Some Agronomic Properties of Winter Wheat Genotypes Grown at Different Locations in Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Layout and Materials
2.2. Disease and Virus Assessment
2.3. Agro-Morphological Traits
2.4. Statistical Analysis
3. Results
3.1. Grain Yield Performance of Wheat Genotypes in 2021/2022
3.2. Grain Yield Performance of Wheat Genotypes in 2022/2023
3.3. Relationship Analysis between Investigated Traits and Locations in Two Growing Seasons Separately
4. Discussion
4.1. PCA of Fourteen Genotypes for Grain Yield in Four Locations and Two Growing Seasons
4.2. Results of Grain Yield in the 2021/2022 Growing Season
4.3. Results of Grain Yield in the 2022/2023 Growing Season
4.4. Relationship between Investigated Traits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#home (accessed on 25 July 2023).
- Erenstein, O.; Jaleta, M.; Mottaleb, K.A.; Sonder, K.; Donovan, J.; Braun, H.J. Global trends in wheat production, consumption and trade. In Wheat Improvement; Reynolds, M.P., Braun, H.J., Eds.; Springer: Cham, Switzerland, 2022; pp. 47–56. [Google Scholar] [CrossRef]
- Sun, H.; Ma, J.; Wang, L. Changes in per capita wheat production in China in the context of climate change and population growth. Food Sec. 2023, 15, 597–612. [Google Scholar] [CrossRef] [PubMed]
- UN. Growing at a Slower Pace, World Population Is Expected to Reach 9.7 Billion in 2050 and Could Peak at Nearly 11 Billion around 2100|UN DESA. United Nations Department of Economic and Social Affairs. 2019. Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html (accessed on 14 July 2023).
- UN. The Sustainable Development Goals Report. 2022. Available online: https://unstats.un.org/sdgs/report/2022/The-Sustainable-Development-Goals-Report-2022.pdf (accessed on 20 July 2023).
- Fischer, G.; Shah, M.; Tubiello, F.N.; Van Velhuizen, H. Socio-economic and climate change impacts on agriculture: An integrated assessment, 1990–2080. Philos. Trans. Royal Soc. B Biol. Sci. 2005, 360, 2067–2083. [Google Scholar] [CrossRef]
- HLPE. Nutrition and Food Systems. Committee of World Food Security (CFS). Available online: http://www.fao.org/3/a-i7846e.pdf (accessed on 18 June 2023).
- Grote, U.; Fasse, A.; Nguyen, T.T.; Erenstein, O. Food security and the dynamics of wheat and maize value chains in Africa and Asia. Front. Sustain. Food Syst. 2021, 4, 617009. [Google Scholar] [CrossRef]
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 1, e0217148. [Google Scholar] [CrossRef] [PubMed]
- Croatian Bureau of Statistics. Available online: https://podaci.dzs.hr/2022/hr/29384 (accessed on 23 July 2023).
- Oplanić, M.; Marić, A.Č.; Goreta Ban, S.; Čop, T.; Njavro, M. Horticultural farmers’ perceived risk of climate change in Adriatic Croatia. Sustainability 2023, 15, 539. [Google Scholar] [CrossRef]
- NN 46/2020. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2020_04_46_921.html (accessed on 2 June 2023).
- Croatia Wheat Industry Outlook 2022–2026. Available online: https://www.reportlinker.com/clp/country/4757/726378 (accessed on 10 June 2023).
