Determinants of Simultaneous Use of Soil Fertility Information Sources among Smallholder Farmers in the Central Highlands of Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Sites
2.2. Sampling and Data Collection
2.3. Dependent Variables
2.4. Explanatory Variables
2.5. Empirical Modelling: Multivariate Probit Model
3. Results and Discussion
3.1. Characteristics of Respondents
3.2. Principal Component Analysis
3.3. Sources of Soil Fertility Information and Knowledge
3.4. Intensity of Soil Fertility Information-Seeking Behaviour
3.5. Barriers to Seeking Soil Fertility Information
3.6. Covariance of Error Terms Correlation
3.7. Determinants of Simultaneous Use of SFM Information Sources
4. Conclusions
5. Study Limitations and Areas for Further Research
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef]
- Nájera, F.; Tapia, Y.; Baginsky, C.; Figueroa, V.; Cabeza, R.; Salazar, O. Evaluation of soil fertility and fertilisation practices for irrigated maize (Zea mays L.) under Mediterranean conditions in central Chile. J. Plant. Nutr. Soil Sci. 2015, 15, 84–97. [Google Scholar] [CrossRef]
- Kiboi, M.N.; Ngetich, K.F.; Fliessbach, A.; Muriuki, A.; Mugendi, D.N. Soil fertility inputs and tillage influence on maize crop performance and soil water content in the Central Highlands of Kenya. Agric. Water Manag. 2019, 217, 316–331. [Google Scholar] [CrossRef]
- Musafiri, C.M.; Kiboi, M.; Macharia, J.; Ng’etich, O.K.; Kosgei, D.K.; Mulianga, B.; Okoti, M.; Ngetich, F.K. Adoption of climate-smart agricultural practices among smallholder farmers in Western Kenya: Do socioeconomic, institutional, and biophysical factors matter? Heliyon 2022, 8, e08677. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, J.; Waite, R.; Searchinger, T.; Hanson, C. How to Sustainably Feed 10 Billion People by 2050, in 21 Charts; World Resource Institude: Washington, DC, USA, 2018; p. 27. Available online: https://www.susana.org/_resources/documents/default/3-3726-7-1574177753.pdf (accessed on 22 February 2023).
- Vanlauwe, B.; Descheemaeker, K.; Giller, K.E.; Huising, J.; Merckx, R.; Nziguheba, G.; Wendt, J.; Zingore, S. Integrated soil fertility management in sub-Saharan Africa: Unravelling local adaptation. Soil 2015, 1, 491–508. [Google Scholar] [CrossRef]
- Shisanya, C.A.; Mucheru, M.W.; Mugendi, D.N.; Kung’u, J.B. Effect of organic and inorganic nutrient sources on soil mineral nitrogen and maize yields in central highlands of Kenya. Soil Tillage Res. 2009, 103, 239–246. [Google Scholar] [CrossRef]
- Brown, B.; Llewellyn, R.; Nuberg, I. Why do information gaps persist in African smallholder agriculture? Perspectives from farmers lacking exposure to conservation agriculture. J. Agric. Educ. 2018, 24, 191–208. [Google Scholar] [CrossRef]
- Spurk, C.; Asule, P.; Baah-Ofori, R.; Chikopela, L.; Diarra, B.; Koch, C. The status of perception, information exposure and knowledge of soil fertility among small-scale farmers in Ghana, Kenya, Mali and Zambia. J. Agric. Educ. Ext. 2020, 26, 141–161. [Google Scholar] [CrossRef]
- Thierfelder, C.; Wall, P.C. Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil Tillage Res. 2009, 105, 217–227. [Google Scholar] [CrossRef]
- Araya, T.; Cornelis, W.M.; Nyssen, J.; Govaerts, B.; Getnet, F.; Bauer, H.; Amare, K.; Raes, D.; Haile, M.; Deckers, J. Medium-term effects of conservation agriculture-based cropping systems for sustainable soil and water management and crop productivity in the Ethiopian highlands. Field Crops Res. 2012, 132, 53–62. [Google Scholar] [CrossRef]
- Ngetich, K.F.; Diels, J.; Shisanya, C.A.; Mugwe, J.N.; Mucheru-Muna, M.; Mugendi, D.N. Effects of selected soil and water conservation techniques on runoff, sediment yield and maize productivity under sub-humid and semi-arid conditions in Kenya. Catena 2014, 121, 288–296. [Google Scholar] [CrossRef]
- Kiboi, M.N.; Ngetich, F.K.; Fliessbach, A.; Muriuki, A.; Mugendi, D.N. Nutrient release from organic resources in Nitisols of the Central Highlands of Kenya. Geoderma Regional. 2020, 21, e00287. [Google Scholar] [CrossRef]
- Macharia, J.M.; Pelster, D.E.; Ngetich, F.K.; Shisanya, C.A.; Mucheru-Muna, M.; Mugendi, D.N. Soil greenhouse gas fluxes from maize production under different soil fertility management practices in East Africa. J. Geophys. Res. Biogeosciences 2020, 125, e2019JG005427. [Google Scholar] [CrossRef]
