An Overview of the Impacts of Climate Change on Vineyard Ecosystems in Niagara, Canada
Abstract
:1. Introduction
2. The Niagara Region of Ontario, Canada
3. Changes in Climate in the Niagara Region
3.1. Spring and Fall
3.2. Summer
3.3. Winter
4. Connecting Climate Change to Niagara Vineyards: A Conceptual Model
4.1. Soil
4.2. Vines
4.3. Invertebrates and Pathogens
5. Management Alternatives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change—IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; In press. [Google Scholar] [CrossRef]
- Poirier, E.J.; Plummer, R.; Pickering, G. Climate change adaptation in the Canadian wine industry: Strategies and drivers. Can. Geogr. 2021, 65, 368–381. [Google Scholar] [CrossRef]
- Turner, M.G.; Calder, W.J.; Cumming, G.S.; Hughes, T.P.; Jentsch, A.; LaDeau, S.L.; Lenton, T.M.; Shuman, B.N.; Turetsky, M.R.; Ratajczak, Z.; et al. Climate change, ecosystems, and abrupt change: Science priorities. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190105. [Google Scholar] [CrossRef] [PubMed]
- Vandermeer, J.; Perfecto, I. Ecological complexity and agroecosystems: Seven themes from theory. Agroecol. Sustain. Food Syst. 2017, 41, 697–722. [Google Scholar] [CrossRef]
- Lamanda, N.; Roux, S.; Delmotte, S.; Merot, A.; Rapidel, B.; Adam, M.; Wery, J. A protocol for the conceptualization of an agro-ecosystem to guide data acquisition and analysis and expert knowledge integration. Eur. J. Agron. 2012, 38, 104–116. [Google Scholar] [CrossRef]
- Reineke, A.; Thiéry, D. Grapevine insect pests and their natural enemies in the age of global warming. J. Pest Sci. 2016, 89, 313–328. [Google Scholar] [CrossRef]
- OIV—L’Organisation Internationale de la Vigne et du Vin. State of the Vitiviniculture World Market. 2022. Available online: http://www.oiv.int/public/medias/6679/en-oiv-state-of-the-vitiviniculture-world-market-2019.pdf (accessed on 20 May 2023).
- Schultz, H.R.; Stoll, M. Some critical issues in environmental physiology of grapevines: Future challenges and current limitations. Aust. J. Grape Wine Res. 2010, 16, 4–24. [Google Scholar] [CrossRef]
- Tonietto, J.; Carbonneau, A. A Multicriteria Climatic Classification System for Grape-Growing Regions Worldwide—ScienceDirect. 2004. Available online: https://www.sciencedirect.com/science/article/pii/S0168192304000115 (accessed on 20 April 2023).
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef]
- Savi, T.; Petruzzellis, F.; Martellos, S.; Stenni, B.; Dal Borgo, A.; Zini, L.; Lisjak, K.; Nardini, A. Vineyard water relations in a karstic area: Deep roots and irrigation management. Agric. Ecosyst. Environ. 2018, 263, 53–59. [Google Scholar] [CrossRef]
- Mosedale, J.R.; Wilson, R.J.; Maclean, I.M.D. Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions. PLoS ONE 2015, 10, e0141218. [Google Scholar] [CrossRef]
- Kenny, G.J.; Harrison, P.A. The effects of climate variability and change on grape suitability in Europe. J. Wine Res. 1992, 3, 163–183. [Google Scholar] [CrossRef]
- Holland, T.; Smit, B. Recent climate change in the Prince Edward County winegrowing region, Ontario, Canada: Implications for adaptation in a fledgling wine industry. Reg. Environ. Change 2014, 14, 1109–1121. [Google Scholar] [CrossRef]
- Marzen, M.; Iserloh, T.; Fister, W.; Seeger, M.; Rodrigo-Comino, J.; Ries, J.B. On-Site Water and Wind Erosion Experiments Reveal Relative Impact on Total Soil Erosion. Geosciences 2019, 9, 478. [Google Scholar] [CrossRef]
- Grape Growers of Ontario. 2022. Available online: https://grapegrowersofontario.com/grape-industry-in-ontario/statistics/ (accessed on 1 May 2023).
