Fodder Radish as a Potential Alternative Feed Source for Livestock in South Africa
Abstract
:1. Introduction
2. Description, Origin, and Environmental Fit of Fodder Radish
3. Fodder Radish Benefits as Cover Crop
4. Fodder Radish Benefits as a Feed Source for Livestock Production
5. Animal Response on Fodder Radish Diets
6. Antinutritional Factors Associated with Utilization of Fodder Radish
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mapiye, O.; Chikwanha, O.C.; Makombe, G.; Dzama, K.; Mapiye, C. Livelihood, food and nutrition security in Southern Africa: What role do indigenous cattle genetic resources play? Diversity 2020, 12, 74. [Google Scholar] [CrossRef]
- Nouman, W.; Basra, S.; Ahmed, M.; Siddiqui, M.T.; Yasmeen, A.; Gull, T.; AlScayde, M.A.C. Potential of Moringa oleifera L. as livestock fodder crop: A review. Turk. J. Agric. For. 2014, 38, 1–14. [Google Scholar] [CrossRef]
- Mirón, I.J.; Linares, C.; Díaz, J. The influence of climate change on food production and food safety. Environ. Res. 2023, 216, 114674. [Google Scholar] [CrossRef]
- Henchion, M.; Moloney, A.; Hyland, J.; Zimmermann, J.; McCarthy, S. Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal 2021, 15, 100287. [Google Scholar] [CrossRef] [PubMed]
- Salmon, G.R.; MacLeod, M.; Claxton, J.; Ciamarra, U.P.; Robinson, T.; Duncan, A.; Peters, A. Exploring the landscape of livestock ‘Facts’. Glob. Food Secur. 2020, 25, 100329. [Google Scholar] [CrossRef]
- Sekaran, U.; Lai, L.; Ussiri, D.A.; Kumar, S.; Clay, S. Role of integrated crop-livestock systems in improving agriculture production and addressing food security—A review. J. Agric. Food Res. 2021, 5, 100190. [Google Scholar] [CrossRef]
- Thornton, P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef]
- Herrero, M.; Grace, D.; Njuki, J.; Johnson, N.; Enahoro, D.; Silvestri, S.; Rufino, M.C. The roles of livestock in developing countries. Animal 2013, 7, 3–18. [Google Scholar] [CrossRef]
- Kamalzadeh, A.; Rajabbaigy, M.; Kiasat, A. Livestock production systems and trends in livestock industry in Iran. J. Agri. Soc. Sci. 2008, 4, 183–188. [Google Scholar]
- Delgado, C.; Rosegrant, M.; Steinfeld, H.; Ehui, S.; Courbois, C. Livestock to 2020: The next food revolution. Outlook Agric. 2001, 30, 27–29. [Google Scholar] [CrossRef]
- Steinfeld, H. Livestock’s Long Shadow: Environmental Issues and Options; FAO: Rome, Italy, 2006. [Google Scholar]
- Koneswaran, G.; Nierenberg, D. Global farm animal production and global warming: Impacting and mitigating climate change. Environ. Health Perspect. 2008, 116, 578–582. [Google Scholar] [CrossRef]
- Paterson, R.; Karanja, G.; Nyaata, O.; Kariuki, I.; Roothaert, R. A review of tree fodder production and utilization within smallholder agroforestry systems in Kenya. Agrofor. Syst. 1998, 41, 181–199. [Google Scholar] [CrossRef]
- Raj, A.K.; Kunhamu, T.; Jamaludheen, V.; Chichaghare, A. Upscaling fodder tree integration in humid tropical agroforestry systems–Prospects and constraints. Indian J. Agrofor. Spec. Issue 2022, 37, 46. [Google Scholar]
- Salem, H.B.; Makkar, H.; Nefzaoui, A. Towards better utilisation of non-conventional feed sources by sheep and goats in some African and Asian countries. Options Méditerranéennes Série A 2004, 59, 177–187. [Google Scholar]