- Mucheru-Muna, M.; Mugendi, D.; Pypers, P.; Mugwe, J.; Kung’u, J.; Vanlauwe, B.D.; Merckx, R. Enhancing maize productivity and profitability using organic inputs and mineral fertilizer in central Kenya small-hold farms. Exp. Agric. 2014, 50, 250–269. [Google Scholar] [CrossRef]
- Adamtey, N.; Musyoka, M.W.; Zundel, C.; Cobo, J.G.; Karanja, E.; Fiaboe, K.K.; Muriuki, A.; Mucheru-Muna, M.; Vanlauwe, B.; Berset, E.; et al. Productivity, profitability and partial nutrient balance in maize-based conventional and organic farming systems in Kenya. Agric. Ecosyst. Environ. 2016, 235, 61–79. [Google Scholar] [CrossRef]
- Mwaura, G.G.; Kiboi, M.N.; Bett, E.K.; Mugwe, J.N.; Muriuki, A.; Nicolay, G.; Ngetich, F.K. Adoption intensity of selected organic-based soil fertility management technologies in the Central Highlands of Kenya. Front. Sustain. Food Syst. 2021, 4, 570190. [Google Scholar] [CrossRef]
- Mugwe, J.; Mucheru-Muna, M.; Mugendi, D.; Kung’u, J.; Bationo, A.; Mairura, F. Adoption potential of selected organic resources for improving soil fertility in the central highlands of Kenya. Agrofor. Syst. 2009, 76, 467–485. [Google Scholar] [CrossRef]
- Musafiri, C.M.; Macharia, J.M.; Kiboi, M.N.; Ng’etich, O.K.; Shisanya, C.A.; Okeyo, J.M.; Mugendi, D.N.; Okwuosa, E.A.; Ngetich, F.K. Soil greenhouse gas fluxes from maize cropping system under different soil fertility management technologies in Kenya. Agric. Ecosyst. Environ. 2020, 301, 107064. [Google Scholar] [CrossRef]
- Otieno, E.O.; Kiboi, M.N.; Gian, N.; Muriuki, A.; Musafiri, C.M.; Ngetich, F.K. Uptake of integrated soil fertility management technologies in heterogeneous smallholder farms in sub-humid tropics. Int. J. Environ. Probl. 2021, 5, 100394. [Google Scholar] [CrossRef]
- Asule, P.A.; Musafiri, C.M.; Nyabuga, G.; Kiai, W.; Ngetich, F.K.; Spurk, C. Determinants of Soil Fertility Information Needs and Access Among Smallholder Farmers in the Central Highlands of Kenya. Commun. Soil Sci. Plant Anal. 2022, 53, 1979–1998. [Google Scholar] [CrossRef]
- Adolwa, I.S.; Okoth, P.F.; Mulwa, R.M.; Esilaba, A.O.; Mairura, F.S.; Nambiro, E. Analysis of communication and dissemination channels influencing the adoption of integrated soil fertility management in western Kenya. J. Agric. Educ. Ext. 2012, 18, 71–86. [Google Scholar] [CrossRef]
- Anderson, C.L.; Reynolds, T.W.; Gugerty, M.K. Husband and wife perspectives on farm household decision-making authority and evidence on intra-household accord in rural Tanzania. World Dev. 2017, 90, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Klauser, D.; Negra, C. Getting Down to Earth (and Business): Focus on African Smallholders’ Incentives for Improved Soil Management. Front. Sustain. Food Syst. 2020, 4, 576606. [Google Scholar] [CrossRef]
- Mungai, L.M.; Snapp, S.; Messina, J.P.; Chikowo, R.; Smith, A.; Anders, E.; Richardson, R.B.; Li, G. Smallholder farms and the potential for sustainable intensification. Front. Plant Sci. 2016, 7, 1720. [Google Scholar] [CrossRef]
- Fan, S.; Rue, C. The role of smallholder farms in a changing world. In The Role of Smallholder Farms in Food and Nutrition Security; Springer: Cham, Germany, 2020; pp. 13–28. [Google Scholar]
- Wawire, A.W.; Csorba, Á.; Tóth, J.A.; Michéli, E.; Szalai, M.; Mutuma, E.; Kovács, E. Soil fertility management among smallholder farmers in Mount Kenya East region. Heliyon 2021, 7, e06488. [Google Scholar] [CrossRef]
- Birner, R.; Davis, K.; Pender, J.; Nkonya, E.; Anandajayasekeram, P.; Ekboir, J.; Mbabu, A.; Spielman, D.J.; Horna, D.; Benin, S.; et al. From best practice to best fit: A framework for designing and analyzing pluralistic agricultural advisory services worldwide. J. Agric. Educ. Ext. 2009, 15, 341–355. [Google Scholar] [CrossRef]
- Chowa, C.; Garforth, C.; Cardey, S. Farmer Experience of Pluralistic Agricultural Extension, Malawi. J. Agric. Educ. Ext. 2013, 19, 147–166. [Google Scholar] [CrossRef]
- Adolwa, I.S.; Schwarze, S.; Buerkert, A. Best-bet channels for integrated soil fertility management communication and dissemination along the agricultural product value-chain: A comparison of northern Ghana and western Kenya. J. Agric. Educ. Ext. 2018, 24, 435–456. [Google Scholar] [CrossRef]
- Ragasa, C.; Ulimwengu, J.; Randriamamonjy, J.; Badibanga, T. Factors Affecting Performance of Agricultural Extension: Evidence from Democratic Republic of Congo. J. Agric. Educ. Ext. 2016, 22, 113–143. [Google Scholar] [CrossRef]