- Telfer, D.J. From a Wine Tourism Village to a Regional Wine Route: An Investigation of the Competitive Advantage of Embedded Clusters in Niagara, Canada. Tour. Recreat. Res. 2001, 26, 23–33. [Google Scholar] [CrossRef]
- Shaw, T.B. Climate change and the evolution of the Ontario cool climate wine regions in Canada. J. Wine Res. 2017, 28, 13–45. [Google Scholar] [CrossRef]
- Cyr, D.; Kusy, M. Canadian Icewine production: A case for the use of weather derivatives. J. Wine Econ. 2007, 2, 145–167. [Google Scholar] [CrossRef]
- Cyr, D.; Kusy, M.; Shaw, A.B. Climate change and the potential use of weather derivatives to Hedge vineyard harvest rainfall risk in the Niagara Region. J. Wine Res. 2010, 21, 207–227. [Google Scholar] [CrossRef]
- Prairie Climate Centre. Climate Atlas of Canada, Version 2. 2019. Available online: https://climateatlas.ca (accessed on 10 July 2019).
- Environmental Law and Policy Center (ELPC). An Assessment of the Impacts of Climate Change on the Great Lakes; Environmental Law and Policy Center (ELPC): Chicago, IL, USA, 2019. [Google Scholar]
- Toronto and Region Conservation Authority. Climate Projections for Niagara Region. 2022. Available online: https://www.niagararegion.ca/official-plan/pdf/climate-projections.pdf (accessed on 12 May 2023).
- Penney, J. Adapting to Climate Change: Challenges for Niagara; Report for WaterSmart Niagara; Brock University Environmental Sustainability Research Centre: Niagara region, ON, Canada, 2012; Available online: https://www.niagaraknowledgeexchange.com/wp-content/uploads/sites/2/2014/05/Adapting_to_Climate_Change.pdf (accessed on 10 July 2022).
- Wang, X.; Huang, G.; Baetz, B.W.; Zhao, S. Probabilistic projections of regional climatic changes over the Great Lakes Basin. Clim. Dyn. 2017, 49, 2237–2247. [Google Scholar] [CrossRef]
- Cheng, C.S.; Lopes, E.; Fu, C.; Huang, Z. Possible Impacts of Climate Change on Wind Gusts under Downscaled Future Climate Conditions: Updated for Canada. J. Clim. 2014, 27, 1255–1270. [Google Scholar] [CrossRef]
- Hewer, M.J.; Gough, W.A. Lake Ontario ice coverage: Past, present and future. J. Great Lakes Res. 2019, 45, 1080–1089. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Costa, J.M.; Egipto, R.; Aguiar, F.C.; Marques, P.; Nogales, A.; Madeira, M. The role of soil temperature in mediterranean vineyards in a climate change context. Front. Plant Sci. 2023, 14, 1145137. [Google Scholar] [CrossRef]
- Bell, D.J.; Forseth, I.N.; Teramura, A.H. Field Water Relations of Three Temperate Vines. Oecologia 1988, 74, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Willwerth, J.J.; Reynolds, A.G. Spatial variability in Ontario Riesling Vineyards: I. Soil, vine water status and vine performance. Oeno One 2020, 54, 327–350. [Google Scholar] [CrossRef]
- De Herralde, F.; Savé, R.; Biel, C. Ecophysiological response to flood of seven grapevine cultivars. Acta Hortic. 2005, 689, 137–144. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Yamamoto, T.; Ikeda, H.; Sugihara, R.; Kaihori, H.; Kawabata, M.; Suzuki, S. Effects of constantly high soil water content on vegetative growth and grape quality in Japan with high rainfall during grapevine growing season. Folia Hortic. 2020, 32, 135–145. [Google Scholar] [CrossRef]
