultural soils | N2O emissions |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genstwa, N.; Zmyślona, J. Greenhouse Gas Emissions Efficiency in Polish Agriculture. Agriculture 2024, 14, 56. https://doi.org/10.3390/agriculture14010056
Genstwa N, Zmyślona J. Greenhouse Gas Emissions Efficiency in Polish Agriculture. Agriculture. 2024; 14(1):56. https://doi.org/10.3390/agriculture14010056
Chicago/Turabian StyleGenstwa, Natalia, and Jagoda Zmyślona. 2024. "Greenhouse Gas Emissions Efficiency in Polish Agriculture" Agriculture 14, no. 1: 56. https://doi.org/10.3390/agriculture14010056
APA StyleGenstwa, N., & Zmyślona, J. (2024). Greenhouse Gas Emissions Efficiency in Polish Agriculture. Agriculture, 14(1), 56. https://doi.org/10.3390/agriculture14010056