- Mittal, S.; Mehar, M. Socio-economic Factors Affecting Adoption of Modern Information and Communication Technology by Farmers in India: Analysis Using Multivariate Probit Model. J. Agric. Educ. Ext. 2016, 22, 199–212. [Google Scholar] [CrossRef]
- Mponela, P.; Tamene, L.; Ndengu, G.; Magreta, R.; Kihara, J.; Mango, N. Land Use Policy Determinants of integrated soil fertility management technologies adoption by smallholder farmers in the Chinyanja Triangle of Southern Africa. Land Use Policy 2016, 59, 38–48. [Google Scholar] [CrossRef]
- Mucheru-Muna, M.W.; Ada, M.A.; Mugwe, J.N.; Mairura, F.S.; Mugi-Ngenga, E.; Zingore, S.; Mutegi, J.K. Socioeconomic predictors, soil fertility knowledge domains and strategies for sustainable maize intensification in Embu County, Kenya. Heliyon 2021, 7, e06345. [Google Scholar] [CrossRef] [PubMed]
- Gwandu, T.; Mtambanengwe, F.; Mapfumo, P.; Mashavave, T.C.; Chikowo, R.; Nezomba, H. Factors Influencing Access to Integrated Soil Fertility Management Information and Knowledge and its Uptake among Smallholder Farmers in Zimbabwe. J. Agric. Educ. Ext. 2014, 20, 79–93. [Google Scholar] [CrossRef]
- Wellard, K.; Rafanomezana, J.; Nyirenda, M.; Okotel, M.; Subbey, V. A Review of Community Extension Approaches to Innovation for Improved Livelihoods in Ghana, Uganda and Malawi. J. Agric. Educ. Ext. 2013, 19, 21–35. [Google Scholar] [CrossRef]
- Dawoe, E.K.; Quashie-Sam, J.; Isaac, M.E.; Oppong, S.K. Exploring farmers’ local knowledge and perceptions of soil fertility and management in the Ashanti Region of Ghana. Geoderma 2012, 179, 96–103. [Google Scholar] [CrossRef]
- Martey, E.; Kuwornu, J.K. Perceptions of climate variability and soil fertility management choices among smallholder farmers in northern Ghana. Ecol. Econ. 2021, 180, 106870. [Google Scholar] [CrossRef]
- Okonya, J.S.; Kroschel, J. Gender differences in access and use of selected productive resources among sweet potato farmers in Uganda. Agric. Food Secur. 2014, 3, 1. [Google Scholar] [CrossRef]
- Lobry de Bruyn, L.; Jenkins, A.; Samson-Liebig, S. Lessons learnt: Sharing soil knowledge to improve land management and sustainable soil use. Soil Sci. Soc. Am. J. 2017, 81, 427–438. [Google Scholar] [CrossRef]
- Mwaniki, F.N.; Gichuki, C.; Mwangi, M.; Mburia, P.; Wandago, B. Addressing challenges in communicating adaptation practices to smallholder farmers in Kenya through a radio intervention. Sch. Agric. Food Sci. 2017, 111, 2. [Google Scholar]
- Chapota, R.; Fatch, P.; Mthinda, C. The Role of Radio in Agricultural Extension and Advisory Services–Experiences and Lessons from Farm Radio Programming in Malawi–. MEAS Case Study 2014, 8, 1–10. [Google Scholar]
- Stefano, L.A.; Hendriks, S.L.; Stilwell, C.; Morris, C. Printed information needs of small-scale organic farmers in KwaZulu-Natal. 2005; 56–66. [Google Scholar] [CrossRef]
- Rehman, F.; Muhammad, S.H.; Ashraf, I.; Hassan, S. Factors affecting the effectiveness of print media in the dissemination of agricultural information. Sarhad J. Agric. 2011, 27, 119–124. [Google Scholar]
- Tchuwa, F.; Wellard, K.; Morton, J.; Kambewa, D.; Mkweu, D.; Mhango, W. From learning plot to main field: Scaling-out soil health innovations in Malawi. Sustainability 2022, 14, 1532. [Google Scholar] [CrossRef]
- Jenkins, A.; Velandia, M.; Lambert, D.M.; Roberts, R.K.; Larson, J.A.; English, B.C.; Martin, S.W. Factors influencing the selection of precision farming information sources by cotton producers. Agric. Resour. Econ. Rev. 2011, 40, 307–320. [Google Scholar] [CrossRef]
- Jaetzold, R.; Schmidt, H.; Hornetz, B.; Shisanya, C. Farm management handbook of Kenya. In Natural Conditions and Farm Management Information, 2nd ed.; Part C. East Kenya; Ministry of Agriculture: Nairobi, Kenya, 2007; Volume 2, p. 571. [Google Scholar]
- Macharia, J.; Mugwe, J.; Mucheru-Muna, M.; Mugendi, D. Socioeconomic factors influencing levels of knowledge in soil fertility management in the central highlands of Kenya. J. Agric. Sci. 2014, 4, 701–711. [Google Scholar]
- Kenya National Bureau of Statistics (KNBS). Kenya Population and Housing Census. In Population by County and Sub-County; Government printers: Nairobi, Kenya, 2019. [Google Scholar]