- Gambetta, G.A.; Herrera, J.C.; Dayer, S.; Feng, Q.; Hochberg, U.; Castellarin, S.D. The physiology of drought stress in grapevine: Towards an integrative definition of drought tolerance. J. Exp. Bot. 2020, 71, 4658–4676. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Sbraci, S.; Storchi, P.; Mattii, G.B. Sustainable Viticulture: Effects of Soil Management in Vitis vinifera. Agronomy 2020, 10, 1949. [Google Scholar] [CrossRef]
- Bogoni, M.; Panont, A.; Valenti, L.; Scienza, A. Effects of Soil Physical and Chemical Conditions on Grapevine Nutritional Status. Acta Hortic. 1995, 383, 299–312. [Google Scholar] [CrossRef]
- Akter, M.; Miah, M.; Hassan, M.; Mobin, M.; Baten, M. Textural Influence on Surface and Subsurface Soil Temperatures under Various Conditions. J. Environ. Sci. Nat. Resour. 2016, 8, 147–151. [Google Scholar] [CrossRef]
- Giffard, B.; Winter, S.; Guidoni, S.; Nicolai, A.; Castaldini, M.; Cluzeau, D.; Coll, P.; Cortet, J.; Le Cadre, E.; d’Errico, G.; et al. Vineyard Management and Its Impacts on Soil Biodiversity, Functions, and Ecosystem Services. Front. Ecol. Evol. 2022, 10, 850272. [Google Scholar] [CrossRef]
- Schultz, H.R. Global Climate Change, Sustainability, and Some Challenges for Grape and Wine Production. J. Wine Econ. 2016, 11, 181–200. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; de Rességuier, L. Major Soil-Related Factors in Terroir Expression and Vineyard Siting. Elements 2018, 14, 159–165. [Google Scholar] [CrossRef]
- Fraga, H.; García de Cortázar Atauri, I.; Malheiro, A.C.; Santos, J.A. Modelling climate change impacts on viticultural yield, phenology, and stress conditions in Europe. Glob. Chang. Biol. 2016, 22, 3774–3788. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Ramos, M.C.; Martínez-Casasnovas, J.A. Effects of precipitation patterns and temperature trends on soil water available for vineyards in a Mediterranean climate area. Agric. Water Manag. 2010, 97, 1495–1505. [Google Scholar] [CrossRef]
- Mosedale, J.R.; Abernethy, K.E.; Smart, R.E.; Wilson, R.J.; Maclean, I.M.D. Climate change impacts and adaptive strategies: Lessons from the grapevine. Glob. Change Biol. 2016, 22, 3814–3828. [Google Scholar] [CrossRef]
- Petoumenou, D.G.; Biniari, K.; Xyrafis, E.; Mavronasios, D.; Daskalakis, I.; Palliotti, A. Effects of Natural Hail on the Growth, Physiological Characteristics, Yield, and Quality of Vitis vinifera L.cv. Thompson Seedless under Mediterranean Growing Conditions. Agronomy 2019, 9, 197. [Google Scholar] [CrossRef]
- Behboudian, M.H.; Singh, Z. Water Relations and Irrigation Scheduling in Grapevine. In Horticultural Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001; pp. 189–225. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate change and global wine quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Deluc, L.G.; Quilici, D.R.; Decendit, A.; Grimplet, J.; Wheatley, M.D.; Schlauch, K.A.; Mérillon, J.-M.; Cushman, J.C.; Cramer, G.R. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genom. 2009, 10, 212. [Google Scholar] [CrossRef]