- Lobell, D.B.; Burke, M.B. Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environ. Res. Lett. 2008, 3, 034007. [Google Scholar] [CrossRef]
- Berhanu, M.; Wolde, A.O. Review on climate change impacts and its adaptation strategies on food security in Sub-Saharan Africa. Agric. Soc. Econ. J. 2019, 19, 145–154. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Plants drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Miedaner, T.; Juroszek, P. Climate change will influence disease resistance breeding in wheat in Northwestern Europe. Theor. Appl. Genet. 2021, 134, 1771–1785. [Google Scholar] [CrossRef]
- Duveiller, E.; Singh, R.P.; Nicol, J.M. The challenges of maintaining wheat productivity: Pests, diseases, and potential epidemics. Euphytica 2007, 157, 417–430. [Google Scholar] [CrossRef]
- Mérida-García, R.; Liu, G.; He, S.; Gonzalez-Dugo, V.; Dorado, G.; Gálvez, S.; Solís, I.; Zarco-Tejada, P.J.; Reif, J.C.; Hernandez, P. Genetic dissection of agronomic and quality traits based on association mapping and genomic selection approaches in durum wheat grown in Southern Spain. PLoS ONE 2019, 14, e0211718. [Google Scholar] [CrossRef] [PubMed]
- Kronenberg, L.; Yates, S.; Boer, M.P.; Kirchgessner, N.; Walter, A.; Hund, A. Temperature response of wheat affects final height and the timing of stem elongation under field conditions. J. Exp. Bot. 2021, 72, 700–717. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Liu, J.; Gao, Y.; Sun, Z.; Chen, S.; Yao, N.; Ma, H.; Feng, H.; Yu, Q.; He, J. Simulation of plant height of winter wheat under soil Water stress using modified growth functions. Agric. Water Manag. 2020, 232, 106066. [Google Scholar] [CrossRef]
- Spanic, V.; Cosic, J.; Zdunic, Z.; Drezner, G. Characterization of agronomical and quality traits of winter wheat (Triticum aestivum L.) for Fusarium head blight pressure in different environments. Agronomy 2021, 11, 213. [Google Scholar] [CrossRef]
- Farré, A.; Sayers, L.; Leverington-Waite, M.; Goram, R.; Orford, S.; Wingen, L.; Mumford, C.; Griffiths, S. Application of a library of near isogenic lines to understand context dependent expression of QTL for grain yield and adaptive traits in bread wheat. BMC Plant Biol. 2016, 16, 161. [Google Scholar] [CrossRef] [PubMed]
- Fowler, D.B.; N’Diaye, A.; Laudencia-Chingcuanco, D.; Pozniak, C.J. Quantitative trait loci associated with phenological development, low-temperature tolerance, grain quality, and agronomic characters in wheat (Triticum aestivum L.). PLoS ONE 2016, 11, e0152185. [Google Scholar] [CrossRef]
- Saeidnia, F.; Taherian, M.; Nazeri, S.M. Graphical analysis of multi-environmental trials for wheat grain yield based on GGE-biplot analysis under diverse sowing dates. BMC Plant Biol. 2023, 23, 198. [Google Scholar] [CrossRef] [PubMed]
- Peterson, C.J.; Graybosch, R.A.; Shelton, D.R.; Baenziger, P.S. Baking quality of hard red winter wheat: Response of cultivars to environments in the Great Plains. Euphytica 1998, 100, 157–162. [Google Scholar] [CrossRef]
- Dueri, S.; Brown, H.; Asseng, S.; Ewert, F.; Webber, H.; George, M.; Craigie, R.; Guarin, J.R.; Pequeno, D.N.L.; Stella, T.; et al. Simulation of winter wheat response to variable sowing dates and densities in a high-yielding environment. J. Exp. Bot. 2022, 73, 5715–5729. [Google Scholar] [CrossRef]
- Ward, B.P.; Brown-Guedira, G.; Tyagi, P.; Kolb, F.L.; Van Sanford, D.A.; Sneller, C.H.; Griffey, C.A. Multienvironment and multitrait genomic selection models in unbalanced early-generation wheat yield trials. Crop Sci. 2019, 59, 491–507. [Google Scholar] [CrossRef]