- Cochran, W.G. Sampling Techniques; John Wiley Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Mugi-Ngenga, E.W.; Mucheru-Muna, M.W.; Mugwe, J.N.; Ngetich, F.K.; Mairura, F.S.; Mugendi, D.N. Household’s socio-economic factors influencing the level of adaptation to climate variability in the dry zones of Eastern Kenya. J. Rural Stud. 2016, 43, 49–60. [Google Scholar] [CrossRef]
- Musafiri, C.M.; Macharia, J.M.; Ng’etich, O.K.; Kiboi, M.N.; Okeyo, J.; Shisanya, C.A.; Okwuosa, E.A.; Mugendi, D.N.; Ngetich, F.K. Farming systems’ typologies analysis to inform agricultural greenhouse gas emissions potential from smallholder rain-fed farms in Kenya. Sci. Afr. 2020, 8, e00458. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using SPSS; Sage: London, UK, 2005. [Google Scholar]
- Foguesatto, C.R.; Borges, J.A.R.; Machado, J.A.D. A review and some reflections on farmers’ adoption of sustainable agricultural practices worldwide. Sci. Total Environ. 2020, 729, 138831. [Google Scholar] [CrossRef]
- Baumgart-Getz, A.; Prokopy, L.S.; Floress, K. Why farmers adopt best management practice in the United States: A meta-analysis of the adoption literature. J. Environ. Manag. 2012, 96, 17–25. [Google Scholar] [CrossRef]
- Jahnke, H.E.; Jahnke, H.E. Livestock Production Systems and Livestock Development in Tropical Africa; Kieler Wissenschaftsverlag Vauk: Kiel, Germany, 1982; Volume 35. [Google Scholar]
- Yaseen, M.; Ahmad, M.M. Soni, Farm Households’ Simultaneous Use of Sources to Access Information on Cotton Crop Production. J. Agric. Food Inf. 2018, 19, 149–161. [Google Scholar] [CrossRef]
- Mwalukasa, N.; Mlozi, M.R.; Sanga, C.A. Influence of socio-demographic factors on the use of mobile phones in accessing rice information on climate change adaptation in Tanzania. Glob. Knowl. Mem. 2018, 67, 566–584. [Google Scholar]
- Kpadonou, R.A.B.; Owiyo, T.; Barbier, B.; Denton, F.; Rutabingwa, F.; Kiema, A. Advancing climate-smart-agriculture in developing drylands: Joint analysis of the adoption of multiple on-farm soil and water conservation technologies in West African Sahel. Land Use Policy 2017, 61, 196–207. [Google Scholar] [CrossRef]
- Mairura, F.S.; Musafiri, C.M.; Kiboi, M.N.; Macharia, J.M.; Ng’etich, O.K.; Shisanya, C.A.; Okeyo, J.M.; Okwuosa, E.A.; Ngetich, F.K. Farm factors influencing soil fertility management patterns in Upper Eastern Kenya. Int. J. Environ. Probl. 2022, 6, 100409. [Google Scholar] [CrossRef]
- Fosu-Mensah, B.Y.; Adjovu, S.M.; Annang, T.Y.; Mensah, M. Assessment of farmers’ indigenous knowledge of soil quality management practices in Ghana: A case study of crop farmers in Ada West District. J. Nat. Appl. Sci. 2021, 13, 830–839. [Google Scholar] [CrossRef]
- Mugwe, J.; Mugendi, D.; Mucheru-Muna, M.; Merckx, R.; Chianu, J.; Vanlauwe, B. Determinants of the decision to adopt integrated soil fertility management practices by smallholder farmers in the central highlands of Kenya. Exp. Agric. 2009, 45, 61–75. [Google Scholar] [CrossRef]
- Lambrecht, I.; Vanlauwe, B.; Maertens, M. Agricultural extension in Eastern Democratic Republic of Congo: Does gender matter? Eur. Rev. Agric. Econ. 2016, 43, 841–874. [Google Scholar] [CrossRef]
- Mahindarathne, M.G.P.P.; Min, Q. Information Needs and Seeking Patterns of Farmers within the Changing Information Environment: A Case of Sri Lankan Vegetable Farmers. Inf. Knowl. Manag. 2018, 8, 37–49. [Google Scholar]
- BenYishay, A.; Mobarak, A.M. Communicating with farmers through social networks. In Yale University Economic Growth Center Discussion Paper; Yale University: New Haven, CT, USA, 2013; p. 1030. [Google Scholar]
- Cox, A.J.; Sseguya, H. ICT supported extension services in conservation agriculture information access for small holder farmers in Laikipia County, Kenya. In Proceedings of the 2015 IEEE International Symposium on Technology and Society, Dublin, Ireland, 11–12 November 2016; pp. 1–6. [Google Scholar]
- Barakabitze, A.A.; Fue, K.G.; Sanga, C.A. The use of participatory approaches in developing ICT-based systems for disseminating agricultural knowledge and information for farmers in developing countries: The case of Tanzania. Electron. J. Inf. Syst. Dev. Ctries 2017, 78, 1–23. [Google Scholar] [CrossRef]
- Gichamba, A.; Wagacha, W.; Ochieng, D.O. An assessment of e-extension platforms in Kenya. Int. J. Innov. Stud. Sci. Eng. Technol. 2017, 3, 36–40. [Google Scholar]