- Brown, D.; N’gambi, J.; Norris, D. Feed potential of Acacia karroo leaf meal for communal goat production in southern Africa: A review. JAPS J. Anim. Plant Sci. 2016, 26, 1178–1186. [Google Scholar]
- Farghaly, M.M.; Youssef, I.M.; Radwan, M.A.; Hamdon, H.A. Effect of feeding Sesbania sesban and reed grass on growth performance, blood parameters, and meat quality of growing lambs. Trop. Anim. Health Prod. 2022, 54, 3. [Google Scholar] [CrossRef] [PubMed]
- Rusdy, M.; Baba, S.; Garantjang, S.; Syarif, I. Effects of supplementation with Gliricidia sepium leaves on performance of Bali cattle fed elephant grass. Livest. Res. Rural. Dev. 2019, 31, 84. [Google Scholar]
- Mapiye, C.; Chimonyo, M.; Marufu, M.; Dzama, K. Utility of Acacia karroo for beef production in Southern African smallholder farming systems: A review. Anim. Feed Sci. Technol. 2011, 164, 135–146. [Google Scholar] [CrossRef]
- Brown, D.; Ng’ambi, J.W.; Norris, D. Voluntary intake and palatability indices of Pedi goats fed different levels of Acacia karroo leaf meal by cafeteria method. Indian J. Anim. Res. 2016, 50, 41–47. [Google Scholar] [CrossRef]
- Hlatini, V.; Ncobela, C.; Zindove, T.; Chimonyo, M. Use of polyethylene glycol to improve the utilisation of leguminous leaf meals in pigs: A review. S. Afr. J. Anim. Sci. 2018, 48, 609–620. [Google Scholar] [CrossRef]
- Ammann, S.; Nash, D.; Goodenough, D. Fodder radish for autumn and winter: Technology. Dairy Mail 2009, 16, 70–71. [Google Scholar]
- Rakau, P. New fodder radish varieties can boost dairy production. In Food for Thought; JHU Press: Baltimore, MD, USA, 2021. [Google Scholar]
- Ayres, L.; Clements, B. Forage brassicas–quality crops for livestock production. Agfact P2 2002, 1, 1–3. [Google Scholar]
- Johnston, J.S.; Pepper, A.E.; Hall, A.E.; Chen, Z.J.; Hodnett, G.; Drabek, J.; Lopez, R.; Price, H.J. Evolution of genome size in Brassicaceae. Ann. Bot. 2005, 95, 229–235. [Google Scholar] [CrossRef]
- Fenwick, G.R.; Heaney, R.K.; Mullin, W.J.; VanEtten, C.H. Glucosinolates and their breakdown products in food and food plants. CRC Crit. Rev. Food Sci. Nutr. 1983, 18, 123–201. [Google Scholar] [CrossRef] [PubMed]
- Zierer, W.; Rüscher, D.; Sonnewald, U.; Sonnewald, S. Tuber and tuberous root development. Annu. Rev. Plant Biol. 2021, 72, 551–580. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, V.B.S.; Mallick, S.N.; Pati, K.; Arutselvan, R.; Nedunchezhiyan, M. Status and Importance of Underexploited Tuber Crops in Relation to Nutritional Security and Economic Prosperity. In Compendium for Winter School on “Unexpected Vegetables: Unexplored Treasure Trove for Food, Nutritional and Economic Security”; ICAR-Indian Institute of Vegetable Research: Varanasi, India, 2022; pp. 246–264. [Google Scholar]
- Lee, O.N.; Park, H.Y. Assessment of genetic diversity in cultivated radishes (Raphanus sativus) by agronomic traits and SSR markers. Sci. Hortic. 2017, 223, 19–30. [Google Scholar] [CrossRef]
- Fourie, J.; Howell, C.; Masekwana, N. Selection of grass and broadleaf crops as catch crops where winery wastewater is used for irrigation: A review. South Afr. J. Enol. Vitic. 2021, 42, 10–18. [Google Scholar] [CrossRef]
- Clark, A. Managing Cover Crops Profitably; Diane Publishing: Darby, PA, USA, 2008. [Google Scholar]
- Kong, Q.; Li, X.; Xiang, C.; Wang, H.; Song, J.; Zhi, H. Genetic diversity of radish (Raphanus sativus L.) germplasm resources revealed by AFLP and RAPD markers. Plant Mol. Biol. Report. 2011, 29, 217–223. [Google Scholar] [CrossRef]