- Popović, V.; Ljubičić, N.; Kostić, M.; Radulović, M.; Blagojević, D.; Ugrenović, V.; Popović, D.; Ivošević, B. Genotype × environment interaction for wheat yield traits suitable for selection in different seed priming conditions. Plants 2020, 9, 1804. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, R.; Armion, M.; Sadeghzadeh, D.; Amri, A.; Nachit, M. Analysis of genotype-by-environment interaction for agronomic traits of durum wheat in Iran. Plant Prod. Sci. 2011, 14, 15–21. [Google Scholar] [CrossRef]
- Bocianowski, J.; Prażak, R. Genotype by year interaction for selected quantitative traits in hybrid lines of Triticum aestivum L. with Aegilops kotschyi Boiss. and Ae. variabilis Eig. using the additive main effects and multiplicative interaction model. Euphytica 2022, 218, 11. [Google Scholar] [CrossRef]
- Bordes, J.; Branlard, G.; Oury, F.X.; Charmet, G.; Balfourier, F. Agronomic characteristics, grain quality and flour rheology of 372 bread wheats in a worldwide core collection. J. Cereal Sci. 2008, 48, 569–579. [Google Scholar] [CrossRef]
- Eltaher, S.; Baenziger, P.S.; Belamkar, V.; Emara, H.A.; Nower, A.A.; Salem, K.F.; Alqudah, A.M.; Sallam, A. GWAS revealed effect of genotype× environment interactions for grain yield of Nebraska winter wheat. BMC Genom. 2021, 22, 2. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, R.; Farshadfar, F.; Amri, A. Interpreting genotype × environment interactions for grain yield of rainfed durum wheat in Iran. Crop J. 2015, 3, 526–535. [Google Scholar] [CrossRef]
- Yu, M.; Liu, Z.H.; Yang, B.; Chen, H.; Zhang, H.; Hou, D.-B. The contribution of photosynthesis traits and plant height components to plant height in wheat at the individual quantitative trait locus level. Sci. Rep. 2020, 10, 12261. [Google Scholar] [CrossRef]
- Singh, C.; Gupta, A.; Gupta, V.; Kumar, P.; Sendhil, R.; Tyagi, B.S.; Singh, G.; Chatrath, R.; Singh, G.P. Genotype × environment interaction analysis of multi-environment wheat trials in India using AMMI and GGE biplot models. Crop Breed. Appl. Biotechnol. 2019, 19, 309–318. [Google Scholar] [CrossRef]
- Gupta, V.; Kumar, M.; Singh, V.; Chaudhary, L.; Yashveer, S.; Sheoran, R.; Dalal, M.S.; Nain, A.; Lamba, K.; Gangadharaiah, N.; et al. Genotype by environment interaction analysis for grain yield of wheat (Triticum aestivum (L.) em.Thell) genotypes. Agriculture 2022, 12, 1002. [Google Scholar] [CrossRef]
- Farag, F.M.; Awaad, H.A.; Abdel-Hameed, I.M.; Abdul-Hamid, M.I.E.; Morsy, A.M. Stability of grain yield in bread wheat genotypes under different environments. Zagazig J. Agric. Res. 2019, 46, 1797–1807. [Google Scholar] [CrossRef]
- Valério, I.P.; de Carvalho, F.I.F.; Benin, G.; da Silveira, G.; da Silva, J.A.G.; Nornberg, R.; Hagemann, T.; de Souza Luche, H.; de Oliveira, A.C. Seeding density in wheat: The more, the merrier? Sci. Agric. 2013, 70, 176–184. [Google Scholar] [CrossRef]
- Khadka, K.; Earl, H.J.; Raizada, M.N.; Navabi, A. A Physio-morphological trait-based approach for breeding drought tolerant wheat. Front. Plant Sci. 2020, 11, 715. [Google Scholar] [CrossRef] [PubMed]
- Duvnjak, J.; Lončarić, A.; Brkljačić, L.; Šamec, D.; Šarčević, H.; Salopek-Sondi, B.; Španić, V. Morpho-physiological and hormonal response of winter wheat varieties to drought stress at stem elongation and anthesis stages. Plants 2023, 12, 418. [Google Scholar] [CrossRef] [PubMed]