- Nwokoye, E.S.; Oyim, A.; Dimnwobi, S.K.; Ekesiobi, C.S. Socioeconomic determinants of information and communication technology adoption among rice farmers in Ebonyi State, Nigeria. Niger. J. Econ. Soc. Stud. 2019, 61, 367–397. [Google Scholar]
- Beaman, L.; BenYishay, A.; Magruder, J.; Mobarak, A.M. Can network theory-based targeting increase technology adoption? Am. Econ. Rev. 2021, 111, 1918–1943. [Google Scholar] [CrossRef]
- Fisher, M.; Holden, S.T.; Thierfelder, C.; Katengeza, S.P. Awareness and adoption of conservation agriculture in Malawi: What difference can farmer-to-farmer extension make? Int. J. Agric. Sustain. 2018, 16, 310–325. [Google Scholar] [CrossRef]
- Brown, B.; Llewellyn, R.; Nuberg, I. Global learnings to inform the local adaptation of conservation agriculture in Eastern and Southern Africa. Glob. Food Sec. 2018, 17, 213–220. [Google Scholar] [CrossRef]
- Otene, V.A.; Okwu, J.O.; Agene, A.J. Assessment of the use of Facebook by farmers and agricultural extension agents in otukpo local government area of Benue State. J. Agric. Food Inf. 2018, 19, 354–361. [Google Scholar] [CrossRef]
- Babu, S.C.; Glendenning, C.J.; Okyere, K.A.; Govindarajan, S.K. Farmers’ information needs and search behaviors: Case study in Tamil Nadu, India (No. 1007-2016-79468). In Proceedings of the International Association of Agricultural Economists (IAAE) 2012 Conference, Foz do Iguaçu, Brazil, 18–24 August 2012. [Google Scholar]
- Álvarez-Mingote, C.; Moore, A. McNamara, Assessing the role of stakeholder platforms as drivers of resilient communities: The case of Malawi. J. Agric. Educ. Ext. 2020, 26, 75–95. [Google Scholar] [CrossRef]
- Tata, J.S.; McNamara, P.E. Impact of ICT on agricultural extension services delivery: Evidence from the Catholic Relief Services SMART skills and Farmbook project in Kenya. J. Agric. Educ. Ext. 2018, 24, 89–110. [Google Scholar] [CrossRef]
- Snapp, S.S.; DeDecker, J.; Davis, A.S. Farmer participatory research advances sustainable agriculture: Lessons from Michigan and Malawi. J. Agron. 2019, 111, 2681–2691. [Google Scholar] [CrossRef]
- Ndiritu, S.W.; Kassie, M.; Shiferaw, B. Are there systematic gender differences in the adoption of sustainable agricultural intensification practices? Evidence from Kenya. Food Policy 2014, 49, 117–127. [Google Scholar] [CrossRef]
- Simtowe, F.; Asfaw, S.; Abate, T. Determinants of agricultural technology adoption under partial population awareness: The case of pigeonpea in Malawi. Agric. Food Econ. 2016, 4, 7. [Google Scholar] [CrossRef]
- Kinyua, M.; Cao Diogo, R.V.; Sibomana, J.; Bolo, P.O.; Gbedjissokpa, G.; Mukiri, J.; Mukalama, J.; Paul, B.; Sommer, R.; Kihara, J. Green Manure Cover Crops in Benin and Western Kenya—A Review; CIAT Publication No. 481; International Center for Tropical Agriculture (CIAT): Nairobi, Kenya, 2019; 41p, Available online: https://hdl.handle.net/10568/105923.
- Maro, G.P.; Mrema, J.P.; Msanya, B.M.; Teri, J.M. Farmers’perception of soil fertility problems and their attitude towards integrated soil fertility management for coffee in northern tanzania. Tro. Subtrop. 2014, 17, 77–85. [Google Scholar]
- Martins, O.; Gideon, O.; Beatrice, S. Factors responsible for differences in uptake of integrated soil fertility management practices amongst smallholders in western Kenya. Afr. J. Agric. Res. 2009, 4, 1303–1311. [Google Scholar]
- Ragasa, C.; Mazunda, J. The impact of agricultural extension services in the context of a heavily subsidized input system: The case of Malawi. World Dev. 2018, 105, 25–47. [Google Scholar] [CrossRef]
- Achora, J.C.; Sseguya, H.; Kyazze, F.; Mkomwa, S.; Okello, D. ICTs for conservation agriculture: Influence of actor positioning in knowledge networks in Laikipia and Machakos counties, Kenya. Rural Ext. Innov. Syst. J. 2018, 14, 24–33. [Google Scholar]
- GoK. National Agricultural Sector Extension Policy (NASEP); Government of Kenya: Nairobi, Kenya, 2012; Volume 55. [Google Scholar]
- Irungu, K.R.G.; Mbugua, D.; Muia, J. Information and Communication Technologies (ICTs) attract youth into profitable agriculture in Kenya. East Afr. Agric. For. J. 2015, 81, 24–33. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Duan, Y. Agricultural information dissemination using ICTs: A review and analysis of information dissemination models in China. Inf. Process. Agric. 2016, 3, 17–29. [Google Scholar] [CrossRef]