- Yamane, K.; Lü, N.; Ohnishi, O. Chloroplast DNA variations of cultivated radish and its wild relatives. Plant Sci. 2005, 168, 627–634. [Google Scholar] [CrossRef]
- Altman, B.; Hayes, M.; Janes, S.; Forbes, R. Wildlife of westside grassland and chaparral habitats. In Wildlife-Habitat Relationships in Oregon and Washington; Oregon State University Press: Corvallis, OR, USA, 2001; pp. 261–291. [Google Scholar]
- Rethman, N.; Heyns, G. Grazing of Raphanus sativus. L (Japanese radish). J. Grassl. Soc. S. Afr. 1987, 4, 154. [Google Scholar] [CrossRef]
- Verschoor, A.; Rethman, N. Forage potential of Japanese radish (Raphanus sativus) as influenced by planting date and cultivar choice. J. Grassl. Soc. S. Afr. 1992, 9, 176–177. [Google Scholar] [CrossRef]
- Stewart, A. A review of Brassica species, cross-pollination and implications for pure seed production in New Zealand. Agron. N. Z. 2002, 32, 63–82. [Google Scholar]
- Johnston, T. Breeding aspects of Raphanus and Brassica. Cru. Ferae Newsl. 1977, 2, 13. [Google Scholar]
- Stewart, A.; Moorhead, A. The development of a fodder radish suitable for multiple grazing. Agron. NZ 2004, 34, 1–7. [Google Scholar]
- Muzangwa, L.; Chiduza, C.; Muchaonyerwa, P. Feasibility of winter cover crop production under rainfed conditions in the eastern Cape Province of South Africa. Afr. Crop Sci. J. 2013, 21, 173–184. [Google Scholar]
- Seif, A.; Nyambo, B. Integrated Pest Management for Brassica Production in East Africa; ICIPE Science Press: Nairobi, Kenya, 2013. [Google Scholar]
- Weil, R.; Kremen, A. Thinking across and beyond disciplines to make cover crops pay. J. Sci. Food Agri. 2007, 87, 551–557. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Askegaard, M.; Lægdsmand, M.; Olesen, J.E. Effects of catch crop type and root depth on nitrogen leaching and yield of spring barley. Field Crops Res. 2012, 125, 129–138. [Google Scholar] [CrossRef]
- Chen, G.; Weil, R.R. Root growth and yield of maize as affected by soil compaction and cover crops. Soil Tillage Res. 2011, 117, 17–27. [Google Scholar] [CrossRef]
- Baraibar, B.; Hunter, M.C.; Schipanski, M.E.; Hamilton, A.; Mortensen, D.A. Weed suppression in cover crop monocultures and mixtures. Weed Sci. 2018, 66, 121–133. [Google Scholar] [CrossRef]
- Lawley, Y.E.; Weil, R.R.; Teasdale, J.R. Forage radish cover crop suppresses winter annual weeds in fall and before corn planting. Agron. J. 2011, 103, 137–144. [Google Scholar] [CrossRef]
- Elhakeem, A.; Porre, R.J.; Hoffland, E.; Van Dam, J.C.; Drost, S.M.; De Deyn, G.B. Radish-based cover crop mixtures mitigate leaching and increase availability of nitrogen to the cash crop. Field Crops Res. 2023, 292, 108803. [Google Scholar] [CrossRef]
- Salazar, O.; Nájera, F.; Tapia, W.; Casanova, M. Evaluation of the DAISY model for predicting nitrogen leaching in coarse-textured soils cropped with maize in the Mediterranean zone of Chile. Agric. Water Manag. 2017, 182, 77–86. [Google Scholar] [CrossRef]
- De Baets, S.; Poesen, J.; Meersmans, J.; Serlet, L. Cover crops and their erosion-reducing effects during concentrated flow erosion. Catena 2011, 85, 237–244. [Google Scholar] [CrossRef]
- Sihag, M.; Kumar, V.; Rana, M.; Srivastava, S.; Singh, S. Biofumigation: Prospects for control of soil borne plant diseases. J. Biopestic. 2022, 15, 136–149. [Google Scholar] [CrossRef]