- Selim, D.A.-F.H.; Nassar, R.M.A.; Boghdady, M.S.; Bonfill, M. Physiological and anatomical studies of two wheat cultivars irrigated with magnetic water under drought stress conditions. Plant Physiol. Biochem. 2019, 135, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Hussain, M.; Siddique, K.H. Drought stress in wheat during flowering and grain-filling periods. CRC Crit. Rev. Plant Sci. 2014, 33, 331–349. [Google Scholar] [CrossRef]
- Wan, C.; Dang, P.; Gao, L.; Wang, J.; Tao, J.; Qin, X.; Feng, B.; Gao, J. How does the environment affect wheat yield and protein content response to drought? A Meta-Analysis. Front. Plant. Sci. 2022, 13, 896985. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, M.; Morgounov, A.; Belamkar, V.; Wegulo, S.N.; Dababat, A.A.; Erginbas-Orakci, G.; Bouhssini, M.E.; Gautam, P.; Poland, J.; Akci, N.; et al. Genome-wide association study for multiple biotic stress resistance in synthetic hexaploid wheat. Int. J. Mol. Sci. 2019, 20, 3667. [Google Scholar] [CrossRef]
- Atkinson, N.J.; Urwin, P.E. The interaction of plant biotic and abiotic stresses: From genes to the field. J. Exp. Bot. 2012, 63, 3523–3543. [Google Scholar] [CrossRef]
- Tapley, M.; Ortiz, B.V.; van Santen, E.; Balkcom, K.S.; Mask, P.; Weaver, D.B. Location, seeding date, and variety interactions on winter wheat yield in southeastern United States. Agron. J. 2013, 105, 510–518. [Google Scholar] [CrossRef]
- Aradottir, G.I.; Crespo-Herrera, L. Host plant resistance in wheat to barley yellow dwarf viruses and their aphid vectors: A review. Curr. Opin. Insect. Sci. 2021, 45, 59–68. [Google Scholar] [CrossRef]
- Armand, T.; Souquet, M.; Korn, L.; Gauthier, K.; Jacquot, E. Asymmetric interactions between barley yellow dwarf virus-PAV and wheat dwarf virus in wheat. Front. Plant Sci. 2023, 14, 1194622. [Google Scholar] [CrossRef] [PubMed]
- van Oosterom, E.J.; Kleijn, D.; Ceccarelli, S.; Nachit, M.M. Genotype-by-environment interactions of barley in the Mediterranean region. Crop Sci. 1993, 33, 669–674. [Google Scholar] [CrossRef]
- Kozak, M.; Azevedo, R.A. Sequential path analysis: What does “sequential” mean? Sci. Agric. 2014, 71, 525–527. [Google Scholar] [CrossRef]
- Nehe, A.; Akin, B.; Sanal, T.; Evlice, A.K.; Ünsal, R.; Dinçer, N.; Demir, L.; Geren, H.; Sevim, I.; Orhan, Ş.; et al. Genotype × environment interaction and genetic gain for grain yield and grain quality traits in Turkish spring wheat released between 1964 and 2010. PLoS ONE 2019, 14, e0219432. [Google Scholar] [CrossRef]
- Mecha, B.; Alamerew, S.; Assefa, A.; Assefa, E.; Dutamo, D. Correlation and path coefficient studies of yield and yield associated traits in bread wheat (Triticum aestivum L.) genotypes. Adv. Plants Agric. Res. 2017, 6, 128–136. [Google Scholar]
- Li, Y.; Tao, F. Interactions of genotype, environment and management on wheat traits and grain yield variations in different climate zones across China. Agric. Syst. 2022, 203, 103521. [Google Scholar] [CrossRef]
- Yang, R.C.; Baker, R.J. Genotype-environment interactions in two wheat crosses. Crop Sci. 1991, 31, 83–87. [Google Scholar] [CrossRef]
- Kaya, Y.; Akcura, M. Effects of genotype and environment on grain yield and quality traits in bread wheat (T. aestivum L.). Food Sci. Technol. 2014, 34, 386–393. [Google Scholar] [CrossRef]
- Fones, H.; Gurr, S. The impact of Septoria tritici Blotch disease on wheat: An EU perspective. Fungal Genet. Biol. 2015, 79, 3–7. [Google Scholar] [CrossRef]
- Mapuranga, J.; Chang, J.; Yang, W. Combating powdery mildew: Advances in molecular interactions between Blumeria graminis f. sp. tritici and wheat. Front. Plant Sci. 2022, 13, 1102908. [Google Scholar] [CrossRef]