- Simonneau, T.; Lebon, E.; Coupel-Ledru, A.; Marguerit, E.; Rossdeutsch, L.; Ollat, N. Adapting plant material to face water stress in vineyards: Which physiological targets for an optimal control of plant water status? OENO One 2017, 51, 167. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Xylia, P.; Litskas, V.; Stavrinides, M.; Heyman, L.; Demeestere, K.; Höfte, M.; Tzortzakis, N. Assessing the Impact of Drought Stress and Soil Cultivation in Chardonnay and Xynisteri Grape Cultivars. Agronomy 2020, 10, 670. [Google Scholar] [CrossRef]
- Balint, G.; Reynolds, A.G. Impact of exogenous Abscisic acid on vine physiology and grape composition of cabernet sauvignon. Am. J. Enol. Vitic. 2013, 64, 74–87. [Google Scholar] [CrossRef]
- Balint, G.; Reynolds, A. Irrigation level and time of imposition impact vine physiology, yield components, fruit composition and wine quality of Ontario Chardonnay. Sci. Hortic. 2017, 214, 252–272. [Google Scholar] [CrossRef]
- Santillán, D.; Iglesias, A.; La Jeunesse, I.; Garrote, L.; Sotes, V. Vineyards in transition: A global assessment of the adaptation needs of grape producing regions under climate change. Sci. Total Environ. 2019, 657, 839–852. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lüscher, J.; Chen, C.; Brillante, L.; Kurtural, S. Mitigating Heat Wave and Exposure Damage to “Cabernet Sauvignon” Wine Grape with Partial Shading Under Two Irrigation Amounts. Front. Plant Sci. 2020, 11, 579192. [Google Scholar] [CrossRef]
- Greer, D.H.; Weston, C. Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Funct. Plant Biol. 2010, 37, 206–214. [Google Scholar] [CrossRef]
- Gouot, J.C.; Smith, J.P.; Holzapfel, B.P.; Walker, A.R.; Barril, C. Grape berry flavonoids: A review of their biochemical responses to high and extreme high temperatures. J. Exp. Bot. 2019, 70, 397–423. [Google Scholar] [CrossRef]
- Ollat, N.; Verdin, P.; Carde, J.-P.; Barrieu, F.; Gaudillère, J.-P.; Moing, A. Grape berry development: A review. J. Int. des Sci. de la Vigne et Du Vin 2002, 36, 109–131. [Google Scholar] [CrossRef]
- Guilpart, N.; Metay, A.; Gary, C. Grapevine bud fertility and number of berries per bunch are determined by water and nitrogen stress around flowering in the previous year. Eur. J. Agron. 2014, 54, 9–20. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. An overview of climate change impacts on European viticulture. Food Energy Secur. 2012, 1, 94–110. [Google Scholar] [CrossRef]
- Matthews, M.A.; Ishii, R.; Anderson, M.M.; O’Mahony, M. Dependence of wine sensory attributes on vine water status. J. Sci. Food Agric. 1990, 51, 321–335. [Google Scholar]
- Medrano, H.; Tomás, M.; Martorell, S.; Escalona, J.-M.; Pou, A.; Fuentes, S.; Flexas, J.; Bota, J. Improving water use efficiency of vineyards in semiarid regions. A review. Agron. Sustain. Dev. 2015, 35, 499–517. [Google Scholar] [CrossRef]
- Laroche-Pinel, E.; Duthoit, S.; Albughdadi, M.; Costard, A.D.; Rousseau, J.; Chéret, V.; Clenet, H. Towards Vine Water Status Monitoring on a Large-Scale Using Sentinel-2 Images. Remote Sens. 2021, 13, 1837. [Google Scholar] [CrossRef]
- Gambetta, J.M.; Holzapfel, B.P.; Stoll, M.; Friedel, M. Sunburn in Grapes: A Review. Front. Plant Sci. 2020, 11, 604691. [Google Scholar] [CrossRef]