- Malusi, N.; Falowo, A.; Hosu, Y.; Idamokoro, E. Prevalent constraints towards production and commercialization of cattle owned by small-holder farmers in south africa—A review. Adv. Anim. Vet. Sci. 2022, 10, 659–675. [Google Scholar]
- Sulc, R.M.; Tracy, B.F. Integrated Crop–Livestock Systems in the US Corn Belt; Wiley Online Library: Hoboken, NJ, USA, 2007. [Google Scholar]
- MacLaren, C.; Swanepoel, P.; Bennett, J.; Wright, J.; Dehnen-Schmutz, K. Cover crop biomass production is more important than diversity for weed suppression. Crop Sci. 2019, 59, 733–748. [Google Scholar] [CrossRef]
- Sheldrick, R.; Fenlon, J.; Lavender, R. Variation in forage yield and quality of three cruciferous catch crops grown in southern England. Grass Forage Sci. 1981, 36, 179–187. [Google Scholar] [CrossRef]
- Tsedaley, B. Review on early blight (Alternaria spp.) of potato disease and its management options. J. Biol. Agric. Healthc. 2014, 4, 191–199. [Google Scholar]
- Mpanza, T.D.E.; Hassen, A.; Akanmu, A.M. Evaluation of Stylosanthes scabra accessions as forage source for ruminants: Growth performance, nutritive value and in vitro ruminal fermentation. Animals 2020, 10, 1939. [Google Scholar] [CrossRef]
- Reta Sánchez, D.G.; Sánchez Duarte, J.I.; Ochoa Martínez, E.; González Cifuentes, A.I.; Reyes González, A.; Rodríguez Hernández, K. Yield and nutritional value of forage brassicas compared to traditional forages. Rev. Mex. De Cienc. Pecu. 2023, 14, 237–247. [Google Scholar] [CrossRef]
- Omokanye, A.; Hernandez, G.; Lardner, H.A.; Al-Maqtari, B.; Gill, K.S.; Lee, A. Alternative forage feeds for beef cattle in Northwestern Alberta, Canada: Forage yield and nutritive value of forage brassicas and forbs. J. Appl. Anim. Res. 2021, 49, 203–210. [Google Scholar] [CrossRef]
- Bonnet, A. Inheritance of some characters in radish (Raphanus sativus L.). Cruciferae Newsl. 1979, 4, 31. [Google Scholar]
- Azam, A.; Khan, I.; Mahmood, A.; Hameed, A. Yield, chemical composition and nutritional quality responses of carrot, radish and turnip to elevated atmospheric carbon dioxide. J. Sci. Food Agric. 2013, 93, 3237–3244. [Google Scholar] [CrossRef] [PubMed]
- Mpanza, T.D.E.; Hassen, A. Effects of Stylosanthes scabra Forage Supplementation on in Vitro Gas Production and Fiber Degradation of Eragrostis Grass Hay. Agric. Sci. 2023, 14, 522–540. [Google Scholar]
- Steddom, K.; Ong, K.; Starr, J. Efficacy of various brassica varieties for the suppression of root knot, ring, and stunt nematodes. Phytopathology 2008, 98, S150. [Google Scholar]
- Villalobos, L.; Brummer, J. Evaluation of Brassicas for fall forage. In Proceedings of theWestern States Alfalfa and Forage Symp, Reno, NV, USA, 12 December 2013. [Google Scholar]
- Bakker, C.; Hite, L.; Wright, C.; Smart, A.; Dinh, T.; Blair, A.; Underwood, K.; Grubbs, J.K. Impact of feeding cover crop forage containing brassicas to steers during backgrounding on palatability attributes of beef strip steaks. Foods 2021, 10, 1250. [Google Scholar] [CrossRef]
- Castillo-Umaña, M.; Balocchi, O.; Pulido, R.; Sepúlveda-Varas, P.; Pacheco, D.; Muetzel, S.; Berthiaume, R.; Keim, J.-P. Milk production responses and rumen fermentation of dairy cows supplemented with summer brassicas. Animal 2020, 14, 1684–1692. [Google Scholar] [CrossRef]