- Huang, Z.; Karimanzira, T.T. Investigating key factors influencing farming decisions based on soil testing and fertilizer recommendation facilities (STFRF)—A case study on rural Bangladesh. Sustainability 2018, 10, 4331. [Google Scholar]
Variable Description | Code | Unit | Expected Sign ± |
---|---|---|---|
Dependent variables | |||
Local interpersonal sources (1 Yes, 0 No) | PC 1 | % HHs a | |
Cosmopolite interpersonal sources (1 Yes, 0 No) | PC 2 | % HHs | |
Modern ICT-based sources (1 Yes, 0 No) | PC 3 | % HHs | |
Print/demonstration sources (1 Yes, 0 No) | PC 4 | % HHs | |
Broadcast media (1 Yes, 0 No) | PC 5 | % HHs | |
Community-based sources (1 Yes, 0 No) | PC 6 | % HHs | |
Progressive learning sources (1 Yes, 0 No) | PC 7 | % HHs | |
Location | |||
Household from Murang’a or Tharaka-Nithi county (1 if Tharaka-Nithi; 0 if Murang’a) | Site | % HHs | ± |
Predictor: Characteristics of household and household head (HHH) | |||
Gender of household head (HHH); 1 male, 0 female) | HHH male | % HHs | + |
Education level of HHH (0 no formal education, 1 primary and above) | HHH literate | % HHs | + |
Marital status of HHH (1 married, 0 otherwise) | HHH married | % HHs | + |
Main occupation of HHH (1 agriculture, 0 otherwise) | HHH agriculture main occupation | % HHs | + |
Age of HHH (years) | HHH age | years | - |
Household size | HH size | number | - |
Farming experience of HHH (years) | HHH farming experience | years | + |
Predictor: Socio-capital attributes | |||
The land had a title deed (1 Yes, 0 No) | Land secured | % HHs | + |
HHH accessed agricultural training (1 Yes, 0 No) | Agricultural training | % HHs | + |
HHH was a member of the agricultural group (1 Yes, 0 No) | Group membership | % HHs | + |
Predictor: Household resources | |||
Land size under cultivation (acres) | Arable land size | acres | + |
Livestock owned by household (Tropical livestock units) | Tropical livestock unit (TLU) | TLU b unit | + |
Predictor: Perception of soil fertility | |||
Soil fertility poor (1 Yes, 0 No) | Soil fertility poor c | % HHs | - |
Soil fertility moderate (1 Yes, 0 No) | Soil fertility moderate | % HHs | ± |
Soil fertility good (1 Yes, 0 No) | Soil fertility good | % HHs | + |
Soil fertility declining (1 Yes, 0 No) | Soil fertility declining d | % HHs | - |
Soil fertility stable (1 Yes, 0 No) | Soil fertility stable | % HHs | ± |
Soil fertility improving (1 Yes, 0 No) | Soil fertility improving | % HHs | - |
Farmer’s soil was tested (1 Yes, 0 No) | Soil tested | % HHs | + |
Variable | Mean | Standard Error |
---|---|---|
Study site | ||
Site | 0.51 | 0.01 |
Farmer | ||
HHH gender | 0.60 | 0.03 |
HHH literate | 0.94 | 0.01 |
HHH married | 0.77 | 0.02 |
HHH agriculture main occupation | 0.92 | 0.01 |
HHH age | 52.09 | 0.77 |
HH size | 4.08 | 0.09 |
HHH farming experience | 24.22 | 0.77 |
Socio-capital | ||
Land secured | 0.76 | 0.02 |
Agricultural training | 0.25 | 0.02 |
Group membership | 0.35 | 0.02 |
Resources | ||
Arable land size | 1.32 | 0.07 |
Tropical livestock unit (TLU) | 2.12 | 0.26 |
Soil fertility | ||
Soil fertility poor a | 0.08 | 0.01 |
Soil fertility moderate | 0.34 | 0.02 |
Soil fertility good | 0.58 | 0.03 |
Soil fertility declined b | 0.32 | 0.02 |
Soil fertility has no change | 0.46 | 0.03 |
Soil fertility improved | 0.22 | 0.02 |
Soil tested | 0.14 | 0.02 |
Information Source | Information-Seeking Behaviour Principal Components (PCs) | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Family members | 0.77 | 0.10 | 0.03 | −0.09 | 0.02 | 0.10 | −0.19 |
Friends | 0.81 | 0.09 | −0.01 | 0.09 | 0.02 | −0.02 | 0.07 |
Neighbours | 0.83 | 0.04 | 0.01 | 0.00 | 0.15 | 0.05 | 0.17 |
Other farmers | 0.54 | 0.11 | 0.05 | −0.01 | 0.15 | 0.01 | 0.42 |
Progressive farmers | 0.21 | 0.68 | 0.15 | 0.13 | 0.01 | 0.08 | 0.15 |
Agricultural extension officers | −0.04 | 0.51 | 0.14 | −0.17 | 0.21 | 0.11 | −0.05 |
Agricultural groups | 0.08 | 0.75 | 0.02 | 0.06 | −0.06 | 0.06 | 0.16 |
Farmers’ cooperatives | 0.01 | 0.78 | −0.02 | 0.02 | 0.10 | −0.05 | 0.09 |
Researchers | 0.05 | 0.56 | 0.05 | 0.28 | 0.34 | 0.01 | −0.24 |
Mobile phones | 0.10 | 0.03 | 0.74 | 0.24 | 0.13 | 0.02 | −0.03 |
Community resource centres | −0.05 | 0.17 | 0.60 | −0.19 | 0.16 | 0.38 | 0.04 |
Internet | 0.03 | 0.19 | 0.72 | 0.31 | 0.00 | −0.05 | 0.01 |