- Vidal, T.; Saint-Jean, S.; Lusley, P.; Leconte, M.M.; Krima, S.B.; Boixel, A.L.; Consortium, W.; de Vallavieille-Pope, C. Cultivar mixture effects on disease and yield remain despite diversity in wheat height and earliness. Plant Pathol. 2020, 69, 1148–1160. [Google Scholar] [CrossRef]
- Mohammadi, M.; Sharifi, P.; Karimizadeh, R.; Shefazadeh, M.K. Relationships between grain yield and yield components in bread wheat under different water availability (Dryland and supplemental irrigation conditions). Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 195–200. [Google Scholar] [CrossRef]
- Berraies, S.; Salah, G.; Mohamed, R.S.; Yahyaoui, A. Estimating grain yield losses caused by septoria leaf blotch on durum wheat in Tunisia. Chil. J. Agric. Res. 2014, 74, 432–437. [Google Scholar] [CrossRef]
- Bhathal, J.; Loughman, R.; Speijers, J. Yield reduction in wheat in relation to leaf disease from yellow (tan) spot and Septoria nodorum Blotch. Eur. J. Plant Pathol. 2003, 109, 435–443. [Google Scholar] [CrossRef]
Location | Average Temperature (°C) | Precipitation (mm) | Soil Type | Altitude (m a.s.l.) | Geographical Position | |||
---|---|---|---|---|---|---|---|---|
2021/2022 | 2022/2023 | 2021/2022 | 2022/2023 | Latitude | Longitude | |||
Osijek | 10.9 | 11.7 | 459.5 | 729.0 | eutric cambisol | 94 | 45°32′ N | 18°44′ E |
Tovarnik | 11.5 | 12.0 | 517.3 | 680.4 | chernozemic soil | 88 | 45°10′ N | 19°09′ E |
Kutjevo | 11.4 | 11.9 | 526.1 | 745.9 | loamic soil | 226 | 45°25′ N | 17°52′ E |
Zagreb | 11.1 | 11.7 | 585.9 | 912.3 | eutric fluvic cambisols | 158 | 45°48′ N | 15°58′ E |
Source of Variability | DF | Mean Square | ||
---|---|---|---|---|
Grain Yield | Test Weight | Plant Height | ||
Year (Y) | 1 | 1000.98 *** | 9436 *** | 16623.75 *** |
Location (L) | 3 | 56.34 *** | 524 *** | 919.83 *** |
Genotype (G) | 13 | 15.68 *** | 234 *** | 275.31 *** |
Y × L | 3 | 127.84 *** | 652 *** | 551.57 *** |
Y × G | 13 | 6.21 *** | 47 *** | 128.91 *** |
L × G | 39 | 1.81 *** | 31 *** | 31.61 *** |
Y × L × G | 39 | 1.64 *** | 32 *** | 22.97 *** |
Error | 336 | 0.59 | 12 | 11.81 |
Location | Grain Yield (t ha−1) | Test Weight (kg hL−1) | Plant Height (cm) | |||
---|---|---|---|---|---|---|
2021/2022 | 2022/2023 | 2021/2022 | 2022/2023 | 2021/2022 | 2022/2023 | |
Tovarnik | 8.05 b | 5.86 c | 77.14 a | 66.17 b | 72.05 b | 85.37 bc |
Zagreb | 8.35 b | 8.01 a | 75.92 b | 61.67 c | 76.38 a | 85.20 c |
Kutjevo | 10.61 a | 5.74 c | 74.84 c | 66.13 b | 77.77 a | 86.38 b |
Osijek | 10.87 a | 6.31 b | 75.34 bc | 72.55 a | 76.54 a | 94.53 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spanic, V.; Jukic, G.; Zoric, M.; Varnica, I. Some Agronomic Properties of Winter Wheat Genotypes Grown at Different Locations in Croatia. Agriculture 2024, 14, 4. https://doi.org/10.3390/agriculture14010004
Spanic V, Jukic G, Zoric M, Varnica I. Some Agronomic Properties of Winter Wheat Genotypes Grown at Different Locations in Croatia. Agriculture. 2024; 14(1):4. https://doi.org/10.3390/agriculture14010004
Chicago/Turabian StyleSpanic, Valentina, Goran Jukic, Marina Zoric, and Ivan Varnica. 2024. "Some Agronomic Properties of Winter Wheat Genotypes Grown at Different Locations in Croatia" Agriculture 14, no. 1: 4. https://doi.org/10.3390/agriculture14010004
APA StyleSpanic, V., Jukic, G., Zoric, M., & Varnica, I. (2024). Some Agronomic Properties of Winter Wheat Genotypes Grown at Different Locations in Croatia. Agriculture, 14(1), 4. https://doi.org/10.3390/agriculture14010004