- Ma, J.; Shah, A.M.; Shao, Y.; Wang, Z.; Zou, H.; Hu, R.; Peng, Q.; Kang, K.; Wanapat, M. Effects of yeast cell wall on the growth performance, ruminal fermentation, and microbial community of weaned calves. Livest. Sci. 2020, 239, 104170. [Google Scholar] [CrossRef]
- Keim, J.; Daza, J.; Beltrán, I.; Balocchi, O.; Pulido, R.; Sepúlveda-Varas, P.; Pacheco, D.; Berthiaume, R. Milk production responses, rumen fermentation, and blood metabolites of dairy cows fed increasing concentrations of forage rape (Brassica napus ssp. Biennis). J. Dairy Sci. 2020, 103, 9054–9066. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Abdelrahman, M.; Zhang, X.; Yang, S.; Yuan, J.; An, Z.; Niu, K.; Gao, Y.; Li, J.; Wang, B. Milk Production responses and digestibility of dairy buffaloes (Bubalus bubalis) partially supplemented with forage rape (Brassica napus) silage replacing corn silage. Animals 2021, 11, 2931. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, D.; Birch, A.; Hillman, J. Antinutritional compounds in the brasi analysis, biosynthesis, chemistry and dietary effects. J. Hortic. Sci. Biotechnol. 1998, 73, 1–18. [Google Scholar] [CrossRef]
- Ehsen, S.; Qasim, M.; Abideen, Z.; Rizvi, R.F.; Gul, B.; Ansari, R.; Khan, M.A. Secondary metabolites as anti-nutritional factors in locally used halophytic forage/fodder. Pak. J. Bot. 2016, 48, 629–636. [Google Scholar]
- Bell, L.W.; Watt, L.J.; Stutz, R.S. Forage brassicas have potential for wider use in drier, mixed crop–livestock farming systems across Australia. Crop Pasture Sci. 2020, 71, 924–943. [Google Scholar] [CrossRef]
- Ruiz, H.; Lacasta, D.; Ramos, J.J.; Quintas, H.; Ruiz de Arcaute, M.; Ramo, M.Á.; Villanueva-Saz, S.; Ferrer, L.M. Anaemia in Ruminants Caused by Plant Consumption. Animals 2022, 12, 2373. [Google Scholar] [CrossRef]
- D’mello, J. Antinutritional factors and mycotoxins. Farm Anim. Metab. Nutr. 2000, 383. Available online: http://sherekashmir.informaticspublishing.com/345/1/9780851993782.pdf (accessed on 16 July 2023).
- Smith, R. S-Methylcysteine sulphoxide, the brassica anaemia factor (a valuable dietary factor for man?). Vet. Sci. Commun. 1978, 2, 47–61. [Google Scholar] [CrossRef]
- Prache, S. Haemolytic anaemia in ruminants fed forage brassicas: A review. Vet. Res. 1994, 25, 497–520. [Google Scholar]
- Whittle, P.J.; Smith, R.H.; McIntosh, A. Estimation of S-methylcysteine sulphoxide (kale anaemia factor) and its distribution among brassica forage and root crops. J. Sci. Food Agric. 1976, 27, 633–642. [Google Scholar] [CrossRef]
- Prieto, M.; López, C.J.; Simal-Gandara, J. Glucosinolates: Molecular structure, breakdown, genetic, bioavailability, properties and healthy and adverse effects. Adv. Food Nutr. Res. 2019, 90, 305–350. [Google Scholar]
- Rashid, G.; Avais, M.; Ahmad, S.S.; Mushtaq, M.H.; Ahmed, R.; Ali, M.; Naveed-ul-Haque, M.; Ahmad, M.; Khan, M.A.; Khan, N.U. Influence of Nitrogen Fertilizer on Nitrate Contents of Plants: A Prospective Aspect of Nitrate Poisoning in Dairy Animals. Pak. J. Zool. 2019, 51, 249–255. [Google Scholar] [CrossRef]
- Ward, M.H.; Kilfoy, B.A.; Weyer, P.J.; Anderson, K.E.; Folsom, A.R.; Cerhan, J.R. Nitrate intake and the risk of thyroid cancer and thyroid disease. Epidemiol. Camb. Mass. 2010, 21, 389. [Google Scholar] [CrossRef] [PubMed]
- Burow, K.R.; Nolan, B.T.; Rupert, M.G.; Dubrovsky, N.M. Nitrate in groundwater of the United States, 1991–2003. Environ. Sci. Technol. 2010, 44, 4988–4997. [Google Scholar] [CrossRef]