- Roby, G.; Harbertson, J.F.; Adams, D.A.; Matthews, M.A. Berry size and vine water deficits as factors in winegrape composition: Anthocyanins and tannins. Aust. J. Grape Wine Res. 2004, 10, 100–107. [Google Scholar] [CrossRef]
- Belliveau, S.; Smit, B.; Bradshaw, B. Multiple exposures and dynamic vulnerability: Evidence from the grape industry in the Okanagan Valley, Canada. Glob. Environ. Chang. 2006, 16, 364–378. [Google Scholar] [CrossRef]
- Esteban, M.A.; Villanueva, M.J.; Lissarrague, J.R. Effect of irrigation on changes in the anthocyanin composition of the skin of cv Tempranillo (Vitis vinifera L.) grape berries during ripening. J. Sci. Food Agric. 2001, 81, 409–420. [Google Scholar] [CrossRef]
- Rahemi, A.; Fisher, H.; Dale, A.; Taghavi, T.; Kelly, J. Bud dormancy pattern, chilling requirement, and cold hardiness in Vitis vinifera L. ‘Chardonnay’ and ‘Riesling’. Can. J. Plant Sci. 2021, 101, 871–885. [Google Scholar] [CrossRef]
- Jasinski, M.K.; Reynolds, A.G.; Di Profio, F.; Pasquier, A.; Touffet, M.; Fellman, R.; Lee, H.S. Terroir of winter hardiness: Bud LT (50,) water metrics, yield, and berry composition in Ontario Riesling. Am. J. Enol Vitic. 2020, 71, 288–307. [Google Scholar] [CrossRef]
- Vincent, C.; Lowery, T.; Parent, J.P. The entomology of vineyards in Canada. Can. Entomol. 2018, 150, 697–715. [Google Scholar] [CrossRef]
- Castex, V.; Beniston, M.; Calanca, P.; Fleury, D.; Moreau, J. Pest management under climate change: The importance of understanding tritrophic relations. Sci. Total Environ. 2018, 616–617, 397–407. [Google Scholar] [CrossRef]
- Svobodova, E.; Trnka, M.; Dubrovsky, M.; Semeradova, D.; Eitzinger, J.; Stepanek, P.; Zalud, Z. Determination of areas with the most significant shift in persistence of pests in Europe under climate change. Pest. Manag. Sci. 2014, 70, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Anas, O.; Brannen, P.M.; Sutton, T.B. The effect of warming winter temperatures on the severity of Pierce’s disease in the southeastern United States. Phytopathology 2006, 96, S5. [Google Scholar]
- DeLucia, E.H.; Casteel, C.L.; Nabity, P.D.; O’Neill, B.F. Insects take a bigger bite out of plants in a warmer, higher carbon dioxide world. Proc. Natl. Acad. Sci. USA 2008, 105, 1781–1782. [Google Scholar] [CrossRef]
- Zavala, J.A.; Nabity, P.D.; DeLucia, E.H. An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu. Rev. Entomol. 2013, 58, 79–97. [Google Scholar] [CrossRef]
- Guerreiro, A.; Figueiredo, J.; Sousa Silva, M.; Figueiredo, A. Linking jasmonic acid to grapevine resistance against the biotrophic oomycete Plasmopara viticola. Front. Plant Sci. 2016, 7, 565. [Google Scholar] [CrossRef]
- During, H. ABA and water stress in grapevines. Acta Hortic. 1986, 179, 413–420. [Google Scholar] [CrossRef]
- Rienth, M.; Vigneron, N.; Walker, R.P.; Castellarin, S.D.; Sweetman, C.; Burbidge, C.A.; Bonghi, C.; Famiani, F.; Darriet, P. Modifications of Grapevine Berry Composition Induced by Main Viral and Fungal Pathogens in a Climate Change Scenario. Front. Plant Sci. 2021, 12, 717223. [Google Scholar] [CrossRef]
- Agriculture and Agrifood Canada. 2006. Available online: https://www.agrireseau.net/phytoprotection/documents/Grape_culture_profile_Can_2006E.pdf (accessed on 24 March 2023).