Agricultural shows | −0.14 | −0.09 | 0.52 | 0.18 | 0.34 | −0.10 | −0.13 |
Newspapers | −0.05 | 0.08 | 0.17 | 0.76 | 0.08 | 0.04 | 0.07 |
Magazines | 0.01 | 0.03 | 0.32 | 0.76 | 0.04 | 0.09 | 0.02 |
Demonstration farms | 0.07 | 0.12 | −0.36 | 0.57 | 0.09 | 0.30 | −0.14 |
Agro-dealers | 0.21 | 0.28 | 0.12 | 0.15 | 0.54 | −0.24 | −0.05 |
Radio | 0.14 | 0.00 | 0.11 | 0.07 | 0.73 | 0.05 | 0.37 |
Television | 0.07 | 0.10 | 0.08 | 0.03 | 0.73 | 0.14 | 0.01 |
Community-based organisations | 0.08 | 0.04 | −0.02 | 0.01 | 0.06 | 0.81 | −0.03 |
Non-governmental organisations | −0.01 | 0.05 | 0.11 | 0.37 | −0.01 | 0.58 | 0.09 |
Faith/church-based organisations | 0.18 | −0.05 | 0.16 | 0.07 | −0.11 | 0.74 | 0.11 |
Seminars | 0.12 | 0.02 | 0.15 | 0.14 | 0.22 | 0.02 | 0.97 |
Chief’s baraza | 0.01 | 0.26 | 0.02 | −0.01 | −0.09 | 0.26 | 0.62 |
Farmer’s knowledge and experience | 0.11 | 0.13 | −0.07 | 0.04 | 0.25 | −0.11 | 0.64 |
Eigen value | 2.57 | 2.47 | 2.10 | 2.09 | 2.07 | 1.58 | 1.45 |
% Explained variance | 11.19 | 10.76 | 9.11 | 9.08 | 9.00 | 6.85 | 6.31 |
% Cumulative explained variance | 11.19 | 21.95 | 31.06 | 40.14 | 49.15 | 56.00 | 62.31 |
PCs | Information-Seeking Behaviour | Mean | Standard Error |
---|---|---|---|
PC 1: Local interpersonal sources | 0.97 | 0.01 | |
Family members | 0.82 | 0.02 | |
Friends | 0.83 | 0.02 | |
Neighbours | 0.81 | 0.02 | |
Other farmers | 0.87 | 0.02 | |
PC 2: Cosmopolite interpersonal sources | 0.62 | 0.02 | |
Progressive farmers | 0.33 | 0.02 | |
Agricultural extension officers | 0.22 | 0.02 | |
Agricultural groups | 0.34 | 0.02 | |
Farmers Cooperatives | 0.33 | 0.02 | |
Researchers | 0.17 | 0.02 | |
PC 3: Aggregative sources | 0.20 | 0.02 | |
Mobile phone | 0.09 | 0.01 | |
Community resource centres | 0.03 | 0.01 | |
Internet | 0.04 | 0.01 | |
Agricultural shows | 0.14 | 0.02 | |
PC 4: Print/demonstration sources | 0.09 | 0.01 | |
Newspapers | 0.07 | 0.01 | |
Magazines | 0.05 | 0.01 | |
Demonstrations | 0.01 | 0.01 | |
PC 5: Broadcast media | 0.84 | 0.02 | |
Agro-dealers | 0.47 | 0.03 | |
Radio | 0.76 | 0.02 | |
Television | 0.44 | 0.02 | |
PC 6: Community-based sources | 0.27 | 0.02 | |
Community-based organisations | 0.06 | 0.01 | |
Non-governmental organisations | 0.11 | 0.02 | |
Faith-based organisations | 0.17 | 0.02 | |
PC 7: Progressive learning | 0.92 | 0.01 | |
Seminars | 0.01 | 0.01 | |
Chief’s baraza/local public meetings | 0.39 | 0.02 | |
Farmer’s knowledge and experience | 0.90 | 0.02 |
Barrier | Mean | Standard Error |
---|---|---|
Complex explanations | 0.14 | 0.02 |
Conflicting information from sources | 0.38 | 0.02 |
Unaware of information sources | 0.56 | 0.02 |
Insufficient information | 0.42 | 0.02 |
Language barrier | 0.08 | 0.01 |
Farmer not interested in information seeking | 0.01 | 0.00 |
Financial constraints | 0.01 | 0.01 |
Pearson Correlations of Information Seeking Sources Combinations | Correlation Coefficient | Standard Error | Z-Value |
---|---|---|---|
rho21 | 0.252 * | 0.124 | 0.043 |
rho31 | 0.112 | 0.145 | 0.440 |
rho41 | −0.013 | 0.154 | 0.934 |
rho51 | 0.333 * | 0.143 | 0.020 |
rho61 | −0.066 | 0.147 | 0.654 |
rho71 | 0.005 | 0.153 | 0.973 |
rho32 | 0.132 | 0.107 | 0.216 |
rho42 | 0.515 ** | 0.130 | 0.000 |
rho52 | 0.452 ** | 0.108 | 0.000 |
rho62 | 0.294 ** | 0.099 | 0.003 |
rho72 | 0.625 ** | 0.135 | 0.000 |
rho43 | 0.562 ** | 0.133 | 0.000 |
rho53 | 0.356 * | 0.153 | 0.020 |
rho63 | 0.128 | 0.104 | 0.217 |
rho73 | 0.209 | 0.171 | 0.221 |
rho54 | 0.393 ** | 0.138 | 0.004 |
rho64 | 0.038 | 0.115 | 0.742 |
rho74 | 0.465 ** | 0.171 | 0.006 |
rho65 | 0.282 * | 0.110 | 0.010 |
rho75 | 0.605 ** | 0.149 | 0.000 |
rho76 | 0.336 * | 0.132 | 0.011 |
Variable | Local Interpersonal Sources LI | Cosmopolite Interpersonal Sources CI | Aggregative Sources AG | Print/Visual Training Sources PR/V | Broadcast Media BM | Community Based Sources CB | Progressive Learning PROG |
---|---|---|---|---|---|---|---|
Study site | |||||||
Site | 0.827 ** (0.392) | −0.220 (0.148) | −0.917 *** (0.182) | 0.236 (0.211) | −0.541 *** (0.178) | 0.450 *** (0.164) | −0.969 *** (0.240) |
Farmer and household factors | |||||||
HHH gender | 0.250 (0.338) | 0.128 (0.149) | −0.064 (0.183) | 0.048 (0.212) | 0.254 (0.176) | 0.016 (0.170) | 0.211 (0.223) |
HHH literate | 0.048 (0.485) | 0.162 (0.324) | 0.754 (0.553) | 0.121 (0.542) | −0.036 (0.352) | −0.421 (0.374) | −0.220 (0.513) |