- Manassaram, D.M.; Backer, L.C.; Moll, D.M. A review of nitrates in drinking water: Maternal exposure and adverse reproductive and developmental outcomes. Environ. Health Perspect. 2006, 114, 320–327. [Google Scholar] [CrossRef]
- Cortese-Krott, M.M. Red blood cells as a “central hub” for sulfide bioactivity: Scavenging, metabolism, transport, and cross-talk with nitric oxide. Antioxid. Redox Signal. 2020, 33, 1332–1349. [Google Scholar] [CrossRef]
- Lee, C.; Beauchemin, K.A. A review of feeding supplementary nitrate to ruminant animals: Nitrate toxicity, methane emissions, and production performance. Can. J. Anim. Sci. 2014, 94, 557–570. [Google Scholar] [CrossRef]
- Knight, A.P.; Walter, R.G. A guide to plant poisoning of animals in North America. In A Guide Plant Poisoning Anim. North America; International Veterinary Information Service: Ithaca, NY, USA, 2002. [Google Scholar]
- McIlwain, P.; Schipper, I. Toxicity of nitrate nitrogen to cattle. J. Am. Vet. Med. Assoc. 1963, 142, 502–505. [Google Scholar]
- Geurink, J.; Malestein, A.; Kemp, A.; Korzeniowski, A.; Van’t Klooster, A.T. Nitrate poisoning in cattle. 7. Prevention. Neth. J. Sci. 1982, 30, 105–113. [Google Scholar] [CrossRef]
- Bolan, N.S.; Kemp, P. A review of factors affecting and prevention of pasture-induced nitrate toxicity in grazing animals. Proc. N. Z. Grassl. Assoc. 2003, 65, 171–178. [Google Scholar] [CrossRef]
Potential Benefits | Description | Reference |
---|---|---|
Effects on soil structure | Fodder radish roots exhibit superior capability for penetrating compacted soil in comparison to rapeseed and cereal rye. When radish cover crops are employed, corn roots penetrate compacted subsoil at a rate twice that of cereal rye, and both cover crops significantly enhance rooting when compared to leaving the land bare. This indicates that fodder radish could serve as a viable biological alternative to mechanical techniques such as deep ripping in order to alleviate soil compaction. | [44] |
Effects on weeds | Fodder radish reduces weed growth during and after their active growth periods. It is recommended to sow radish early, at least six weeks before frost, and at a relatively high density of more than five plants per square foot, into a well-prepared seed bed in order to complete weed control. | [45,46] |
Effects on nitrogen leaching | During the fallow season in autumn and winter, agricultural soils are particularly susceptible to the danger of nitrogen (N) leaching. However, the use of fodder radish can be beneficial as it has a deep root system and quickly extends its roots, making it an excellent scavenger of residual N. This crop is capable of absorbing N from both topsoil and deeper soil layers. | [47,48] |
Effects on mineral accumulation | Fodder radish has also been found to be excellent accumulators of both phosphorus (P) and potassium (K) due to their unique root system. As they grow, they absorb P and K from the soil and store them in their roots, making these nutrients readily available to other plants in the soil. | [42] |
Effects on soil erosion and run-off | Fodder radish serves as an effective means to manage soil erosion and run-off by enabling water infiltration. | [49] |