- Carroll, J.E.; Wilcox, W.F. Effects of Humidity on the Development of Grapevine Powdery Mildew. Phytopathology 2007, 93, 1137–1144. [Google Scholar] [CrossRef]
- Cauduro Girardello, R.; Rich, V.; Smith, R.J.; Brenneman, C.; Heymann, H.; Oberholster, A. The impact of grapevine red blotch disease on Vitis vinifera L. Chardonnay grape and wine composition and sensory attributes over three seasons. J. Sci. Food Agric. 2020, 100, 1436–1447. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Kim, W.-S.; Meng, B. A highly effective and versatile technology for the isolation of RNAs from grapevines and other woody perennials for use in virus diagnostics. Virol. J. 2015, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Poojari, S.; Lowery, D.T.; Rott, M.; Schmidt, A.M.; Úrbez-Torres, J.R. Incidence, distribution and genetic diversity of Grapevine red blotch virus in British Columbia. Can. J. Plant Pathol. 2017, 39, 201–211. [Google Scholar] [CrossRef]
- Xiao, H.; Roscow, O.; Hooker, J.; Li, C.; Maree, H.J.; Meng, B. Concerning the Etiology of Syrah Decline: A Fresh Perspective on an Old and Complex Issue Facing the Global Grape and Wine Industry. Viruses 2022, 15, 23. [Google Scholar] [CrossRef] [PubMed]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerda, A. The superior effect of nature-based solutions in land management for enhancing ecosystems services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef]
- Galati, A.; Gristina, L.; Crescimanno, M.; Barone, E.; Novara, A. Towards more efficient incentives for Agri-environment measures in degraded and eroded vineyards. Land Degrad. Dev. 2015, 26, 557–564. [Google Scholar] [CrossRef]
- Guzmán, G.; Cabezas, J.M.; Sánches-Cuesta, R.; Lora, Á.; Bauer, T.; Strauss, P.; Winter, S.; Zaller, J.G.; Gómez, J.A. A field evaluation of the impact of temporary cover crops on soil properties and vegetation communities in southern Spain vineyards. Agric. Ecosyst. Environ. 2019, 272, 135–145. [Google Scholar] [CrossRef]
- Baiamonte, G.; Minacapilli, M.; Novara, A.; Gristina, L. Time scale effects and interactions of rainfall erosivity and cover management factors on vineyard soil loss erosion in the semi-arid area of Southern Sicily. Water 2019, 11, 978. [Google Scholar] [CrossRef]
- Fourie, J.C.; Kunjeku, E.C.; Booyse, M.; Kutama, T.G.; Sassman, L.W. Effect of cover crops, and the management thereof, on the weed spectrum in a drip-irrigated vineyard: 1. Weeds growing during winter and from grapevine bud break to grapevine berry set. 2017. S. Afr. J. Enol. Vitic. 2017, 38, 182–191. [Google Scholar]
- Fourie, J.C.; Kunjeku, E.C.; Booyse, M.; Kutama, T.G.; Freitag, K.; Ochse, C.H. Effect of cover crops, and the management thereof, on the weed spectrum in a drip-irrigated vineyard: 2. Weeds growing from grapevine berry set to post-harvest. S. Afr. J. Enol. Vitic. 2017, 38, 167–181. [Google Scholar] [CrossRef]
- Coniberti, A.; Ferrari, V.; Disegna, E.; Dellacassa, E.; Lakso, A.N. Under-trellis cover crop and deficit irrigation to regulate water availability and enhance Tanat wine sensory attributes in a humid climate. Sci. Hortic. 2018, 235, 244–252. [Google Scholar] [CrossRef]
- Eckert, M.; Mathulwe, L.L.; Gaigher, R.; Joubert-van der Merwe, L.; Pryke, J.S. Native cover crops enhance arthropod diversity in vineyards of the Cape Floristic Region. J. Insect Conserv. 2019, 24, 133–149. [Google Scholar] [CrossRef]