HHH married | 0.607 * (0.366) | 0.469 ** (0.188) | 0.137 (0.232) | 0.154 (0.291) | −0.118 (0.224) | 0.056 (0.215) | 0.507 * (0.265) |
HHH agriculture main occupation | 0.306 (0.731) | −0.068 (0.282) | −0.180 (0.300) | −0.618 ** (0.316) | −0.053 (0.424) | 0.004 (0.292) | 0.031 (0.474) |
HHH age | −0.028 ** (0.013) | −0.004 (0.007) | 0.001 (0.009) | 0.010 (0.010) | −0.022 *** (0.008) | −0.028 *** (0.009) | −0.023 ** (0.009) |
HH size | −0.064 (0.085) | −0.007 (0.043) | −0.006 (0.052) | −0.110 (0.068) | −0.050 (0.050) | 0.037 (0.049) | −0.072 (0.060) |
HHH farming experience | 0.015 (0.013) | 0.010 (0.007) | −0.022 ** (0.009) | −0.014 (0.010) | 0.009 (0.008) | 0.013 (0.009) | 0.023 ** (0.009) |
Socio-capital | |||||||
Land secured | 0.165 (0.374) | −0.117 (0.175) | 0.110 (0.211) | 0.025 (0.256) | −0.101 (0.211) | 0.312 (0.210) | 0.323 (0.262) |
Agricultural training | −0.024 (0.414) | 0.515 *** (0.185) | 0.638 *** (0.204) | −0.062 (0.245) | −0.165 (0.216) | 0.171 (0.183) | −0.227 (0.267) |
Group membership | 0.142 (0.361) | 0.465 *** (0.156) | −0.243 (0.193) | −0.377 (0.240) | −0.047 (0.187) | −0.163 (0.172) | 0.328 (0.251) |
Access to resources | |||||||
Size of arable land | 0.017 (0.107) | −0.007 (0.052) | 0.065 (0.058) | 0.092 (0.060) | −0.108 * (0.061) | −0.013 (0.059) | −0.065 (0.070) |
Tropical livestock unit (TLU) | 0.006 (0.043) | 0.015 (0.018) | 0.066 * (0.036) | 0.036 ** (0.016) | 0.018 (0.035) | 0.027 * (0.016) | −0.001 (0.027) |
Soil fertility perceptions | |||||||
Soil fertility good | 0.446 (0.324) | 0.476 *** (0.145) | 0.129 (0.182) | −0.019 (0.211) | 0.524 *** (0.173) | 0.543 *** (0.172) | 0.065 (0.217) |
Soil fertility improved | −0.466 (0.357) | 0.090 (0.165) | 0.062 (0.208) | 0.458 ** (0.210) | −0.100 (0.194) | 0.325 * (0.176) | 0.357 (0.243) |
Soil tested | 0.240 (0.688) | 0.305 (0.245) | 0.356 (0.247) | 0.426 (0.279) | 1.459 *** (0.500) | 1.131 *** (0.229) | 0.421 (0.368) |
constant | 1.928 * (1.012) | −0.649 (0.517) | −1.211 * (0.701) | −1.275 * (0.738) | 2.386 *** (0.640) | −0.475 (0.586) | 2.313 *** (0.791) |
Model wald chi-square (112) | 296.72 | ||||||
Prob > chi-square | 0.0000 | ||||||
Log pseudo-likelihood | −893.421 | ||||||
Observations | 397 |
Variable | Local Interpersonal Sources LI | Cosmopolite Interpersonal Sources CI | Aggregative Sources AG | Print/Visual Training Sources PR/V | Broadcast Media BM | Community Based Sources CB | Progressive Learning PROG |
---|---|---|---|---|---|---|---|
Study site | |||||||
Site | + | - | - | + | - | ||
Household | |||||||
HHH gender | |||||||
HHH literate | |||||||
HHH married | + | + | + | ||||
HHH agriculture main occupation | - | ||||||
HHH age | - | - | - | - | |||
HH size | |||||||
HHH farming experience | - | + | |||||
Socio-capital | |||||||
Land secured | |||||||
Agricultural training | + | + | |||||
Group membership | + | ||||||
Resources | |||||||
Arable land | _ | ||||||
Tropical livestock unit (TLU) | + | + | + | ||||
Soil fertility | + | ||||||
Soil fertility good | + | + | |||||
Soil fertility improved | + | + | |||||
Soil tested | + | + | |||||
constant | + | - | - | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asule, P.A.; Musafiri, C.; Nyabuga, G.; Kiai, W.; Ngetich, F.K.; Spurk, C. Determinants of Simultaneous Use of Soil Fertility Information Sources among Smallholder Farmers in the Central Highlands of Kenya. Agriculture 2023, 13, 1729. https://doi.org/10.3390/agriculture13091729
Asule PA, Musafiri C, Nyabuga G, Kiai W, Ngetich FK, Spurk C. Determinants of Simultaneous Use of Soil Fertility Information Sources among Smallholder Farmers in the Central Highlands of Kenya. Agriculture. 2023; 13(9):1729. https://doi.org/10.3390/agriculture13091729
Chicago/Turabian StyleAsule, Pamellah A., Collins Musafiri, George Nyabuga, Wambui Kiai, Felix K. Ngetich, and Christoph Spurk. 2023. "Determinants of Simultaneous Use of Soil Fertility Information Sources among Smallholder Farmers in the Central Highlands of Kenya" Agriculture 13, no. 9: 1729. https://doi.org/10.3390/agriculture13091729
APA StyleAsule, P. A., Musafiri, C., Nyabuga, G., Kiai, W., Ngetich, F. K., & Spurk, C. (2023). Determinants of Simultaneous Use of Soil Fertility Information Sources among Smallholder Farmers in the Central Highlands of Kenya. Agriculture, 13(9), 1729. https://doi.org/10.3390/agriculture13091729