Effects on nematodes | Radish has also been found to control soil-borne diseases such as nematodes. For example, a recent study indicated that incorporating various brassica crops resulted in beneficial nematode population reductions. Some radish crops tested stood out, exhibiting the most significant reduction in root-knot nematode populations. During harvest, radish plots had fewer ring nematodes compared to bare plots, with the lowest reproduction rate among all treatments. | [50] |
Cultivars | PP | Yield | CP | CF | NDF | ADF | Ash | TC | EE | Reference |
---|---|---|---|---|---|---|---|---|---|---|
NBH-White Queen | L | 13.23 | 19.92 | - | - | 11.53 | 47.54 | 3.41 | [48] | |
Giant white globe | L | - | 23.5 | - | - | - | 27.7 | - | 3.1 | [52] |
Icheom Ge-Geol | T | 12.22 | 1.35 | 1.11 | - | - | 1.55 | - | 0.27 | [52] |
Korean | T | 8.55 | 0.75 | 0.71 | - | - | 0.65 | - | 0.19 | [52] |
Figl | L | - | 26.7 | 28.4 | - | - | 16.7 | 16.7 | 3.5 | [52] |
Mino | T | - | 8.79 | 23.75 | - | - | 23.42 | - | 1.43 | [62] |
Kwandong | L | 7 | 19.52 | 30.22 | - | - | 19.73 | 25.40 | 2.70 | [52] |
Yongdong | L | 7.4 | 21.79 | 33.13 | - | - | 20.60 | 24.05 | 2.81 | [52] |
Chongilpung | L | 7.2 | 23.03 | 29.29 | - | - | 17.72 | 27.09 | 2.82 | [52] |
Tamsureum | L | 7.1 | 20.84 | 34.34 | - | - | 18.73 | 23.29 | 1.62 | [52] |
Minongdanbaek | L | 12.43 | 20.09 | 26.76 | - | - | 16.07 | 26.72 | 0.19 | [52] |
Hunter brassica | L | 8.6 | 18.78 | - | 27.70 | 21.04 | - | - | - | [58] |
Daikon radish | L | 7.3 | 15.9 | - | 32.9 | 24.6 | - | - | - | [58] |
Malwira turnip rape | L | 4.3 | 18.1 | - | 24.7 | 17.3 | - | - | - | [58] |
Purple top turnip | L | 4.2 | 21.5 | - | 28.9 | 21.1 | - | - | - | [58] |
Tillape radish | L | 6.4 | 13.4 | - | 51.6 | 34.5 | - | - | - | [58] |
Winfred | L | 6.8 | 19.3 | - | 29.8 | 21.7 | - | - | - | [58] |
Graza radish | L | 10.5 | 19.84 | - | 45.66 | 28.07 | - | - | - | [58] |
Cultivars | PP | Ca | P | Mg | K | Na | Reference |
---|---|---|---|---|---|---|---|
Giant White Globe | T | 4899 | 5838 | 2096 | 68,096 | 752 | [52] |
L | 18,724 | 3442 | 4036 | 5605 | 496 | [52] | |
Mino | T | 8700 | - | 6900 | 35,100 | - | [62] |
Jarola | T | 157 | - | 103 | 2799 | 192 | [63] |
Miyashige | T | 130 | - | 87 | 2621 | 238 | [63] |
Daikon radish | L | 7700 | 3700 | 2500 | 23,100 | 400 | [58] |
Malwira Turnip rape | L | 17,600 | 2900 | 3300 | 31,900 | 300 | [58] |
Purple top turnip | L | 30,100 | 3300 | 5600 | 39,700 | 3100 | [58] |
Tillape radish | L | 16,900 | 2600 | 5000 | 20,900 | 1900 | [58] |
Winfred | L | 19,500 | 3500 | 7500 | 32,600 | 2500 | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbambalala, L.; Rani, Z.T.; Mpanza, T.D.E.; Mthana, M.S.; Ncisana, L.; Mkhize, N.R. Fodder Radish as a Potential Alternative Feed Source for Livestock in South Africa. Agriculture 2023, 13, 1625. https://doi.org/10.3390/agriculture13081625
Mbambalala L, Rani ZT, Mpanza TDE, Mthana MS, Ncisana L, Mkhize NR. Fodder Radish as a Potential Alternative Feed Source for Livestock in South Africa. Agriculture. 2023; 13(8):1625. https://doi.org/10.3390/agriculture13081625
Chicago/Turabian StyleMbambalala, Lwando, Zikhona Theodora Rani, Thamsanqa Doctor Empire Mpanza, Makiwa Simeon Mthana, Lusanda Ncisana, and Ntuthuko Raphael Mkhize. 2023. "Fodder Radish as a Potential Alternative Feed Source for Livestock in South Africa" Agriculture 13, no. 8: 1625. https://doi.org/10.3390/agriculture13081625