- Garcia, L.; Celette, F.; Gary, C.; Ripoche, A.; Valdés-Gómes, H.; Metay, A. Management of services crops for the provision of ecosystem services in vineyards: A review. Agric. Ecosyst. Environ. 2018, 251, 158–170. [Google Scholar] [CrossRef]
- Bucur, G.M.; Dejeu, L. Research on Adaptation Measures of Viticulture to Climate Change: Overview. Sci. Pap. Ser. B Hortic. 2022, 66, 177–190. [Google Scholar]
- Reynolds, A.G.; Lowrey, W.D.; Tomek, L.; Hakimi, J.; de Savigny, C. Influence of Irrigation on Vine Performance, Fruit Composition, and Wine Quality of Chardonnay in a Cool, Humid Climate. Am. J. Enol. Vitic. 2007, 58, 217–228. [Google Scholar] [CrossRef]
- Reighard, G.L.; Loreti, F. Rootstock Development. In The Peach: Botany, Production and Uses; Layne, D.R., Bassi, D., Eds.; CAB International: Cambridge, MA, USA, 2008; pp. 193–220. [Google Scholar]
- Banuls, J.; Primo-Millo, E. Effects of salinity on some Citrus scion-rootstock combinations. Ann. Bot. 1995, 76, 97–102. [Google Scholar] [CrossRef]
- Santa-Cruz, A.; Martinez-Rodriguez, M.M.; Perez-Alfocea, F.; Romero-Aranda, R.; Bolarin, M.C. The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Sci. 2002, 162, 825–831. [Google Scholar] [CrossRef]
- Ruiz, J.M.; Belakbir, A.; López-Cantarero, I.; Romero, L. Leaf-macronutrient content and yield in grafted melon plants: A model to evaluate the influence of rootstock genotype. Sci. Hortic. 1997, 71, 227–234. [Google Scholar] [CrossRef]
- Kawaguchi, M.; Taji, A.; Backhouse, D.; Oda, M. Anatomy and physiology of graft incompatibility in solanaceous plants. J. Hortic. Sci. Biotechnol. 2008, 83, 581–588. [Google Scholar] [CrossRef]
- Mudge, K.; Janick, J.; Scofield, S.; Goldschmidt, E.E. A History of Grafting. In Horticultural Reviews; Janick, J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 437–493. [Google Scholar] [CrossRef]
- Messmer, N.; Bohnert, P.; Schumacher, S.; Fuchs, R. Studies on the Occurrence of Viruses in Planting Material of Grapevines in Southwestern Germany. Viruses 2021, 13, 248. [Google Scholar] [CrossRef] [PubMed]
- Willwerth, J.J.; Ker, K.; Inglis, D. Best Management Practices for Reducing Winter Injury in Grapevines; Cool Climate Oenology & Viticulture Institute (CCOVI), Brock University: St. Catharines, ON, Canada, 2014; Available online: https://brocku.ca/webfm/Best_Practices_Manual__Winter_Injury_Sept_14_(5).pdf (accessed on 1 August 2023).
- Antolín, M.C.; Toledo, M.; Pascual, I.; Irigoyen, J.J.; Goicoechea, N. The exploitation of local Vitis vinifera L. biodiversity as a valuable tool to cope with climate change maintaining berry quality. Plant 2021, 10, 71. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tosato, D.R.; VanVolkenburg, H.; Vasseur, L. An Overview of the Impacts of Climate Change on Vineyard Ecosystems in Niagara, Canada. Agriculture 2023, 13, 1809. https://doi.org/10.3390/agriculture13091809
Tosato DR, VanVolkenburg H, Vasseur L. An Overview of the Impacts of Climate Change on Vineyard Ecosystems in Niagara, Canada. Agriculture. 2023; 13(9):1809. https://doi.org/10.3390/agriculture13091809
Chicago/Turabian StyleTosato, Diana Ribeiro, Heather VanVolkenburg, and Liette Vasseur. 2023. "An Overview of the Impacts of Climate Change on Vineyard Ecosystems in Niagara, Canada" Agriculture 13, no. 9: 1809. https://doi.org/10.3390/agriculture13091809
APA StyleTosato, D. R., VanVolkenburg, H., & Vasseur, L. (2023). An Overview of the Impacts of Climate Change on Vineyard Ecosystems in Niagara, Canada. Agriculture, 13(9), 1809. https://doi.org/10.3390/agriculture13091809